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Abstract
The speech recognition task in Vietnamese
is increasingly being interested and invested
in by researchers and organizations. With a
small amount of training data, self-supervised
models have performed better than supervised
models in speech recognition. As a part of
this study, I explored two different learning
methods, self-supervised learning and semi-
supervised learning, in combination to solve
the speech recognition problem. In order to
perform self-supervised learning, I use a Hu-
BERT model, which combines offline cluster-
ing with a BERT-like prediction loss. On the
HuBERT model, I use the Gradient Mask tech-
nique to perform semi-supervised learning. Ap-
proximately 500 hours of unlabeled data and 50
hours of labeled data are provided by the VLSP
2022 organizers for training. The approach
performs third on the ASR-T1 test using the
proposed methodology, with a Syllable Error
Rate (SyER) of 14.28%.

Index Terms: speech recognition, self-
supervised learning, pseudo-labeling

1 Introduction

The collecting of huge amounts of labeled data for
speech recognition requires a significant amount of
time and effort. To solve the problem of labeled
data, self-supervised speech recognition algorithms
have recently become popular. Self-supervised
learning (SSL) is a rapidly developing subclass
of unsupervised learning systems that employ in-
formation collected from the input data itself as
the label to learn representations helpful for down-
stream tasks.

S. Schneider et al. [1] improve supervised
speech recognition using unsupervised pre-training
in wav2vec. The wav2vec model is a convolutional
neural network that uses raw audio to build a rep-
resentation that can be input into a speech recogni-
tion system. The objective is to obtain a contrastive

loss by discriminating between actual future audio
samples and negatives. Later, Wav2vec 2.0 was
proposed by A. Baevski [2]. When solving a con-
trastive task based on a quantization of the jointly
acquired latent representations, wav2vec 2.0 masks
the speech input in the latent space. The model is
trained using a contrastive task in which the true
latent is to be differentiated from distractions. The
latent representations are supplied to a Transformer
network to produce contextualized representations.
Another strategy uses an offline clustering phase to
produce aligned target labels for a prediction loss
that is similar to BERT. The Hidden-Unit BERT
(HuBERT) approach for learning self-supervised
speech representation was proposed by Wei-Ning
Hsu et al. [3].

Semi-supervised learning bridges supervised
learning and unsupervised learning techniques to
solve their key challenges. With it, you train an
initial model on a few labeled samples and then iter-
atively apply it to the greater number of unlabeled
data. To provide a learning signal to a discrim-
inative model trained on unlabeled speech, Wei-
Ning Hsu et al. [4] propose local prior matching
(LPM), a semi-supervised objective that extracts
knowledge from a strong prior (such as a language
model). A proposal model first creates a set of hy-
potheses from an unlabeled utterance. The ASR
model can then incorporate prior information by
distilling it using the language model’s (LM) target
distribution. Self-training using WFST-based su-
pervision is conducted using the recently proposed
graph-based temporal classification (GTC) objec-
tive by Peter et al. [5], which is derived from an
N-best set of pseudo-labels. Shaoshi Ling proposes
the Gradient Mask [6] to enhance pseudo-label
training in end-to-end speech recognition by draw-
ing inspiration from masked prediction and incor-
porating its idea. The ASR model uses the Gradient
Mask to train a student model on the pseudo labels



after first training a seed model to generate labels.
In this paper, I propose a method for solving

speech recognition tasks in The 9th International
Workshop on Vietnamese Language and Speech
Processing (VLSP2022) competition by combin-
ing Hubert model with Gradient Mask technique.
To learn the speech representation, I first train the
HuBERT model using labeled and unlabeled data
that the competition organizers provided. Approx-
imately 50 hours of labeled audio data are then
used to fine-tune the HuBERT model. I produce
pseudo labels from the fine-tuned HuBERT model
and then use the Gradient Mask to train a student
model on the pseudo labels. By masking the gra-
dients related to unmasked input, the model only
allows gradients corresponding to masked input to
back-propagate through the model encoder. The
model is trained by minimizing the loss on both
labeled and pseudo-label data while turning off the
Gradient Mask on labeled data.

The training method can force the model to learn
a strong acoustic representation. Intuitively, the Hu-
BERT model is required to learn both acoustic and
language models from continuous inputs. First, the
model must transform unmasked inputs into use-
ful continuous latent representations, which corre-
sponds to the classical acoustic modeling challenge.
Second, the model must capture the long-range tem-
poral relationships between learned representations
in order to reduce prediction error [3]. Additionally,
by reducing the impact of label noise on the model,
gradient mask can enhance pseudo-label training.

2 Method

2.1 HuBERT model

Unlike Discrete BERT [7], which relies on an ad-
vanced representation learning model to discretize
continuous inputs, the Hidden Unit BERT (Hu-
BERT) approach uses quantized MFCC features as
targets learned with classic k-means. The k-means
model g1(.) thus assigns a cluster center to every
timestep in order to compute the targets. The Hu-
BERT model architecture is based on the wav2vec
2.0 architecture [8], with a convolutional module
f1(.) and a Transformer encoder f2(.), as well as a
softmax normalized output layer g2(.):

ct = g1(X[t−w,t+w]) (1)

zt = f1(X[t−u,t+u]) (2)

H = f2(m(Z) (3)

Ct = g2(ht) (4)

where w defines the window size used to com-
pute the MFCCs features. Both masked, Lm, and
unmasked, Lu, timesteps are used in the computa-
tion of the categorical cross-entropy loss:

Lm =
∑
t∈M

−logp(ct|X) (5)

L = βLm + (1− β)Lu (6)

Again, M is the set of all masked timesteps, β
is a scalar hyperparameter and Lu is computed as
Lm but summing over t /∈ M . The significance of
target consistency, which enables the model to con-
centrate on modeling the input’s sequential struc-
ture, is a key insight that motivates this work. Im-
portantly, pre-training is a two-step process for Hu-
BERT. These two steps are pseudo-label generation
and speech representation learning.

2.2 Gradient mask
The gradient mask approach has been researched
to effectively use the unlabeled data source in order
to benefit from unlabeled data in the same domain
that is less affected by incorrect pseudo labels [6]
[9]. For sequence X = [x1, ..., xT ] which has
pseudo labels Y

′
= [y

′
1, ..., y

′
u]. With the objec-

tive of allowing the model to predict labels from
masked features, the ASR model has been trained
to be a robust acoustic representation model that
can benefit in ASR tasks. For input sequence Z,
mask = [m1, ...,mT ], I randomly generated a
mask representing the positions of the hidden fea-
tures before feeding them to the Transformer en-
coder. Specifically, mt is 1 if features are masked
at time t, and 0 otherwise. A learned mask em-
bedding emb replaces hidden features in masked
positions. The following is a representation of the
encoder features function:

henc = fenc((∼ mask) ∗ f1(X) +mask ∗ emb) (7)

The mask strategy is the same as [2], where I
randomly select p starting indices from all time
steps to serve as samples without replacement and
use overlap spans to mask the remaining m time
steps from each sampled index. I used a mask



sequence to mask the gradients corresponding to
the unmasked inputs when the gradient is back-
propagated to the encoder:

gradhenc = (∼ mask) ∗ gradhenc (8)

Figure 1 presents an illustration of the training
model.

Figure 1: The HuBERT mask method was used for
pretraining, while the Gradient mask method was used
for fine-tuning using pseudo-label.

3 Experiments

3.1 Data
The total 550 hours of VLSP 2022 task 01 audio
are used for unsupervised pre-training. The audio
dataset for supervised fine-tuning contains about 50
hours of labeled audio data. Audio segments longer
than 18 seconds and shorter than 0.8 seconds are
removed.

I use 3096 subword [10] units as my prediction
targets. I did not apply any audio data augmenta-
tion methods when training on labeled and pseudo-
label data.

3.2 Training procedure
3.2.1 Pre-Training
On the 550 hours of VLSP 2022 task 01 audio on 1
GPU, I train the HuBERT BASE model for three
iterations. The first iteration is trained for 400k

steps, and the second iteration is trained for 800k
steps using labels produced by clustering the output
of the first iteration model’s sixth transformer layer.
The third iteration is similar to the second iteration;
however, the model is trained over 1.2M steps using
labels generated by clustering the output of the
second iteration model’s ninth transformer layer.

I perform k-means clustering with 100 clusters
on 39 dimensional MFCC features, which are 13
coefficients with the first and second-order deriva-
tives, to produce labels for the first iteration Hu-
BERT training over the VLSP 2022 task 01 train-
ing set. I run k-means clustering with 500 clusters
on the latent features extracted from the HuBERT
model pre-trained in the previous iteration (not fine-
tuned) at some intermediate transformer layer to
generate better targets for following iterations.

Mask span is set to l = 10 for all HuBERT
configurations, and p = 8% of the convolutional
module output frames are randomly selected as
mask start. The learning rate ramps up linearly
from zero to the peak learning rate for the first 8%
of the training steps, then decays linearly down to
zero when the Adam [11] optimizer is used with
β = (0.9, 0.98). For the HuBERT BASE model,
the peak learning rate is 5e-4.

3.2.2 Supervised Fine-Tuning and Decoding
I fine-tune the HuBERT BASE model on a single
GPU using 50 hours of annotated audio data. The
convolutional module audio encoder parameters are
fixed during fine-tuning. The model training uses a
freeze-step hyperparameter, similar to wav2vec2.0,
to determine how many fine-tuning steps the trans-
former parameters are fixed, and only the new soft-
max matrix is trained. For the first 30% of the
training steps, the learning rate gradually increases
from 1e-5 to 1e-4 before decreasing linearly to 0.

At the time of inference, log-linear interpolation
is used to incorporate the external language model.
I utilize a technique called shallow fusion, which
combines language modeling with beam search
decoding techniques [12]:

Score = logPCTC(Y |X) + αlogPLM (Y ) + β|Y | (9)

where Y is the predicted text, |Y | is number
word in text, and β and α stand for the word score
and language model weight, respectively. I use
the 5-gram language model in all of my decoding
experiments [13].



Table 1: WER on the VLSP 2022 Test set 01 for the ASR system

Models Data WER
HuBERT BASE 50-hours labeled 18.89
HuBERT BASE GM-01 50-hours labeled and 500h pseudo-labeled 14.52
HuBERT BASE GM-02 50-hours labeled and 500h pseudo-labeled 14.28

3.2.3 Semi-Supervised Training
Let L = {xi, yi} be a labeled dataset and U =
{xj} be a large unlabeled dataset. I use a fine-
tuned HuBERT BASE model on 50 hours of la-
beled audio data to generate pseudo-labeled on
dataset U = {xj , y

′
j}. The following step is to

train a student model with both datasets L and U .
I use the gradient mask method as described in 2.2
to update the model parameters using a minibatch
from the pseudo-labels dataset U . I update param-
eters in the standard way on a minibatch from the
labeled dataset L. The pseudo-label generation
process is repeated twice.

3.3 Results
The Syllable Error Rate (SyER) metric will be used
to evaluate the models’ quality:

SyER = S+D+I
N

(10)

where: S is the number of substitutions, D is the
number of deletions, I is the number of insertions,
C is the number of correct syllables, N is the num-
ber of syllables in the reference N = S +D + C

After training the HuBERT BASE model be-
fore and after the gradient mask was used, Table
1 shows the WER results on the VLSP 2022 task
01 test set. After pre-training, the HuBERT BASE
model is fine tuned on a labeled dataset. The mod-
els HuBERT BASE GM-01 and HuBERT BASE
GM-02 use the gradient mask approach.

The table shows the results of the student model
directly trained from the pseudo labels given by the
HuBERT BASE model for HuBERT BASE GM-
01. The Syllable Error Rate (SyER) for the test set
decreased by 4% when the gradient mask technique
was applied. I repeat the pseudo labeling technique
twice for HuBERT BASE GM-02.

Because the quality of the pseudo-label influ-
ences the ASR model quality in semi-supervised
learning, I choose the hubert model to generate
the pseudo-label for the first iteration. The CNN
encoder layer’s weights are not altered when train-
ing using pseudo-label, only the emd (mask em-
bedding) and transformer layers are, reducing the
effect of incorrect pseudo-label on the model. The

weights of the transformer layers will also be mod-
ified when training with batches without a pseudo-
label. The results of the experiments in this paper
show that the Gradient Mask technique can be ap-
plied to the self-supervised HuBERT model, sig-
nificantly boosting the accuracy of the ASR model
while using only one GPU for training.

4 Conclusions

By combining self-supervised and semi-supervised
methods, I propose a straightforward and effec-
tive technique for improving pseudo-label training.
This method enables the model to learn the strong
acoustic features while also being effective with
label noise in pseudo-label training. In the future,
Distributed Training on many GPUs will be used
to improve the ASR model during the Pre-Training
phase.
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