Download PDFOpen PDF in browser

Predicting Accurate Urban Flooding from Nuisance Flows to Major Disasters

9 pagesPublished: September 20, 2018


Two-dimensional flood models are becoming increasing more accurate in simulating surface water flooding. Concurrently flood hazard maps have higher resolution to support flood mitigation planning. Most flood studies focus on large river flooding (~ 100-yr flood), but in urban areas, emergency access and evacuation routes are needed for frequent rainfall and flood events (< 10-yr return periods). Urban flooding is more complex than river margin flooding and requires significantly more model detail to accurate access risk and hazard for frequent storms. Urban flooding is an event characterized by its frequent repetitive and systematic impact on population and urban infrastructure. Detailed urban flood inundation is now being performed with spatially and temporally variable rainfall and infiltration, channel and street flow, hydraulic structures, surface water storm drain exchange, building loss of storage and flow obstruction, building collapse, levee/wall overtopping and collapse, groundwater flow, sediment scour/deposition and mudflows. In residential neighborhoods, shallow flooding is controlled by streets, buildings, walls and storm drain facilities. Several flood model details and their impact on shallow flooding are discussed including spatially variable storm intensities on pervious and impervious surfaces, surface water exchange with limited storm drain system capacity, and building roof runoff. Several predictive strategies are highlighted to simulate flooding from nuisance flows to major disasters.

Keyphrases: Flood Modeling, Storm Drainage, urban flooding

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 818--826

BibTeX entry
  author    = {Noemi Gonzalez-Ramirez and Fernando Nardi and James S. O'Brien},
  title     = {Predicting Accurate Urban Flooding  from Nuisance Flows to Major Disasters},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  pages     = {818--826},
  year      = {2018},
  publisher = {EasyChair},
  bibsource = {EasyChair,},
  issn      = {2516-2330},
  url       = {},
  doi       = {10.29007/81mt}}
Download PDFOpen PDF in browser