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Abstract—Measurement-based quantum computation (MBQC)
is a powerful technique that relies on multi-qubit entangled
cluster states. To realize a universal set of quantum gates, and
thus, any quantum algorithm in MBQC, we need to measure
the cluster state qubits in suitable measurement bases in proper
order, followed by final correction based on the feed-forward
of the measurement outcomes. Among photonic qubit architec-
tures, the Gottesman-Kitaev-Preskill (GKP) bosonic continuous-
variable (CV) encoding is a great candidate for MBQC. GKP
qubits allow for easy application of entangling CZ gates for
generating the resource cluster states using beam splitters.
However, preparing high-quality, realistic, finite-squeezed GKP
qubits can be experimentally challenging. Thus, it is reasonable
to expect near-future implementations of GKP-based MBQC on
cluster states to contain only a handful of “good” quality GKP
qubits. In contrast, other qubits are weakly squeezed GKP qubits
or even just squeezed vacuum states. In this paper, we analyze
the performance of a universal set of CV gates when a mix
of different quality—good and bad—GKP qubits and squeezed
vacuum states are used to create the cluster state. By comparing
the performance, we identify the critical qubits for each gate
in the cluster state for their MBQC realization. Our approach
involves comparing the output of the gates with the corresponding
expected outputs. We present the logical error rates for the
different gate realizations as a function of the GKP squeezing
for every combination of good and bad qubits, simulated and
determined using Xanadu’s Strawberry Fields python library.

Index Terms—measurement-based quantum computation,
quantum continuous variables, Gottesman-Kitaev-Preskill qubits

I. INTRODUCTION AND MOTIVATION

Measurement-based quantum computation (MBQC) [1] is a
promising paradigm that allows us to apply arbitrary quantum
computation using entangled resource states, single qubit mea-
surements, and feed-forward. Combining MBQC with bosonic
continuous variable (CV) encodings gives us a significant
advantage. Lasers and linear optics can easily generate large
numbers of bosonic quantum systems or qumodes prepared
in multimode Gaussian states in the frequency and temporal
domains. So it is easy to generate bosonic 2-d and 3-d
Gaussian cluster states of increasing depth [2], [3].

Among encodings of bosonic quantum systems, the GKP
qubit encoding [4], [5] is a promising candidate for quan-
tum computation. The GKP qubit’s intrinsic error correction
properties set it on the highest pedestal among all possible

bosonic encodings. However, ideal GKP qubits involve infinite
quadrature squeezing and are thus unphysical. Approximate
finite squeezed versions of GKP qubits can be prepared using
Gaussian boson sampling [6] or photon catalysis [7]. Still, it
is experimentally very challenging since the GKP qubit states
are highly non-classical, non-Gaussian states [8]. Thus, high-
quality finitely squeezed GKP qumodes are aptly expensive in
CV photonic quantum computation. In this paper, we pinpoint
the most critical nodes within a GKP-qubit cluster and find
a possible hierarchy of importance among cluster nodes to
implement a universal set of CV quantum gates. Given a
set of cluster nodes, an algorithm to implement, and only
a handful of good-quality GKP qubits, we can utilize the
resources effectively.

The paper is organized as follows. Section II introduces
MBQC, the concept of a cluster state, and a simple example
of implementing a gate by single qumode measurement. Sec-
tion III discusses CV quantum computing and the mapping
between CV and DV computing, focusing on GKP qubits.
Here, we discuss the GKP Wigner function and the advantages
of using GKP qubits. Section IV discusses the universal set
of CV gates and how to implement MBQC over a CV cluster.
After setting the necessary background on CV-MBQC with
GKP, Section V elaborates on the simulation design and
the result of identifying the critical qubit. We conclude in
Section VI.

II. MEASUREMENT-BASED QUANTUM COMPUTATION

As the name suggests, MBQC conducts quantum computa-
tion by applying single-node measurements on an initial n2-
node entangled state called a cluster state, where the nodes
are qubits, or more generally, qumodes in the case of CV
systems. A cluster state on an n × n cluster of qubits is
a graph state where every node is a qubit prepared in the
|+⟩ state (a uniform superposition of the ground and excited
states |0⟩ and |1⟩ states, respectively) and every edge is a
CZ-gate [9]. MBQC is especially well suited for photonic
Gottesman-Kitaev-Preskill (GKP) encoded qubits in qumodes.
This is because, with the GKP encoding, we can apply the CZ
gate using simple beam-splitters and thus expand the cluster
state using only Gaussian operations.



To better illustrate MBQC, we consider a simple example
of a two-qubit graph state as shown in Fig. 1. This graph state

Fig. 1: A simple 2-Qubit graph state. Qubits are pictured as
blue nodes, and the CZ gate is the orange line between them.
The cross symbol over the qubit represents a measurement.
The “ĥat” Symbol above the operator represents the measure-
ment axis.

consists of two qubits, initially prepared on the |ψ,+⟩. Then, a
CZ gate is applied between the two qubits to generate the final
graph state. The first qubit is measured in the X basis, and
the outcome is recorded as m1. In this paper, we decode the
eigenvalue 1 as m1 = 0 and the eigenvalue of -1 as m1 = 1.
After measuring the first qubit, the conditional state of the
second qubit is given by X(m1)H |ψ⟩. The second qubit thus
holds the output of the application of the Hadamard gate to
the initial state of the first qubit. Note that the Hadamard gate
was applied using a single qubit quantum measurement and
feed-forward alone [10].

III. CV AND GKP QUANTUM COMPUTATION

Discrete variable (DV) quantum computation encodes the
state using finite-dimensional quantum systems. [11].

|ψ⟩ = Σiαi |i⟩ , ⟨i|j⟩ = δij (1)

The most basic example is a two-level system, also called a
qubit. We can write any pure state of a qubit regarding basis
states |0⟩ , |1⟩. (Note that |0⟩ , |1⟩ can be eigenstates of any
unitary). Bosonic CV systems on the other hand are infinite-
dimensional quantum systems [12]. The GKP encoding is a
particularly robust qubit subspace with good error correction
properties that is embedded in a CV system that can be
described by the following basis states:

|0⟩GKP = Σn

∣∣∣q = (2n)
√
πℏ

〉
,

|1⟩GKP = Σn

∣∣∣q = (2n+ 1)
√
πℏ

〉
. (2)

The |0⟩GKP and |1⟩GKP are superposition of infinitely many
position eigenstates, where the |0⟩GKP contains states with even
multiples of

√
πℏ, i.e.,

∣∣∣(2n)√πℏ〉, while |1⟩GKP has terms of

the form
∣∣∣(2n+ 1)

√
πℏ

〉
. If we had n copies of the |0⟩GKP to

measure, the histogram of the recorded result would populate
around even numbers (up to a scaling of

√
πℏ), as shown in

Fig.2.

A. Wigner function and Finite squeezing

Bosonic CV quantum states can be described by their
position and momentum quadrature properties [13]. The set of
all the position |q⟩ and momentum |p⟩ eigenstates create the

most general way of describing such a system, which satisfies
the equations below:

|q⟩ = 1

2
√
π

∫
dpe−iqp/2 |p⟩ ,

|p⟩ = 1

2
√
π

∫
dqeiqp/2 |q⟩ ,

⟨q|p⟩ = 1√
2πℏ

eiqp/ℏ (3)

|ψ⟩ =
∫

Ψ(x) |x⟩ dx =

∫
Φ(p) |p⟩ dp (4)

Like the Bloch sphere representation of states of a single
qubit, the Wigner function or the Wigner quasi-probability
distribution is a great way to represent CV states in the phase
space (p-q) [14]. Since the Wigner function represents the state
density operator and can have negative and positive values,
it is called a quasi-probability distribution. Fig. 2 shows the
Wigner function of a |0⟩GKP state, while Fig. 3 shows its
marginal distribution along the q-quadrature. As mentioned in
Eq. (2), |0⟩GKP is a sum over position basis |q⟩, with values as
(2n)

√
πℏ . So in its quadrature distribution, we see a train of

delta functions arranged along the position axis, at values of
(2n)

√
πℏ from the origin. In Fig. 3, you also see the effect of

finite squeezing on the histogram distribution, with the peak
amplitudes decaying as we look farther away from the origin.

Fig. 2: A 3D Wigner representation of the |0⟩GKP. As you
can see, the distribution has an outer Gaussian envelope, a
Gaussian decay as we go farther away from the origin.

B. Pauli operations using displacement

Using one of the favorable properties of GKP qubits, we
can apply Pauli operators only by displacing the state along
a certain quadrature. For instance, to apply X(x) |0⟩GKP, all
we need to do is to displace |0⟩GKP along q̂ quadrature by
(x)

√
πℏ. So to apply the X gate, the displacement should be

along q̂ quadrature (position is analogous to Pauli Z-basis),
and to apply the Z gate, the displacement should be along
p̂ quadrature (momentum is analogous to Pauli X-basis). We
require this discussion in the final section, where we introduce
the MBQC circuits and the idea of using displacement on the
last qumode as the Pauli correction.



Fig. 3: q̂-quadrature distributions of the |0⟩GKP state for differ-
ent values of GKP squeezing. |0⟩GKP = Σn

∣∣∣q = (2n)
√
πℏ

〉
so if we measure this state along position quadrature, the
outcome values are m = (2n)

√
πℏ. The left figure shows the

histogram of the same state but with higher ϵ (meaning being
less squeezed). As you can see, by increasing ϵ, the delta
function will go toward a Gaussian distribution at (2n)

√
πℏ.

IV. UNIVERSAL SET OF CV GATES

We now review a universal set for CV logic gates [15], [16]
and elaborate on each gate separately, where a combination of
gates is said to be universal if one can apply any arbitrary
unitary operation in terms of elements of the set. Consider the
set of gates:

Z(p) = eipq̂/ℏ, P (s) = eisq̂
2/2ℏ, V (γ) = eiγq̂

3/3ℏ,

F = ei
π
4 ( q̂2+p̂2

ℏ ), CX(s) = e−is(q̂⊗p̂)/ℏ (5)

We analyze implementing these gates in the measurement-
based paradigm to track how the measurement bases change
upon the qubits that get measured and how to interpret the
continuous raw output for feed-forward correction.

First, Fig. 4 shows the general form of applying any single
qumode unitary gate denoted as U using MBQC. The initial
state of this circuit is a |ψ+⟩GKP, which goes through a CZ
gate to generate the cluster state resource. After preparing the
cluster state, one can prove that by measuring the first qumode
along the (U†p̂U), the state of the second qumode will be
X(m1)FU |ψ⟩, where m1 is the measurement result of the
first qumode, and F is the Fourier gate described in Eq. (5).
Thus, we used measurement to perform U -gate on the initial
arbitrary state |ψ⟩.

Fig. 4: Applying an arbitrary single qumode gate U in MBQC.

A. Realizing phase gates by MBQC cluster

The Z gate, the quadratic phase gate or P gate, and the cubic
phase gate or V gate of Eq. (5) have remarkable similarities

in their structure. They are unitaries that are generated by
functions of q̂ starting from the first order to the third order,
respectively. Notice that, unlike the Z and P gates, the V
gate is a non-Gaussian operation. Every gate of a structure
Un(k) = eikq̂

n/nℏ transforms the momentum quadrature while
leaving the position quadrature intact as shown in Eq. (??).
Their effect on the momentum quadrature Un

†p̂Un can be
derived easily using the commutation [Un, p̂]. To find this
commutation, first, we should rewrite the Un in a Taylor
series of q̂n∀n. Eventually, by making use of Eq. (??), the
measurement axis will change from p̂ to p̂+ kq̂n−1, where n
is the power of q̂ within the intended gate and k is the scaling
of the gate.

Un
†p̂Un = p̂+ kq̂n−1

Un
†q̂Un = q̂

(6)

p̂q̂n + n[q̂, p̂]q̂n−1 = q̂np̂ (7)

Fig.5 shows the MBQC circuits for the Z, P, and V gates.
From the previous discussion within each circuit, the first
qumode should be measured along Un(k)

†
p̂Un(k), i.e.,

p̂+ p1̂ for Z gate.
p̂+ sq̂ for P gate.

p̂+ γq̂2 for V gate.

The outcome of this measurement (first qumode measurement)
is a continuous real number called m1. We will discuss the CV
measurement output more in Sec. V, but for now, we will take
this continuous value m1 as the X gate scaling to undo the
X(m1) effect on the second qumode. (This is called the feed-
forward correction). Remember that this correction is simply
a displacement since the m1 value is known to us.

Fig. 5: Z gate (top), the P gate (middle), and the V gate
(bottom).



Fig. 6: Measurement-based implementation of the Fourier gate.

B. Realizing Fourier gate by MBQC cluster

Consider the CV rotation gate, R(θ) = e
iθ
2 ( p̂2+q̂2

ℏ ) that
rotates a quantum state in the (p-q) phase space. The Fourier
gate F is a special case of the rotation gate with θ = π/2:

F = R(π/2) = e
iπ
4 ( p̂2+q̂2

ℏ ), (8)

Figure 7 shows the effect of the Fourier gate on |0⟩GKP; the
blue dots represent positive peaks, and the red ones represent
negative peaks. Evidently, the initial |0⟩GKP state in the plot
on the left (plot A) has been rotated by π/2 after passing
through the Fourier gate, as shown in the plot on the right
(plot B). Also, recall that the |0⟩GKP is a sum over all the
states with (2n)

√
πℏ. If we look at the q-axis in plot A, the

odd numbers marginally add to zero (negative peaks cancel
out the positive peaks), and only even multiplication of

√
πℏ

remains. So, |0⟩GKP has only even values along q quadrature,
consistent with Eq. (2). |+⟩GKP, on the other hand, is a uniform
superposition of the |0⟩GKP and |1⟩GKP states. This means that
the plus state would have both the even and odd number of
photons, which is |+⟩GKP = ( 1√

2
)Σ

∣∣∣q = (n)
√
πℏ

〉
. Now look

at Fig.7. you can see that the Fourier gate transforms the |0⟩GKP
to the |+⟩GKP, which has both the even and odd numbers
(they are marginally positive). We note that the Fourier gate
is analogous to the discrete variable Hadamard gate.

Fig. 7: Input |0⟩GKP and output |+⟩GKP output of the Fourier
gate (the CV analog of the Hadamard gate).

Let us also visualize the MBQC implementation of the P-
gate by similarly interpreting the Wigner functions of its input
and output. Mathematically speaking, by measuring the first
qumode along P †p̂P = p̂ + q̂, the second qumode is forced
to take the state X(m1)FP |ψ⟩ where m1 is the measurement
result of the first qumode and |ψ⟩ is the initial first qumode
state. We can visually verify the same by simulating the action

of the gate and plotting the Wigner function of the output.
Consider the simple cluster in Fig. 4. Let |ψ⟩ be P |+⟩GKP.
So as the initial state, we have [P |+⟩ ⊗ |+⟩] (from now on,
every encoding is a GKP unless mentioned otherwise). Then
we apply CZ-gate to complete the cluster. The state before
CZ is: 1√

2
[P |+⟩⊗ |0⟩+P |+⟩⊗ |1⟩] and after the application

of the CZ gate is 1√
2
[P |+⟩ ⊗ |0⟩+ ZP |+⟩ ⊗ |1⟩]. Figure. 8

Visualizes the Wigner representations of the P |+⟩ and the
ZP |+⟩ states, respectively, and notice that the grid points are
shifted along p̂+ q̂. To realize the P gate, we then measure the

Fig. 8: The effect of the Z-gate on the P |+⟩GKP state. The
initial state has been shifted along p̂+ q̂ quadrature.

first qumode along P †p̂P = p̂+ q̂ and record the measurement
result in as m1 to correct the second qumode X(m1)FP |ψ⟩.
We know that |ψ⟩ was initially prepared in the state P |+⟩
and so, the second qumode state becomes X(m1)FP |ψ⟩ =
X(m1)FPP |+⟩ = X(m1)FI |+⟩ = X(m1) |0⟩. The second
qumode is |0⟩ for even results and |1⟩ for odd results. Looking
at Fig. 8, we notice that measurement along the p̂ + q̂
quadrature yields quadrature results in even multiples of a
constant factor (

√
2πℏ) for P |+⟩ state and odd multiples of

the same for ZP |+⟩.

C. Realizing two-qumode gate by MBQC cluster

Fig. 9: The MBQC cluster of a two-qubit CX gate. Each node
is assigned a number consistent with the state vector repre-
sentation. The initial state of each qumode (before applying
the CZ gate) is written near each node. After applying the CZ
gate and performing Pauli X̂ or momentum p̂ measurement on
qumodes 2 and 3, the state of nodes 1,4 will be CX |ψϕ⟩1,4
up to a correction on m2 and m3.

So far, we have explored the two-qumode cluster state
and how arbitrary single-qumode gates can be realized using
suitable single-qumode measurements. However, a universal



gate set requires more than single qumode gates. Any CV
universal set needs a two-qumode gate to be complete. The
two-qumode gate that we chose in this paper is the Controlled-
X gate. This CV-CX gate acts like its DV component; it
performs an X-gate on the target node conditioned over the
control qumode. Previously, we used a two-qumode cluster
for implementing a single-qumode gate. To realize the CX
gate, one needs at least four qumodes connected with three
CZ operations; Figure. 9 illustrates the qubits as blue nodes
and CZ gates as orange lines. Qumodes are numbered from
qumode 1 to qumode 4. The control |ϕ⟩ and the target |ψ⟩
states sit on qumodes 2 and 1, respectively. The rest of the
cluster (qumode 1 and 4) have the |+⟩ state. After initializing
the qumodes, the CZ operation finalizes the picture, as shown
in the figure. Equations (9) and (10) indicate the system’s state
before and after the CZ gate.

before CZ gate : |ψ, ϕ,+,+⟩ (9)

after CZ gate :
1√
2
[|ψ, ϕ, 0,+⟩+ |ψ′, ϕ′, 1,−⟩]

where: |ψ′⟩ = Z |ψ⟩
|ϕ′⟩ = Z |ϕ⟩ = γ |0⟩+ δ |1⟩ (10)

After applying the CZ operation, the cluster is ready for
computation. To realize the CX gate, one has to measure
qumodes 2 and 3 along Pauli X̂ or, in the CV picture,
along the momentum quadrature p̂. (The figure portrays
measured nodes as crossed) By recording the measurement
results as m2 and m3, respectively, we have every tool
to complete the MBQC computation. After measurement,
qumode 1 and 4 maintain the computation outcome as qumode
1 being the target node and qumode 4 the control node,
|ψ, ϕin⟩1,2 goes toCX |ψ, ϕout⟩1,4. Remember the final cor-
rection in the MBQC picture. Employing measurement feed-
back is as vital as initializing a cluster. MBQC will only
bring purely random products, which is ineffective for any
computation if we don’t consider the measurement outcomes.
Based on the measurement outcomes m2 and m3, the state of
qumode 1 and 4 go down to one of the following states:

[γ |ψ+⟩+ δ |ψ′−⟩]1,4 |++⟩2,3 +
[γ |ψ+⟩ − δ |ψ′−⟩]1,4 |+−⟩2,3 +
[δ |ψ+⟩+ γ |ψ′−⟩]1,4 |−+⟩2,3 +
[δ |ψ+⟩ − γ |ψ′−⟩]1,4 |−−⟩2,3
The following section will discuss the simulation results

and circuit implementation. For those readers not familiar with
the GKP Maximum Likelihood decoder, please refer to the
Appendix.

V. CIRCUIT AND RESULT

This section presents our method of identifying the critical
MBQC node for each CV universal gate set element over
different GKP damping factors ϵ.

Fig. 10: The overall simulation flowchart. The first three steps
are essential for any measurement-based computation. The last
step is added to evaluate errors.

The universal set of CV gates [Z-gate, P-gate, V-gate, F-
gate, and CX] can be grouped into three cluster types:

Two-qumode cluster state(subgroup a),
Three-qumode cluster state(subgroup b),
Four-qumode cluster state(subgroup c).

Figure. 10 shows the overall simulation flowchart; we need the
final step to investigate the error rate. Before diving into the
results, let’s analyze each Fig. 10 module. In the first module
(Initialization and Creating the Cluster), we initialize each
qumode in the |+⟩GKP state. In the (Measurement) module,
we use homodyne measurement defined as cos(ϕ)q̂+sin(ϕ)p̂
to measure each qumode along the required direction. Notice
that in subgroup b, since V gate is a non-Gaussian gate,
instead of measuring the state V |+⟩GKP along p̂+γq̂2 (which
is not a homodyne measurement) we reverse the effect of
the V gate. Then, we have the (Feed-Forward Displacement)
module, a displacement operator based on the measurement
result from mq . Eventually, in the (Comparing Final state with
the expected), we measure the final state along the appropriate
quadrature and repeat this for n number of shots. We must
decode and process the final vector to see how often the
detection agrees with the anticipated state.

A. Subgroup a

Figure. 11 shows the MBQC implementation of the univer-
sal single qumode gates. Based on the simulation error rate, the
second GKP qumode is more expensive for universal single-
mode gates since the [0.5, 0.005] scenario has less error rate
than the [0.005, 0.5] arrangement. This subgroup includes Z-
gate, F-gate, and P-gate.

Fig. 11: Two-qumode circuit implementation.



Fig. 12: The bar chart showing the errors across different
ϵ. The least error corresponds to the case where the second
qumode is the best GKP(has the smaller ϵ)

B. Subgroup b

Subgroup b includes the only non-Gaussian gate in the CV
universal set, the V gate. We used the gate injection method
mentioned in Ref. [12]. The detail on V †(m1,m2) can be
found in Ref [17]. Figure. 14 suggests that the second input
node |γ⟩ has the highest error rate when chosen for the best
quality GKP.

Fig. 13: Three-qumode circuit implementation. The final V †

gate is a function of the first two measurement results.

Fig. 14: The bar chart showing the errors across different ϵ. In
the three-cluster chain, it is more efficient not to choose the
injected input state |γ⟩ to hold the best quality GKP.

C. Subgroup c

Subgroup c includes the four-qumode gate, the CX gate.
Figure. 15 shows the circuit implementation of this circuit.
The previous section has discussed all the circuit details, so
that we will go straight to the simulation result. Based on the
error rate results, the input nodes have higher error rates when
chosen to be the best GKP which means it is more efficient

in a CX cluster to use the “good” GKP for the output nodes.
The output nodes are our most expensive nodes.

Fig. 15: Four-qumode circuit implementation. The final output
nodes are the CX gate applied to the input nodes, measured
out.

Fig. 16: The bar chart showing the errors across different ϵ.
The most error corresponds to the case where the input nodes
have the best GKP. Meaning that choosing the output nodes
to have good quality GKP would be a clever choice.

VI. CONCLUSION

The main idea behind our paper was to address this ques-
tion: If we had a handful of good quality, highly squeezed
GKP encoded qubits along with so many poorly squeezed
GKPs, how do we most effectively utilize them in the MBQC
cluster? We used MBQC to implement each component of the
CV universal gate set across “good” and “bad” qualities, and
here are the findings: Based on every group cluster’s error
rate, the simulation suggests that choosing the input node
as the excellent quality GKP wastes resources. Note that the
assumption was to have only one highly squeezed GKP while
other nodes contain poorly squeezed states. The simulation
offers to select the output or junction nodes as the best GKP
encoding for better error tolerance. Our results thus can be
helpful to address the most critical nodes, hence employing
the expensive “good” quality GKP resource most efficiently.
With this study, we have begun exploring resource-efficient
MBQC using GKP qubits. We plan to extend this study and
advance our simulation over various input states and gates.
One can apply the idea of identifying the critical node with
algorithm-specific cluster states mentioned in Ref [18] to find
the most vital nodes in a quantum algorithm cluster.
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APPENDIX

We dedicated this appendix to the GKP Maximum Likeli-
hood decoder. The GKP Wigner representation is an arrange-
ment of delta functions in the phase space where marginal
distributions along q̂ / p̂ encode the Pauli Z / X eigenstates,
respectively. Equation. (2) shows the |0⟩GKP and |1⟩GKP states.
Without loss of generality, let us focus on |+⟩GKP. What
will be the result m, if we measure |+⟩GKP along q̂? As

previously examined, we will see k number of photons where
k = (n)

√
πℏ and duo to the finite squeezing n follows a

Gaussian-like probability distribution. Thus, detecting high
numbers is less likely in the result.
|+⟩GKP = 1√

2
[|0⟩GKP + |1⟩GKP] which means half of the

time k = (2n)
√
πℏ and the other half of the time it is

(2n+1)
√
πℏ. So if one measure the state |+⟩GKP and look at

its outcome k, the state records as |0⟩GKP if k was even and as
|1⟩GKP if k was odd. This decision would be flawless if ideal
GKPs were viable. However, energy is finite, so the perfect
delta function is unphysical. The delta picks at each value
would instead obey a normal distribution. Figure. 17 shows
the histogram of |+⟩GKP measurement results for 2500 shots.
Since the picks follow a Gaussian, we must set thresholds for
each value. For instance, values in [−0.5

√
πℏ, 0.5

√
πℏ] range

are decoded as 0, values within [0.5
√
πℏ, 1.5

√
πℏ] are decoded

as
√
πℏ and so on. So in our |+⟩GKP example, when one

measures |+⟩GKP along q̂ and obtains the outcome k, by using
Maximum Likelihood Estimate (MLE) [19], if k was within
the threshold of the even/odd numbers, it records |0⟩GKP and
|1⟩GKP respectively. Look closely at Fig. 17; you can notice the
overall Gaussian envelope along with the normal distribution
at each value.

Fig. 17: The histogram of the |+⟩GKP for 2500 number of
shots. Thresholds are red vertical lines
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