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The COVID-19 pandemic has made it paramount to maintain social distance to limit the viral transmission

probability. At the same time, local businesses (e.g., restaurants, cafes, stores, malls) need to operate to ensure

their economic sustainability. Considering the wide usage of local recommendation platforms like Google Local

and Yelp by customers to choose local businesses, we propose to design local recommendation systems which

can help in achieving both safety and sustainability goals. Our investigation of existing local recommendation

systems shows that they can lead to overcrowding at some businesses compromising customer safety, and

very low footfall at other places threatening their economic sustainability. On the other hand, naive ways of

ensuring safety and sustainability can cause significant loss in recommendation utility for the customers. Thus,

we formally express the problem as a multi-objective optimization problem and solve by innovatively mapping

it to a bipartite matching problem with polynomial time solutions. Extensive experiments over multiple

real-world datasets reveal the efficacy of our approach along with the three-way control over sustainability,

safety, and utility goals.

CCS Concepts: • Information systems→ Recommender systems.

Additional Key Words and Phrases: Sustainability, Safety, COVID-19, Local Recommendation, Bipartite

Matching, Yelp, Google Local

1 INTRODUCTION
With the proliferation of GPS-enabled smartphones, local recommendation platforms like Google

Local (rendered on Google Maps), Yelp, Zomato, etc. have experienced massive growth in the last

few years. For example, since 2011, the use of “near me" service on Google Local has grown by an

astounding 3400% [39]. These platforms recommend nearby/local businesses (restaurants, cafes,

stores, malls, etc.) to customers based on their physical locations and other inferred preferences,

and in 2016, customers have visited around 1.5 billion businesses every month using these location-

based services [39]. However, these regular customer-business physical interactions have been

severely impacted due to the spread of highly contagious SARS-CoV-2 and the resultant COVID-

19 pandemic. To limit the viral spread, many countries enforced complete/partial lockdowns

for an extended period leading to the closure of several businesses, and even after reopening,

strict adherence to social distancing guidelines is an absolute requirement to ensure safety of the

customers. Considering the extensive use and influence of local recommendation platforms in

attracting customers to local businesses, in this paper, we propose to design local recommendation

systems which can help in achieving safety for customers as well as economic sustainability
for businesses in the post-pandemic world.

Traditionally, these platforms have used different data-driven models [12, 21, 24, 28, 34, 44] to

estimate relevance of local businesses to individual customers, and then recommended k most

relevant results to them. By gathering data from Google Local and Yelp, we show that such pre-

COVID recommendation practices can cause a high inequality in the exposure (visibility) of local

businesses, where a few businesses can end up receiving a large fraction of total exposure while the

remaining businesses receive a very low exposure. This could, on one hand, lead to overcrowding

at some businesses, compromising customer safety. On the other hand, it could result in a very
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low footfall at other businesses, questioning their sustainability in the ongoing scenario (detailed

in §3). A simple answer to these concerns would be to find a way which can reduce inequality in

business exposures. However, using naive methods to reduce exposure inequality (e.g., poorest-k :
recommending k least exposed businesses to customers) may result in a huge loss in customer

utility (detailed in §3), thereby rendering the platform inefficient for customers. Therefore, our

focus on safety and sustainability need to go hand-in-hand with customer utility.

We formally define the desired properties for sustainability, safety, and utility in §3.1. For

sustainability, we propose to use a minimum exposure guarantee for every business, and for safety,

we propose to keep the exposure of a business below a certain maximum limit which is proportional

to its safe capacity. As we observe in the case of poorest-k , there is a clear tradeoff between utility

and sustainability/safety, and simultaneously satisfying all the constraints is not possible. Thus,

we relax the constraints into the following three optimizable objectives: (i) minimize exposure

deficit for business sustainability (ii) minimize exposure surplus for customer safety, (iii) minimize

utility loss (more details in §4.1). We combine these objectives to formulate a multi-objective

optimization problem and adopt a novel way to map it to a bipartite matching problem with

polynomial time solutions (detailed in §4.3). Next, we test our local recommendation mechanism

on multiple datasets and evaluate the results with several metrics (§5.1) capturing various aspects

of local recommendations. Extensive evaluations reveal the efficacies of our approach along with

the three-way control over sustainability, safety, and utility goals.

In summary, we make the following contributions in the paper: (i) we consider very timely

and much needed notions of business sustainability and customer safety in local recommendation

systems, and formally define these notions along with customer utility requirement (§3.1)— to our

knowledgewe are the first to do so; (ii) we incorporate these goals into amulti-objective optimization

framework and solve by innovatively mapping it to a bipartite matching problem with polynomial

time solutions (§4); (iii) we empirically test and evaluate it on multiple real-world datasets gathered

from platforms like Foursquare, Google Local and Yelp to show the effectiveness of our solution

(§5). We believe that such local recommendation systems designed with sustainability and safety

goals would be a very effective complement to other location-based services like contact tracing

applications [27, 37] aggresively recommended by various governmental and non-governmental

organizations to abate inconveniences during these unprecedented times.

2 PRELIMINARIES
In this section, we introduce the gathered datasets and the terminology we use throughout the

paper.

2.1 Datasets Gathered
In this paper, we gather the recommendations patterns of local businesses in New York City (NYC)
and San Francisco (SF) on two platforms: Google Local and Yelp, by using a publicly available

dataset on customer checkins in FourSquare. Note that these recommendations were gathered

during pre-COVID times in 2019.

2.1.1 Customer Locations (Foursquare Check-in Data): To get an estimate of the locations

from where customers are accessing location-based platforms and looking for nearby businesses,

we use a publicly available Foursquare check-in data from NYC and SF [41, 42]. The dataset contains

227, 428 and 572, 338 check-ins posted by customers at different restaurants around NYC and SF

respectively, along with their geographic coordinates (i.e., latitude & longitude). We treat these
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check-in coordinates as customer locations (from where they log into platforms like Yelp, Google
Local), and attempt to collect the recommendations provided by the platforms.

1

2.1.2 Yelp Dataset: Yelp.com platform for local restaurants is powered by a crowd-sourced review

forum. For the customer locations described earlier, we collect nearby restaurants recommendations

using Yelp Fusion API (yelp.com/fusion). The ranked lists contain the name and geographic

coordinates of the restaurants, their distance from customer location, average rating, etc. In total,

we have the data on 5702 and 3587 restaurants in NYC and SF respectively. Henceforth, we refer to

the Yelp datasets of New York and San Francisco as YP-NYC and YP-SF respectively.

2.1.3 Google Local Dataset: Using a process similar to Yelp, we gather recommendation results

from Google Local (a nearby recommendation service rendered on Google Maps) for the customer

locations in NYC and SF using Google Places API [17]. In total, we have data on 2087 and 1478

restaurants in NYC and SF respectively. We refer to the datasets of New York and San Francisco as

GL-NYC and GL-SF respectively.

2.2 Notations
In this paper, U and P refer to the set of customers and local businesses listed on the platform

while u, p are instances of customer and business respectively, and |U | = m, |P | = n. We use I

(<ui , l i>∈ I) for the sequence of login instances, where any ith login instance is a tuple <ui , l i>
representing the login by customer ui from location l i . Each login instance is a single customer

session on the platform. For login instance i , let Ri
represent the ranking/permutation of the

businesses in the recommendation, Ri
p represent the position/rank of business p in Ri

, and Ri [j]

represent the jth ranked business in Ri
. We use index notations: i for login instances, and j

for rank/positions in recommedations. Superscripts represent the corresponding login instances;

subscripts always represent the corresponding businesses.

2.3 Customer Utility of Ranked Recommendation
As we consider ranked recommendations, there are two important factors which drive customer

utility: (i) relevance of businesses, and (ii) attention distribution over different ranks. We define

them first before defining customer utility.

Relevance of a Business: The relevance of a business to a certain customer from a certain

location, represents how likely the customer is going to visit the business and get a satisfying

experience. Platforms often employ various data-driven algorithms (e.g., collaborative filtering

[24, 44], content-based filtering [28, 34], learning-to-rank [23] etc.) to estimate the relevance scores.

Let V be the relevance function, and V i (p)= V i
p represent the relevance of business p to ith login

instance. Moreover, V i
p can be thought of as the amount of utility ui gains if she is recommended p

when she logs in from location l i . Note that we assume all the relevance scores to be non-negative.

AttentionDistribution over Ranks: Prior works have shown that customers pay varied attention

to differently ranked items and the overall attention distribution follows a drop-off after each

rank/position [1, 11, 20]. In this paper, we consider standard logarithmic drop-off [20] for attention

1
Collecting the recommendation results for every check-in location is not possible due to API limits. Hence, we cluster the

check-in locations of each city into K = 1000 clusters using K-Means clustering [2], where the average cluster diameters

came out to be 498 meter for NYC and 199 meter for SF. While collecting platforms’ recommendations, we consider the

centroids of these clusters as the customer locations. Number of check-in locations in each cluster serves as the popularity

metric of the corresponding location (cluster centroid).
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weights. The attention weights are given as below.

a(j) =


1

J · log
2
(j + 1)

1 ≤ j ≤ k

0 j > k
(1)

Here J =
∑k

j′=1
1

log
2
(j ′ + 1)

is a normalization parameter, and a(j) is the normalized amount of

attention received by a business in position j. We consider non-zero attention weights only for

positions 1 till k based on the assumption that low-ranked subjects are hardly inspected. Note that

every customer is assumed to follow the same attention distribution.

Customer Utility: For a specific login instance i , customer utility or recommendation utility

will be high if highly relevant businesses are shown in top ranks. Thus, we use the normalized

discounted cumulative gain: NDCG@k metric [20] for customer utility (ϕ). The utility of Ri
for

login instance i can be defined as below.

ϕ(Ri , i) = NDCG@k(Ri , i) =
DCG@k(Ri , i)

IDCG@k(i)
(2a)

where

DCG@k(Ri , i) =
k∑
j=1

V i (Ri [j]
)
× a(j) (2b)

IDCG@k(i) = max

Ri

{
DCG@k(Ri , i)

}
= DCG@k

(
Ri∗, i

)
(2c)

and Ri∗
is the permutation of businesses in descending order of their relevances V i

p .

When the businesses are sorted in descending order of their relevance, the DCG will be the

highest – i.e., the DCG@k of Ri∗
will be the highest. Thus, the range of customer utility NDCG@k

remains [0, 1].

2.4 Relevance Estimation through Customer Survey
Current location-based platforms gather different kinds of data on the customer behaviours and

preferences, on which various data-driven algorithms can be run to estimate relevance scores. In

absence of such data, we run a survey with 140 Amazon Mechanical Turk (mturk.com) workers
to gather data on how customers view different features like rating, distance, cuisine, etc. while

selecting a nearby restaurant to visit. Each survey participant was asked to rank top 5 restaurants

from a list containing 10 different restaurants with different ratings, distance and cuisine types;

such top 5 ranking was asked from each participant for 7 times using 7 different lists. We use this

data for personalized relevance estimation. For the purpose of this paper, we consider customer

preferences based on distance and ratings of restaurants while estimating relevance scores. We

employ a simple linear model (given by following equation) for point-wise learning-to-rank [22] to

estimate personalized relevance scores.

Vp = w0 +w1 ×

(
n + 1 − R

rating*

p

n

)
+w2 ×

(
n + 1 − R

proximity*

p

n

)
(3)

where Rrating*
and Rproximity*

are the permutations of restaurants in descending order of ratings

and descending order of proximity (or ascending order of distance) correspondingly. Here n = 10 as

we provide 10 different options in each set. We learnW = (w0,w1,w2) for each of the participants

separately. On testing, we find our model to achieve a mean NDCG@5 of 0.951. We use these

learned customer models (W ) for relevance estimation further in the paper. However, the platforms

can easily replace above method with their own state-of-the-art relevance estimation method
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Fig. 1. Lorenz curves show high inequality in exposure of businesses.

requiring no change in further formulation, as the relevance scores work just as inputs to our

recommendation mechanism.

2.5 Business Exposure
The exposure of a business is the total amount of attention it gains from the customers; it explicitly

depends on the business’s position in each of the recommendations over time. The total exposure

gained by a business p till t th login instance can be given as below.

Etp =
∑

i ∈I[1:t ]

a
(
Ri
p
)

(4)

Note that each login instance is assumed to gather a total of 1 attention and thus 1 exposure.

3 MOTIVATION
Next, we simulate a regular local recommendation service. We consider the customers to be

appearing in a random order, and each of the login instances is assumed to follow a randomly

chosen customermodel (W ) learned in §2.4. For each instance, first we consider two recommendation

schemes: (i) the platform’s recommendation (explained in §2.1) and (ii) top-k (k most relevant

businesses based on customer modelW ) recommendation. We record the total exposure received

by each of the businesses over all the customer instances in each scheme.

Exposure Inequality in Conventional Top-k Recommendation: We plot Lorenz curves for

business exposures in figures-1a, 1b, 1c and 1d. In these curves, the cumulative fraction of total
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exposure is plotted against the cumulative fraction of the number of corresponding businesses

(ranked in increasing order of their exposures). The extent to which the curve goes below a straight

diagonal line (or an equality mark indicated by light-green broken lines) indicates the degree of

inequality in the exposure distribution. In all the cases, we see the platform’s recommendations and

also the top-k recommendations using our customer modeling show huge exposure inequalities;

this leads to a small fraction of businesses getting most of customer attention while a majority of the

businesses receive very small amount of exposure. Exposure determines economic opportunities

in such platforms. Thus, low exposure could very well mean less footfall and less business. This

raises a question on the sustainability of the businesses. On the other hand, very high exposure at

some of the businesses could lead to huge footfall and overcrowding at those places, increasing the

risk of viral spread. Therefore, we need a recommendation mechanism which could answer both

sustainability and safety concerns. A simple answer to sustainability and safety concerns would

be to reduce inequality in business exposures; and a naive approach for that would be poorest-k
recommendation: recommend the k least exposed businesses at each instance.

Limitations of Poorest-k Recommendation: In figures-1a,1b,1c,1d, we see the Lorenz curves for
poorest-k is very close to the equality mark. This proves that poorest-k could solve the sustainability

and safety issue by distributing the total exposure almost equally; however, poorest-k reduces

overall customer utility by 50-70% (observed in all the datasets) which could result in customers

not liking the recommendations and a reduced usage of the platform; customers not following the

recommendations could not only defy our goal of sustainability and safety, but also question the

very survival of location-based platforms. Therefore, there is a need of recommendation mechanism

which can address concerns for sustainability, safety along with overall customer utility.

3.1 Desiderata for Sustainability, Safety, and Utility
Here we formally define the necessary properties for sustainability, safety, and utility in local

recommendations.

Sustainability of businesses: For sustainability, we propose to ensure a minimum exposure

guarantee for every business. This is comparable to the fairness of minimum wage guarantee

[14, 18, 31]), which has been found to decrease income inequality [13, 25]. We also hope to reduce

exposure inequality here. Formally, we write the criterion as below.

Ep ≥ E,∀p ∈ P (5)

where E is the minimum exposure guarantee. For online scenario, we can define the exposure

guarantee as a moving guarantee: E
i
= βi , where E

i
is the amount of exposure to be guaranteed to

every business by ith customer login instance; so β becomes the fraction of total exposure to be

guaranteed as total exposure till ith instance is i . As there are n businesses in total, we can limit

setting β to βmax =
1

n .

Safety of Customers: For customer safety concerns, we propose to have a maximum limit on

business exposure
2
and keep the maximum limit proportional to the safe capacity of the business.

3

This can reduce the chances of overcrowding at businesses thereby aiding in social distancing and

2
Safety measurements can also make use of crowdsourced hygiene-standards, proximity of nearby infected clusters using

existing contact-tracing apps, etc. However, in this paper we focus on the business exposure or expected crowd as an

indicator for customer safety.

3
From the floor area statistics of restaurants in the USA (https://www.statista.com/statistics/587130/average-floor-space-

qrs-us/), we find that it varies in between 3000-4500 square feet. We assume 50% of that space comes available for seating at

every business and take 2 metres as the prescribed safe social distance. Using maximal occupancy tool (https://covid19.mpi-

sws.org/capacity_estimation/), we arrive at safe capacity range of 26-40 persons. In absence of true maximal capacity, we

randomly sample an integer valued safe capacity from [26, 40] for each business.

https://www.statista.com/statistics/587130/average-floor-space-qrs-us/
https://www.statista.com/statistics/587130/average-floor-space-qrs-us/
https://covid19.mpi-sws.org/capacity_estimation/
https://covid19.mpi-sws.org/capacity_estimation/
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enhancing customer safety. We can formally define this as below.

Ep ≤ ζp ,∀p ∈ P (6)

where ζp is the maximum exposure for p and ζp ∝ capacity(p). ζp =
(capacity of p)×(total exposure)
total capacity of all businesses

.

Customer Utility: From the perspective of customers, the recommendations need to be relevant

to them. Formally:

NDCG@k(Ri , i) = 1,∀i ∈ L (7)

4 RECOMMENDATIONS TO INDUCE SUSTAINABILITY AND SAFETY
We design an online recommendation mechanism with sustainability, safety, and utility goals,

i.e., at each customer login instance i , we need to find a ranked recommendation Ri
with the

goals in mind. As seen in the case of poorest-k (§3), there is a clear trade-off between utility and

safety/sustainability, so all the three goals may not be achieved together. Thus we plan to relax the

objectives and then combine them to form a joint optimization problem.

4.1 Relaxed Objectives
Here, we formally define the relaxed objectives for sustainability, safety, and utility.

Minimize Exposure Deficit: Instead of a hard constraint on exposure guarantee (eq-5 for sus-

tainability), we propose a relaxed objective using exposure deficit. We define exposure deficit of a

business as the relative difference between her exposure and minimum exposure guarantee if she is

lagging behind, and 0 otherwise: i.e.,max{0,
E−Ep
E

}. We would like to minimize the exposure deficit

of all the businesses. Following a utilitarian approach, we formulate a min-sum objective (minimize

the sum of exposure deficits of all the businesses). For ith login instance, it is as given below.

arg min

Ri

∑
p∈P

max

{
0,

βi −
(
Ei−1p + a(Ri

p )
)

βi

}
(8)

Minimize Exposure Surplus: Instead of a hard constraint on exposure based on safe capacity

(eq-6 for safety), we propose a relaxed objective using exposure surplus. We define exposure surplus

of a business as the relative difference between her exposure and her maximum exposure limit if

she has a surplus, and 0 otherwise: i.e., max{0,
Ep−ζp
ζp

}. Here also we follow a utilitarian approach,

and formulate a min-sum objective for ith login instance.

arg min

Ri

∑
p∈P

max

{
0,

(
Ei−1p + a(Ri

p )
)
− ζ ip

ζ ip

}
(9)

Minimize Utility Loss: While working towards sustainability and safety goals, we may not be

able to ensure maximum utility to customers, however we have to care about the customer utility

too at the same time. Thus, instead of a hard constraint of maximum utility (eq-7), we propose to

minimize the loss in customer utility while deciding the recommendation at any ith customer login

instance.

arg min

Ri

{
1 − NDCG@k(Ri , i)

}
(10)

Further we reduce the loss minimization objective to a min-sum objective in proposition 4.1. This

reduction will be helpful while combining this objective with others in eq-8 and eq-9 in order to

form a joint optimization problem.
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Proposition 4.1. The objective in equation 10 can be reduced to below min-sum objective.

arg min

Ri

{
1 − NDCG@k(Ri , i)

}
≡ arg min

Ri

{∑
p∈P

V i (Ri∗[1])−V i
p

V i (Ri∗[1])
× a(Ri

p )

}
where Ri∗ is the permutation of businesses in descending order of their relevances (V i

p ), so R
i∗[1] refers

to the most relevant business for i th login instance (notations defined earlier in §2.3 too).

Proof. ∵ Adding, subtracting or multiplying positive constants with the objective does not

affect the final results in arg min

arg min

Ri

{
1 − NDCG@k(Ri , i)

}
≡ arg min

Ri

{
− NDCG@k(Ri , i)

}
≡ arg min

Ri

{
−
DCG@k(Ri , i)

IDCG@k(i)

}
≡ arg min

Ri

{
−

∑k
j=1V

i (Ri [j]) × a(j)

IDCG@k(i)

}
≡ arg min

Ri

{
−

k∑
j=1

V i (Ri [j]) × a(j)

}
≡ arg min

Ri

{
−

∑
p∈P

V i
p × a(Ri

p )

}
≡ arg min

Ri

{
V i (Ri∗[1]) −

∑
p∈P

V i
p × a(Ri

p )

}
≡ arg min

Ri

{
V i (Ri∗[1]) × 1 −

∑
p∈P

V i
p × a(Ri

p )

}
≡ arg min

Ri

{
V i (Ri∗[1]) ×

∑
p∈P

a(Ri
p ) −

∑
p∈P

V i
p × a(Ri

p )

}
≡ arg min

Ri

{ ∑
p∈P

(
V i (Ri∗[1]) −V i

p
)
× a(Ri

p )

}
≡ arg min

Ri

{
1

V i (Ri∗[1])

∑
p∈P

(
V i (Ri∗[1]) −V i

p
)
× a(Ri

p )

}
≡ arg min

Ri

{ ∑
p∈P

V i (Ri∗[1]) −V i
p

V i (Ri∗[1])
× a(Ri

p )

}
□

4.2 Joint Optimization of Relaxed Objectives
We combine the relaxed objectives: eq-8 for sustainability, eq-9 for safety, and reduced form of

eq-10 in proposition-4.1 for customer utility with weights λ1, λ2, and (1 − λ1 − λ2) respectively. We

write the joint optimization problem below.

arg min

X i

(
λ1

∑
p∈P

n∑
j=1

max

{
0,

βi −
(
Ei−1p + a(j)

)
βi

}
· X i

p, j + λ2
∑
p∈P

n∑
j=1

max

{
0,

(
Ei−1p + a(j)

)
− ζ ip

ζ ip

}
· X i

p, j

+ (1 − λ1 − λ2)
∑
p∈P

n∑
j=1

V i (Ri∗[1]) −V i
p

V i (Ri∗[1])
· a(j) · X i

p, j

)
s.t.

( n∑
j=1

X i
p, j = 1,∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1,∀j ∈ {1, 2, · · · ,n}

)
&

(
X i
p, j ∈ {0, 1},∀j ∈ {1, 2, · · · ,n},p ∈ P

)
(11)

where X i
p, j is a binary indicator variable, X i

p, j = 1 represents that business p is assigned jth rank in

the recommendation at ith customer login, ∀j ∈ {1, 2, · · · ,n},p ∈ P . Above optimization problem is

an integer linear program which is a discrete optimization problem and computationally heavy to

solve. Thus, we plan to reorganize this problem and map it to a matching problem with polynomial

time solutions. Next, we describe how we map our problem to a matching problem.

4.3 Mapping to Bipartite Min-Cost Perfect Matching
Here, we outline basic details of general bipartite min-cost matching problem and then describe

our mapping.

Bipartite Min-Cost Perfect Matching Problem: In a general bipartite minimum-cost perfect

matching problem, we are given a complete bipartite graph with two sets of nodes Y ,Z s.t. |Y | =
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|Z | = n, and the costs of all the edges between Y ,Z : i.e., c(y, z) = cost of edge between y, z,
∀y ∈ Y , z ∈ Z ; all the costs are non-negative: c(y, z) ≥ 0,∀y, z. Here, the goal is to find a perfect

matching with the minimum cost. A matching is a set of pairwise non-adjacent edges, i.e., no two

edges share a common node. A perfect matching is a matching which covers all the nodes in the

graph. There can be multiple perfect matchings in this problem, however we need to find the one

which costs the least.

We can use a matrix (X ) to represent a matching where element Xy,z = 1 if edge (y, z) is a part
of the matching, and Xy,z = 0 otherwise. Now the min-cost perfect matching problem can be

expressed as a discrete optimization problem using X as given below.

arg min

X

∑
y∈Y

∑
z∈Z

c(y, z) · Xy,z

s.t.

( ∑
y∈Y

Xy,z = 1,∀z ∈ Z
)
&

( ∑
z∈Z

Xy,z = 1,∀y ∈ Y
)
&

(
Xy,z ∈ {0, 1},∀y ∈ Y , z ∈ Z

) (12)

The first two constraints ensure that each node from Y and Z is covered by exactly one edge in the

solution such that there are no pairwise adjacent edges.

LP Relaxation: Relaxing the third constraint Xy,z ∈ {0, 1} to Xy,z ≥ 0, converts the problem into

a linear program (LP) as given below.

arg min

X

∑
y∈Y

∑
z∈Z

c(y, z) · Xy,z

s.t.

( ∑
y∈Y

Xy,z = 1,∀z ∈ Z
)
&

( ∑
z∈Z

Xy,z = 1,∀y ∈ Y
)
&

(
Xy,z ≥ 0,∀y ∈ Y , z ∈ Z

) (13)

It turns out that this LP in equation 13 has integer solutions as extreme points (proven in [7, 16, 38]

using Birkhoff-von Neumann theorem). Thus, we no longer need the integrality constraint (third

constraint) of the discrete optimization problem (in equation 12), and instead solve the LP-relaxation

of the same (in equation 13) to get to the same solution. Next we discuss how we use this to our

advantage in order to efficiently solve our problem.

The Mapping: First, we reorganize our joint optimization problem (eq-11) a bit and write it as

below.

arg min

X i

∑
p∈P

n∑
j=1

(
λ1 ·max

{
0,

βi −
(
Ei−1p + a(j)

)
βi

}
+ λ2 ·max

{
0,

(
Ei−1p + a(j)

)
− ζ ip

ζ ip

}
+ (1 − λ1 − λ2) ·

V i (Ri∗[1]) −V i
p

V i (Ri∗[1])
× a(j)

)
· X i

p, j

s.t.

( n∑
j=1

X i
p, j = 1,∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1,∀j ∈ {1, 2, · · · ,n}

)
&

(
X i
p, j ∈ {0, 1},∀j ∈ {1, 2, · · · ,n},p ∈ P

)
(14)

We can see that this is in the same format as the one for matching problem in eq-12. Thus, we

can map our problem of finding ranked recommendation Ri
at ith customer login instance to a

bipartite min-cost matching problem. In one set of nodes, we have all the businesses (P ) and in the

other one, we have all the positions/ranks ([n] = {1, · · · ,n}); there is a cost attached to each edge



10 Patro et al.

between P and [n] which can be defined below.

ci (p, j) = λ1·max

{
0,

βi −
(
Ei−1p + a(j)

)
βi

}
︸                              ︷︷                              ︸

(i)

+λ2·max

{
0,

(
Ei−1p + a(j)

)
− ζ ip

ζ ip

}
︸                               ︷︷                               ︸

(ii)

+(1−λ1−λ2)·
V i (Ri∗[1]) −V i

p

V i (Ri∗[1])
× a(j)︸                        ︷︷                        ︸

(iii)

(15)

The parts (i), (ii), and (iii) represent the costs which the edge between p, j (i.e., p being assigned

jth rank) contributes to exposure deficit objective in eq-8, exposure surplus objective in eq-9, and

customer utility objective in proposition-4.1 respectively.

Now, the goal is to find a perfect matching of minimum cost. We can use the LP relaxation (just

as done for matching problem in eq-13) to solve this problem (eq-14) in polynomial time. Formally,

we write the problem as below.

arg min

X i

∑
p∈P

n∑
j=1

ci (p, j) · X i
p, j

s.t.

( n∑
j=1

X i
p, j = 1,∀p ∈ P

)
&

( ∑
p∈P

X i
p, j = 1,∀j ∈ {1, 2, · · · ,n}

)
&

(
X i
p, j ≥ 0,∀j ∈ {1, 2, · · · ,n},p ∈ P

)
(16)

4.4 Approximate Solution with Prefiltering
As the above defined LP operates on the whole set of businesses, huge number of businesses in

realtime can be a bottleneck resulting in long processing times. Thus we propose to prefilter the

set in the following two ways: (i) top-k2 businesses based on V i
, which can help in achieving

better customer utility, and (ii) k2 least exposed businesses, which can help in achieving better

sustainability and safety. We then merge these two filtered lists to get a smaller set of businesses

and run the LP on it.

5 EXPERIMENTAL EVALUATION
Here, we explain the setup and baselines for comparison. Then we detail evaluation metrics and

experimental results.

Setting k:We fix k = 10 in all the experiments.

Setting β : As there are n businesses, we limit setting β to βmax =
1

n . We vary β from (0.1 × βmax)

to (1.0 × βmax).

Setting λ1 and λ2:We vary both λ1 and λ2 in the range [0.1, 0.5].
Baselines: We use the following schemes for ranked recommendations at each customer instance

(i) as baselines while we refer to our proposed recommendation mechanism as LP (as detailed in

§4).

(1) Top-k: Recommendation of most relevant k ranked in descending order of relevance V i
p .

(2) Top-k (Safe): Top-k relevant businesses out of all those which satisfy the safety criterion (eq-6).

(3) Mixed-k: Here, we build a k-sized ranking with top

⌊
k
2

⌋
in descending order of V i

p , and the

next (k −

⌊
k
2

⌋
) in ascending order of exposure Ei−1p while ensuring no business is repeated in

recommendation.

(4) Mixed-k (Safe): Mixed-k ranking out of all those businesses which satisfy the safety criterion

(eq-6).

(5) Poorest-k: Here, we build a k-sized ranking in ascending order of exposure Ei−1p (i.e., k least

exposed businesses).
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5.1 Evaluation Metrics
We use the following metrics to capture the performance from sustainability, safety and utility

standpoints.

A. Metrics for Business Sustainability:
Inequality in Business Exposures (INQ): We use Gini coefficient [15] to measure inequality in

business exposures.

INQ =

∑
p1∈P

∑
p2∈P

��Ep1 − Ep2
��

2n
∑
p∈P

Ep
(17)

INQ ∈ [0, 1], and lower value of INQ represents less inequality in business exposures and more

business sustainability.

Mean Exposure Loss on Businesses (ELoss): While we guarantee a minimum exposure for all the

businesses, there will be some popular businesses who will lose a share of their exposures which

they would have received in conventional top-k recommendations. Thus here, we measure the

mean exposure loss of all the businesses as defined below.

ELoss =
1

n

∑
p∈P

max

{
0,
E
top-k

p − Ep

E
top-k

p

}
(18)

where E
top-k

p is the exposure received by p in top-k recommendations. ELoss ∈ [0, 1], and lower

ELoss represents lower exposure loss for businesses in comparison to top-k recommendations.

B. Metrics for Customer Safety:
Mean Risk for Customers (MRisk): For safety, we measure the mean chances of customers

ending up at an already overexposed business i.e., the mean customer attention directed towards

overexposed businesses.

MRisk =
1

|I |

∑
i ∈I

∑
p∈Ri

a(Ri
p ) · 1Ei−1p >ζ i−1p

(19)

where 1Ei−1p >ζ i−1p
is 1 if Ei−1p > ζ i−1p , and 0 otherwise. As Ri

p is the rank of p in Ri
, thus (a(Ri

p ) ·

1Ei−1p >ζ i−1p
) becomes the customer attention to p if p is already overexposed.MRisk ∈ [0, 1]. Lower

MRisk means better customer safety.

Mean Exposure Surplus (ESrp): Along with the previous metric, we also measure the mean

exposure surplus which represents the expected fraction of overexposure of a business.

ESrp =
1

|I |

∑
i ∈I

1

n

∑
p∈P

max

{
0,
Eip − ζ ip

ζ ip

}
(20)

ESrp ∈ [0, 1], and lower ESrp represents less overcrowding and more customer safety.

C. Recommendation Utility:We also look at the mean (µϕ ) of customer utilities or recommen-

dation utilities (ϕ defined in §2.3) over the customer instances. While the top-k recommendations

ensure maximum utility (ϕ = 1), other recommendation mechanisms are desired to have small

losses in compasion to that.

5.2 Experimental Results
We simulate the recommender system as detailed in §3, and run all the baseline mechanisms (listed

in §5) along with our proposed LP. Next we calculate the metrics (listed in §5.1) for each of the

methods, and plot them. We show plots for GL-NYC data in figure-2; Results on other datasets

can be found in the appendix. We test our LP with different hyperparameter settings in separate

simulations. In the first row of figure-2 (2a, 2b, 2c, 2d, 2e), we fix β = βmax, λ2 = 0.4, and vary λ1. In
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Fig. 2. Performances on GL-NYC data. For plots in first row, β = βmax and λ2 = 0.4 (fixed). For plots in
second row, β = βmax and λ1 = 0.4 (fixed). For plots in third row, λ1 = λ2 = 0.4.

the second row of figure-2 (2f, 2g, 2h, 2i, 2j), we fix β = βmax, λ1 = 0.4, and vary λ2. In the third row

of figure-2 (2k, 2l, 2m, 2n, 2o), we fix λ1 = λ2 = 0.4, and vary β from (0.1 × βmax) to (1.0 × βmax).

On the other hand, the baselines do not have hyperparameters (λ1, λ2, β), thus we plot baseline
performances as horizontal straight lines in figure-2 (thus same baseline results in all the three

rows).

5.2.1 Performance of Baselines. Even though the conventional top-k recommendation ensures

highest customer utility (µϕ in fig-2e), it is very unsuitable from business sustainability and customer

safety standpoints, as it causes the highest exposure inequality for businesses (INQ in fig-2a), the

highest risk for customers (MRisk in fig-2c) and the highest amount of exposure surplus (ESrp in fig-

2d). On the other hand the poorest-k recommendation performs the best in business sustainability
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Fig. 3. We plot heatmaps of metrics for LP on GL-NYC with different combinations of hyperparameter
settings (λ1, λ2). Darker circles imply higher values of metrics at corresponding hyperparameter settings and
lighter circles imply lower values. The darkest one represents the highest (out of all the trials with different
settings) observed value of the corresponding metric and vice versa. Higher settings of λ1, λ2 can ensure better
sustainability (fig-3a) but with slightly higher exposure loss for previously popular businesses (fig-3b), less risk
for customers (fig-3c), and less amount of overexposure (fig-3d), but it costs loss in customer utility (fig-3e).

with the lowest exposure inequality (INQ in fig-2a), and better in customer safety with a lower

risk for customers (MRisk in fig-2c) and a much lower overexposure (ESrp in fig-2d) than top-k ;
however, the poorest-k performs the worst from customer utility standpoint (µϕ in fig-2e), as it does

not take relevance scores into account while deciding the recommendations. In comparison to top-k
and poorest-k , the mixed-k recommendation performs fairly good from all the standpoints—reduced

exposure inequality than top-k (INQ in fig-2a) with smaller exposure loss than poorest-k (ELoss in
fig-2b), lower customer risk (MRisk in fig-2c) and lower overexposure (ESrp in fig-2d) than top-k
with a much smaller loss in customer utility (µϕ in fig-2e) than poorest-k ; this is because mixed-k
combines highly relevant businesses along with less exposed businesses in the recommendations

thus covering for both customer utility and exposure inequality. The top-k (safe) and mixed-k (safe)

recommendations with safety as a hard constraint, perform the best in customer safety with the

lowest risk to customers (MRisk in fig-2c) and the lowest overexposure (ESrp in fig-2d); they also

perform very good in business sustainability with very low exposure inequality (INQ in fig-2a);

however they perform very poorly from utility standpoint with huge loss in customer utility (µϕ in

fig-2e) close to that of poorest-k . Out of all the baselines, only mixed-k performs fairly good in all

the metrics of interest.

5.2.2 Performance of LP. Observed patterns from the first row of plots in figure-2 suggest that

larger settings of λ1 (i.e., larger weight for sustainability) leads to better business sustainability

(lower INQ in fig-2a) with marginal loss to previously popular businesses (small ELoss in fig-2b),

and better customer safety (lowerMRisk , ESrp in fig-2c, 2d) with marginal loss in customer utility

(µϕ in fig-2e: less than 20% loss in comparison to top-k). Similarly from the second row of plots

in figure-2, we see that increasing λ2 yields better business sustainability (lower INQ in fig-2f)

with marginal loss to previously popular businesses (small ELoss in fig-2g), and better customer

safety (lower MRisk , ESrp in fig-2h, 2i) with marginal loss in customer utility (µϕ in fig-2j: less

than 20% loss in comparison to top-k). From the above observations, we can say that increasing

weights for either of business sustainability objective (λ1) or customer safety objective (λ2) leads
to improvements in both sustainability and safety metrics; the reasons behind this can be: (i)

ensuring sustainability through minimum exposure guarantee for every business preferably allots

exposure to less exposed businesses ultimately leading to less overexposure and better customer

safety, (ii) ensuring safety through capacity-based upper limits on business exposures leads to

redistribution of extra exposure of overexposed businesses to less exposed ones, thereby resulting

in better sustainability for more number of businesses. In summary, we can say that business



14 Patro et al.

0
.2
0
.4
0
.6
0
.8 1

0

0.2
0.4
0.6
0.8
1

λ2

IN
Q

(a) Metric INQ

0
.2
0
.4
0
.6
0
.8 1

0

2

4

6

8
·10−2

λ2

E
Lo
ss

(b) Metric ELoss

0
.2
0
.4
0
.6
0
.8 1

0

0.2
0.4
0.6
0.8
1

λ2

M
R
is
k

(c) MetricMRisk

0
.2
0
.4
0
.6
0
.8 1

0

0.2
0.4
0.6
0.8
1

λ2

E
Sr
p

(d)Metric ESrp

0
.2
0
.4
0
.6
0
.8 1

0

0.2
0.4
0.6
0.8
1

λ2

µϕ

(e)Metric µϕ

Top-k Mixed-k Poorest-k

Top-k (Safe) Mixed-k (Safe) LP

Fig. 4. Performances on GL-NYC with only customer-side objectives (safety and utility), and no sustainability
objective i.e., λ1 = 0.

sustainability and customer safety complement each other. In the third row of figure-2, by

increasing β from (0.1 × βmax) to (1.0 × βmax), we see better sustainability (fig-2k: decrease in INQ),

marginal decrease in customer utility (fig-2o: decrease in µϕ ), and slightly better safety at first

(till β = 0.8 · βmax in fig-2m, 2n); however after β = 0.8βmax, there is a small increase in customer

risk and overexposure (MRisk,ESrp in fig-2m, 2n); this is happening as the minimum exposure

guarantee (β) is increased more and more, at some point it grows beyond the upper exposure limit

set based on the capacity of some businesses—especially for businesses with low capacity—making

the sustainability objective in conflict with safety objective. Thus, the value of β should be set

carefully so that it does not come in conflict with the safety objective.

In comparison to the best performing baseline (mixed-k), LP with (λ1, λ2) set around (0.4, 0.4),
performs better with less overexposure (ESrp in fig-2d, 2i) and better customer utility (µϕ in fig-2e,

2j), while it shows similar performances in other metrics. Moreover our proposed LP gives a three-

way control over sustainability, safety, and utility objectives which the baselines do not possess;

this kind of control can be very useful in the post-pandemic world as the hyperparameters can be

set higher or lower according to the realtime peaks or drops in viral infection rates.

5.3 Turning Crisis into Opportunity
While sustainability is a business-side requirement, both safety and utility are customer-side

requirements. Besides, the safety requirement has recently become important because of the

pandemic while the sustainability of businesses has been a growing concern for a longer time

[8, 29, 36]. Based on one of the important findings in the last section (“business sustainability and
customer safety complement each other"), we hypothesize that solving only the crisis-inspired safety

problem could ultimately solve the long standing business sustainability concern. Thus, we also

test our LP with only customer-side objectives (safety and utility) but no sustainability objective

(i.e., λ1 = 0), and plot the results in figure-4. The results show that increasing the weights of

safety objective (λ2) results in better customer safety (fig-4c, 4d: decrease in MRisk,ESrp) and
also better business sustainability (fig-4a: decrease in INQ). In fact, the performance of LP with

(λ1, λ2) = (0, 0.8) here, is very similar to that of the best performing LP setting (λ1, λ2) = (0.4, 0.4)
in the last section (§5.2.2). Thus, in summary we can say that the crisis-inspired safety problem
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could very well be turned into an opportunity to solve sustainability problem without explicitly

addressing it.

6 RELATEDWORK
Use of Location in Recommender Systems: Extensive use of ubiquitous location-based services
like geo-tagging on social media posts, realtime reviews of establishments on review forums, maps

with realtime navigation, etc. have resulted in the generation of huge amount of data on the

different user preferences based on location. This has led to a range of new research problems on

how to utilise this location-based data to design personalised recommender systems. Recommender

systems that consider the location of its users, can have a myriad of applications ranging from

recommending nearby restaurants/shops [24, 44] and social events [33], to endorsing neighborhoods

to reside [10, 46] or suggesting friends who are nearby [45]. They can be further adapted for

trajectory recommendations [47], or recommendation of location sequence for itinerary planning

with time/cost optimization [5, 6].

Advancements in Local Recommendations: A key feature which distinguishes location-based

recommendation from regular item recommendation is the location data of source (customers) and

destination (establishments/businesses). The approaches used for local recommendation can be

considered to be inspired by those in item recommendation literature. Initial work on location-

based recommendation have introduced methods to use location data as a personalised filtering

criteria in recommendation, using content based filtering [28, 34]. Researchers have also proposed

techniques to embed geospatial data into collaborative filtering based recommender systems to

suggest nearby places [24, 44]. On the other hand, studies have also proposed hybrid approaches

[33, 43] for local recommendations. The availability of geo-tagging features in social media posts

on a variety of platforms, has attracted new research initiatives that exploit the social network

structure for better design of local recommendations. For example, leveraging social computing

techniques to get local experts and then using it for local recommendations [3], social link analysis

using graph-based modeling for better estimatation of relevance scores [35, 40], formation of

location-based social networks—with individuals connected by the interdependency derived from

their locations in the physical world as well as their location-tagged media content—as a solution

to local recommendation [4, 9, 26], etc. Moreover, advanced machine learning techniques like deep

representation learning for local recommendation [19, 32] and information retrieval techniques

like learning-to-rank for ranked recommendation [23] have also been explored for this purpose.

However, none of these studies have considered the notions of customer safety and business

sustainability which are of primal importance in the post-pandemic world. Besides, these works can

easily replace our relevance scoring method (in §2.4), and serve as inputs to our LP based solution,

as all of them ultimately estimate some form of relevance scores.

Sustainability in Recommender Systems: From an orthogonally different research area of algo-

rithmic fairness, few recent works have focussed on the sustainability of businesses in recommender

systems [8, 29], recommendation updates [30], etc. in a general online market setup. However,

in this paper, we define the notion of business sustainability in local recommendation setup and

address it along with the notion of customer safety and utility.

7 CONCLUSION
In this work we formally define timely notions of business sustainability and customer safety in

local recommendation, and address them using a novel mapping to min-cost matching problem.

Our proposed mechanism is not only computationally efficient, but also easily adaptable as it is

independent of the selection of relevance scoringmethod or any other domain-specific business logic

already in place on the platforms.We demonstrate the efficacies of our mechanism through extensive
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evaluations on gathered datasets. The three-way control over business sustainability, customer

safety, and utility goals, can be very useful in the post-pandemic world as the hyperparameters

can be set higher or lower according to the need of the situations. Apart from that the idea of

capacity-based safety notion, can also be generalized to design safety-aware local recommendations

for indoor and outdoor monuments, public parks, etc. As it is said a crisis opens up new avenues,

the change in recommendation scheme as well as people’s habit would provide more opportunities

to local businesses to flourish which perhaps earlier could not survive due to existence of ‘popular’

outlets.
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A APPENDIX
Performances on GL-SF, YP-NYC and YP-SF data are plotted in figure 5, 6, and 7 respectively.
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Fig. 5. Performances on GL-SF data. For plots in first row, β = βmax and λ2 = 0.4 (fixed). For plots in second
row, β = βmax and λ1 = 0.4 (fixed). For plots in third row, λ1 = λ2 = 0.4.
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Fig. 6. Performances on YP-NYC data. For plots in first row, β = βmax and λ2 = 0.4 (fixed). For plots in second
row, β = βmax and λ1 = 0.4 (fixed). For plots in third row, λ1 = λ2 = 0.4.
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Fig. 7. Performances on YP-SF data. For plots in first row, β = βmax and λ2 = 0.4 (fixed). For plots in second
row, β = βmax and λ1 = 0.4 (fixed). For plots in third row, λ1 = λ2 = 0.4.


