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Abstract 

In this study, a topology optimization technique based on the bi-directional evolutionary structural 

optimization (BESO) method is developed to maximize the stiffness of fiber reinforced composite 

laminates. The elastic properties of composite laminates are established and a composite material 

interpolation scheme is introduced. The effectiveness of the developed BESO method for the composite 

laminates are verified by three classical examples, namely a cantilever, a Michell-type structure, and an   

L-bracket. Then, based on the topological results, the topological properties of single-layer composite 

laminates are presented and compared in detail. 

Keywords: Topology optimization; BESO method; fiber reinforced; composite laminate; case study. 

1. Introduction 

Fiber reinforced composite laminates have been widely used due to the light weight and high strength 

[1, 2]. For engineering structures, one important demand is to distribute materials appropriately to 

achieve larger structural stiffness for greater load bearing capacity. Topology optimization performs 

noticeably well in obtaining essential topology relationship, which can help to achieve this purpose. 

Therefore, the topology optimization of composite laminates for maximum stiffness has attracted certain 

attention in the fields where composite laminates are intensively adopted and requirements such as 

weight reducing or resource saving are critical. 

Previous studies in recent decades on the structural optimization of fiber reinforced composites mainly 

focuses on the optimization of fiber angle, layer sequences and layer thickness [3]. Lund [4] optimized 

the fiber angles of composite shells to maximize the critical buckling load. The scheme is applied in the 

design of wind turbine blade. Ma et al. [5] established a optimization framework for maximizing the 

natural frequency, which could simultaneously optimize the fiber volume, fiber angle and lay sequences 

of the composite shells.  

In the past few years, studies on the topology optimization of fiber reinforced composite laminates 

gradually increased. Tong et al. [6] conducted the topology optimization of composite laminates to 

improve the high stress in hinge zones of compliant mechanisms. Bohrer and Kim [7] proposed a three-

step scheme based on the lamination parameters and solid isotropic microstructures with penalization 

(SIMP) method to optimize the topology and layer sequence simultaneously. Duan et al. [8] concurrently 

optimized the topology and fiber angle of the single-layer using the discrete material optimization and 

SIMP methods. Wang et al. [9] focused on the stress-based topology optimization of Double-Double 

(DD) laminates, and proposed a nested p-norm based on the Tsai–Hill failure criterion. 
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In summary, the current topology optimization of fiber reinforced composites is mainly conducted using 

the SIMP method. Other topology optimization methods are rarely adopted in this field, their 

applicability needs to be examined. In the early 1990s, Xie and Steven [10] proposed the evolutionary 

structural optimization (ESO) method, which was subsequently developed into the bi-directional 

evolutionary structural optimization (BESO) method [11, 12]. In the last three decades, the ESO/BESO 

methods have made great progress on several complex problems [13, 14], and been applied in many 

engineering fields [15, 16]. Therefore, in this study, the topology optimization of the single-layer 

composite laminates for maximum stiffness is conducted using the BESO method. To extend the BESO 

method, elastic properties of composite material are presented, and then be penalized by a power 

function of element density. The BESO scheme for the composite laminates is proposed through this 

composite material interpolation scheme. The validation of the developed BESO method is verified by 

three classical numerical cases. The topology results of single-layer laminates are discussed and 

compared in detail. 

2. Elastic properties of composites and the extended BESO method 

2.1. Elastic properties 

For the plane-stress state, the stress–strain relationship of a single-layer is given by 

 [

𝜎1
𝜎2
𝜏12
] = [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝛾12
], (1) 

where “1” denotes the fiber direction, while “2” denotes the direction perpendicular to the fiber. The 

stiffness matrix 𝑸 is determined by the elastic constants of the composite 

 𝑸 = [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

] =

[
 
 
 
 

𝐸1
1 − 𝜇12𝜇21

𝜇12𝐸2
1 − 𝜇12𝜇21

0

𝜇12𝐸2
1 − 𝜇12𝜇21

𝐸2
1 − 𝜇12𝜇21

0

0 0 𝐺12]
 
 
 
 

, (2) 

𝐸1, 𝐸2, 𝐺12, and 𝜇12 are longitudinal modulus, transverse modulus, shear modulus and Poisson ratio of 

the composite, respectively [17]. 

Generally, there is a fiber angle 𝜃 between the fiber direction and the global coordinate (as shown in Fig. 

1 (a)), and the single-layer stress–strain relationship in the global system is 

 [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [

�̅�11 �̅�12 �̅�16
�̅�21 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

], (3) 

where the stiffness matrix �̅� in the global system is 

 �̅� = [

�̅�11 �̅�12 �̅�16
�̅�21 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] = 𝑹 [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

]𝑹𝑇 . (4) 

In Eq. (4), 𝑹 is the rotation matrix and calculated from the fiber angle 𝜃 as 

 𝑹 = [
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 −2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

] . (5) 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 3 

 

 

 

(a) Fiber angle 𝜽 between fiber direction and 

global coordinate system 
(b) Typical laminate structure 

Figure 1. Fiber angle and typical structure of composite laminates. 

The elastic properties of the composite laminates are calculated by the layers along the thickness. The 

typical laminate structure is shown in Fig. 1 (b), where the layer number in the composite laminate is 𝑁, 

and the thickness and fiber angle of each layer are 𝑡𝑘  and 𝜃𝑘 , respectively. Thus, the constitutive 

equation of composite laminates is as follows: 

 [
𝑵
𝑴
] = [

𝑨 𝑩
𝑩 𝑫

] [
𝜺𝟎
𝜿
], (6) 

where, 𝑵 and 𝑴 are the internal force and moment resultants, respectively; 𝑨, 𝑩, and 𝑫 are the in-plane 

tensional, tension-bending coupling, and bending material stiffness matrices, respectively; 𝜺𝟎 and 𝜿 are 

the mid-plane strains and curvatures, respectively. 𝑨, 𝑩, and 𝑫 matrixes are calculated by the properties 

of all single-layers: 

 𝐴𝑖𝑗 =∑ �̅�𝑖𝑗
𝑘

𝑁

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1) (𝑖, 𝑗 = 1, 2, 6) 

(7)  𝐵𝑖𝑗 =
1

2
∑ �̅�𝑖𝑗

𝑘

𝑁

𝑘=1

(𝑧𝑘
2 − 𝑧𝑘−1

2 ) (𝑖, 𝑗 = 1, 2, 6) 

 𝐷𝑖𝑗 =
1

3
∑ �̅�𝑖𝑗

𝑘

𝑁

𝑘=1

(𝑧𝑘
3 − 𝑧𝑘−1

3 ) (𝑖, 𝑗 = 1, 2, 6) 

When the laminated layers are symmetric, matrix 𝑩 = 𝟎, which indicates that tension and bending are 

not coupled. Thus, the symmetric laminates are more widely used in engineering. 

2.2. Material interpolation scheme 

Material interpolation scheme with penalization has been widely used in the SIMP method [35]. 

According to the basic idea of the SIMP method, the elastic constants of the intermediate composite 

material are given as 

 [

𝐸1(𝑥𝑖)

𝐸2(𝑥𝑖)

𝐺12(𝑥𝑖)
] = 𝑥𝑖

𝑝
[
𝐸1
𝐸2
𝐺12

], (8) 

where, 𝐸1, 𝐸2, and 𝐺12 denote the elastic constants of the solid composite material; 𝑝 is the penalty 

coefficient, which is often preset as 3. Substituting Eq. (8) into Eq. (1)-(7), the penalized material 

stiffness is calculated as 

 [

𝑨(𝑥𝑖)

𝑩(𝑥𝑖)

𝑫(𝑥𝑖)
] = 𝑥𝑖

𝑝
[
𝑨
𝑩
𝑫
]. (9) 
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This indicates that the penalty on the elastic constants will eventually turn into the penalty on 𝑨, 𝑩, and 

𝑫 matrices. 

2.3. BESO scheme for fiber reinforced composite laminates 

In this study, the BESO method is developed to achieve the topology optimization of composite 

laminates using the material interpolation scheme Eq. (9). The scheme and process are illustrated in this 

section. 

2.3.1 Problem statement 

In the BESO method, the finite element analysis (FEA) is used and binary design variables are 

introduced. Therefore, the optimization model for maximizing structural stiffness with the volume 

constraint is stated as 

 

{
 
 
 

 
 
 

find   𝒙 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]
𝑇

      min    𝐶 =
1

2
∙ 𝑭𝑇𝑼                       

     s. t.    𝑉∗ −∑𝑉𝑖 ∙ 𝑥𝑖

𝑛

𝑖=1

= 0            

𝑲𝑼 = 𝑭
𝑥𝑖 = 1 (solid)𝑜𝑟 𝑥𝑚𝑖𝑛 (void)

. (10) 

Where, 𝑥𝑖 is the binary design variable of each element; 𝐶 is the compliance of the structure; 𝑲, 𝑼, and 

𝑭 are the global stiffness, displacement and external loads, respectively; 𝑉∗ is the preset volume of final 

structure; 𝑉𝑖 is the volume of each element; 𝑥𝑚𝑖𝑛 is a minimum preventing the singularity of structure 

stiffness matrix, and often preseted as 0.001. 

2.3.2 Sensitivity number 

The sensitivity number in the BESO method is defined by the sensitivity ranking of the objective 

function. The sensitivity is given as [11] 

 
𝑑𝐶

𝑑𝑥𝑖
= −

1

2
𝑼𝑇

𝑑𝑲

𝑑𝑥𝑖
𝑼. (11) 

Substituting the material interpolation schemes Eq. (9) into Eq. (11), the sensitivity becomes 

 
𝜕𝐶

𝜕𝑥𝑖
= −

1

2
𝑝𝑥𝑖

𝑝−1
𝒖𝒊
𝑇𝒌𝟎𝒖𝒊, (12) 

where, 𝒌𝟎 is the elemental stiffness matrix of the solid elements; 𝒖𝒊 is the nodal displacement vector of 

the element. According to the FEA procedure, 𝒌𝟎 is written as 

 𝒌𝟎 = ∫𝑩𝒆
𝑇𝑪𝟎𝑩𝒆, (13) 

where, 𝑪𝟎  represents matrices 𝑨 , 𝑩 , and 𝑫  of the solid composite material; 𝑩𝒆  is the strain-

displacement matrix.  

Therefore, the sensitivity number in the BESO method is 

 𝛼𝑖 = −
1

𝑝

𝜕𝐶

𝜕𝑥𝑖
=
1

2
𝑥𝑖
𝑝−1

𝒖𝒊
𝑇𝒌𝟎𝒖𝒊. (14) 

Due to the binary design variable, Eq. (14) is finally written as 
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 𝛼𝑖 = {

1

2
𝒖𝒊
𝑇𝒌𝟎𝒖𝒊   𝑖𝑓 𝑥𝑖 = 1 (soild)

1

2
𝑥𝑚𝑖𝑛
𝑝−1

𝒖𝒊
𝑇𝒌𝟎𝒖𝒊   𝑖𝑓 𝑥𝑖 = 𝑥𝑚𝑖𝑛 (void)

. (15) 

2.3.3 Filter scheme 

The checkerboard and mesh-dependency problems are two common numerical instabilities[11], which 

can be avoided by filter schemes. Here, the sensitivity filter scheme is adopted as 

 𝛼𝑖
′ =

∑ 𝜔(𝑟𝑖𝑗)𝛼𝑗
𝑀
𝑗=1

∑ 𝜔(𝑟𝑖𝑗)
𝑀
𝑗=1

, (16) 

where, 𝑀 is the total number of all elements whose geometric centers within the circular region of filter 

radius 𝑟𝑚𝑖𝑛; 𝑟𝑖𝑗  indicates the straight distance between the center of the 𝑗‐th element in the circular 

region and the center of the 𝑖‐th element of the entire design domain; 𝜔(𝑟𝑖𝑗) is the weight coefficient of 

the elements in the region and written as 

 𝜔(𝑟𝑖𝑗) = 𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗      (𝑗 = 1,2,… ,𝑀). (17) 

Furthermore, to stabilize the evolutionary process, the sensitivity number is averaged with its historical 

information: 

 �̅�𝑖
𝑞
=
1

2
(𝛼𝑖

𝑞
+ 𝛼𝑖

𝑞−1
)     (𝑞 ≥ 2), (18) 

where, 𝑞 is the current iteration step; 𝛼𝑖
𝑞−1

 is the sensitivity number of the 𝑖‐th element in the previous 

iteration step; 𝛼𝑖
𝑞
 and �̅�𝑖

𝑞
 are the sensitivity numbers before and after averaged. 

2.3.4 Element removal/addition and convergence criteria 

Before removing/adding elements in the BESO method, the target volume 𝑉𝑞 needs to be determined. 

The 𝑉𝑞 is gradually reduced with a certain evolutionary volume ratio 𝐸𝑅 until the volume constraint 𝑉∗ 

is reached. Thus the 𝑉𝑞 is given as 

 𝑉𝑞 = 𝑚𝑎𝑥(𝑉𝑞−1(1 − 𝐸𝑅), 𝑉
∗). (19) 

Elements are added and removed according to the ranking of sensitivity numbers, and the threshold �̅�𝑡ℎ 

is determined by the 𝑉𝑞. For solid element with 𝑥𝑖 = 1, if 

 �̅�𝑖
𝑞
≤ �̅�𝑡ℎ, (20) 

it will be removed with 𝑥𝑖 switched to 𝑥𝑚𝑖𝑛. Similarly, for void element, if 

 �̅�𝑖
𝑞
> �̅�𝑡ℎ, (21) 

it will be added with 𝑥𝑖 switched from 𝑥𝑚𝑖𝑛 to 1. 

Then, to determine the convergence of the optimization process, the compliance in each iteration step 

𝐶𝑞 is calculated. The following convergence criterion is adopted:  

 
|∑ 𝐶𝑞−ℎ+1

𝐿
ℎ=1 − ∑ 𝐶𝑞−𝐿−ℎ+1

𝐿
ℎ=1 |

∑ 𝐶𝑞−ℎ+1
𝐿
ℎ=1

≤ 𝜉, (22) 
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where, 𝑞 is the current iteration step; 𝜉 is the allowable convergence tolerance; 𝐿 is an integer. 𝐿 is often 

preset as 5, thus Eq. (22) indicates that the change in the compliance over the last 10 iterations is 

acceptably small. 

2.3.5 BESO process 

Therefore, the BESO process of the composite laminates for maximum structural stiffness is given as 

follows: 

(1) Define the design domain using a finite element mesh and assign all initial variables equal to 1. 

(2) Define the BESO parameters: 𝑉∗, 𝐸𝑅, 𝑝, 𝑟𝑚𝑖𝑛, 𝜉. 

(3) Loop over design iterations: 

(a) determine the target volume of current iteration according to Eq. (19). 

(b) perform finite element analysis using the current topology shape  

(c) calculate the sensitivity numbers according to Eq. (15). 

(d) filter and average the sensitivity numbers using Eq. (16) and (18). 

(e) add and delete elements by updating topology variables. 

(f) repeat (a)‐(e) until the preset volume 𝑉∗ is reached and the convergence criterion is satisfied. 

(4) End. 

 

3. Numerical case study 

In this section, numerical cases are used to validate the effectiveness of the development of the BESO 

method on the topology optimization of composite laminates for the maximum stiffness. Then, the 

topological performances of single-layer composite laminates are investigated in detail. 

3.1 Material and case illustration 

The single-layer of T300/epoxy product is adopted. Its properties are shown in Tab. 1 [4]. 

Table 1. Properties of T300/epoxy product [4]. 

Property 𝐸1 (GPa) 𝐸2 (GPa) 𝐺12 (GPa) 𝜇12 𝜌 (g/cm3) 

Value 135 10 5 0.27 1.58 

 

In research on the continuum topology optimization, the common numerical examples include the 

cantilever, Michell-type structure, L-bracket, etc. Among them, cantilever case, whose stress state and 

internal balance are relatively clear, is often used to check the newly proposed methods and algorithms, 

such as the multi-material design optimization with different tension and compression properties [13], 

and stress-based or stress constraint topology optimization scheme [18]. The Michell-type structure has 

less restraint in forming than the cantilever, and its topological shape at the final stage tends to be a 

Michell-truss (shown in Fig. 2) [11]. The L-bracket introduces stress concentration, which is usually 

used in stress-based or stress constraint topology optimization scheme [9, 18] and multi-material design 

optimization [19]. 

Therefore, the topology optimization is studied based on a cantilever, a Michell-type structure, and an 

L-bracket here. For the single-layer composite laminates, the fiber angles are taken as the study object 

and its concurrent effects with topological shapes on compliance are investigated. Three examples are 

shown in Fig. 3 (a)-(c). 
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(a) Loading and boundary conditions (b) Optimized topology 

Figure 2. A Michell-type structure [6]. 

  

 

(a) Cantilever (b) Michell-type structure (c) L-bracket 

Figure 3. Three classical numerical cases. 

The BESO parameters of all examples are preset as: 𝐸𝑅 = 1%, 𝑉∗ = 50%, 𝜉 = 0.01%, 𝑝 = 3, 

and 𝑟𝑚𝑖𝑛 is 3 times of the element size. 

3.2 Cantilever case 

3.2.1 Influence of mesh density 

Taking the single-layer with 45° fiber angle as an example, the compliance of various mesh densities is 

investigated, then the maximum element size can be confirmed. The numbers of elements are taken as 

60×30, 80×40, 100×50, and 120×60. The final shapes and compliance are shown in Fig. 4 and Tab. 2. 

It shows that, with the increase of mesh density, the compliance decreases at first and then becomes 

stable. The maximum element size for stable compliance is 0.5 mm. Therefore, the mesh densities in 

subsequent studies will be determined by the maximum element size and computation costs. 

 

   

(a) 60×30. (b) 80×40. (c) 100×50. (d) 120×60. 

Figure 4. Topological shape of cantilever case with different mesh densities. 

Table 2. Compliance of cantilever case with different mesh densities. 

Mesh density 60×30 80×40 100×50 120×60 

Compliance (N ∙ mm) 0.7387 0.7103 0.7103 0.7144 
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3.2.2 Influence of fiber angle 

Fiber angles of 0° to 90° at an internal of 15° are considered. A mesh density of 100×50 meeting the 

element size requirement is adopted. The compliance is presented in Fig. 5. Due to the symmetry, the 

results of a negative fiber angle are symmetrical up and down with those obtained by its opposite fiber 

angle, and thus are not presented. From Fig. 5, fiber angle is the main factor affecting compliance in the 

cantilever case. As fiber angle increases, the compliance increases. 

-105-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
0.0

0.4

0.8
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0.16

C
o
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p
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a
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N
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m
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 Cantilever  Michell type structure  L-bracket

Local enlargement

 

Figure 5. Compliance of cantilever case with different fiber angles. 

The reason that compliance changes with fiber angles changing is investigated through the stress 

distribution, as displayed in Fig. 6, where “S1” and “S2” denotes the stress along the 1-direction and 2-

direction respectively. In Fig. 6, for the 0° angle, the external load is mainly borne by 𝐸1 with extremely 

small S2. For the 45° angle, the load is borne by 𝐸1 and 𝐸2. For the 90° angle, the load is mainly borne 

by 𝐸2 with extremely small S1. This indicates that, as the fiber angle increases, the stress in 2-direction 

gradually becomes the dominance and the smaller transverse modulus 𝐸2 gradually works. Thus, the 

compliance increases accordingly. It also shows that the cantilever case has more restraint in forming 

with more defined topology, and the compliance is mainly affected by the fiber angle. 

  

(a) 0° single-layer- S1 (b) 0° single-layer- S2 

  

(c) 45° single-layer- S1 (d) 45° single-layer- S2 
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(e) 90° single-layer- S1 (f) 90° single-layer- S2 

Figure 6. Stress distribution of cantilever case with different fiber angles. 

3.2 Michell- type structure case 

Again, a mesh density of 100×50 is adopted. The fiber angles of 0° to 90° at an internal of 15° are 

preseted. The Michell-type structure is symmetric, and the results of a negative fiber angle condition are 

thus not presented either. 

The compliance of single-layers is shown in Fig. 5. Since this case has only two constraint nodes and 

one loading point, the structure has less restraint in forming. The relationship between the compliance 

and fiber angle is more complex.  

The variation of compliance is also analyzed by stress distribution (displayed in Fig. 7). It should be 

noted that the internal and external forces need to be balanced in final structure, and the internal tension 

and compression also need to be balanced. To maximize load bearing efficiency and reduce compliance, 

the final topological structure should be similar to a Michell-truss (shown in Fig. 2). 

  

(a) 0° single-layer- S1 (b) 15° single-layer- S1 

  

(c) 30° single-layer- S1 (d) 60° single-layer- S1 
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(e) 75° single-layer- S1 (f) 90° single-layer- S1 

Figure 7. Stress distribution of Michell-type structure case with different fiber angles. 

From Fig. 7 (c)-(e), for 30° to 60° fiber angles, the internal tension-compression balance and force path 

are clear. The external force is mainly borne by a pair of tension-compression balanced opposite sides 

along fiber direction with uniform stress (similar to bar elements), while stress in the rest parts is small. 

Thus, the load bearing efficiency is improved, and the compliance is less. Due to the internal and external 

balance, as fiber angles increase, the opposite sides are closer to the external force direction. Internal 

forces of the sides decrease with a thinner shape. This induces gradually decreased compliance for 30° 

to 60° fiber angle conditions. For 75° fiber angle, the opposite sides are inclined to fiber direction. The 

load bearing efficiency decreases with larger compliance compared with the 60° single-layer. 

For the single-layers with rest fiber angles, force paths are not clear. Vast elements in middle part are in 

low stress state to transmit stress. This induces low load bearing efficiency and large compliance. 

Summarily, for the Michell-type structure case, due to the more freedom in forming, the compliance is 

affected by the fiber angles and topological shapes. Clear force paths benefit the load bearing efficiency. 

To be specific, when there are opposite sides with uniform tension and compression along fiber direction, 

the load bearing efficiency is improved and the compliance is accordingly reduced. 

3.3 L-bracket case 

The L-bracket is asymmetric and introduces stress concentration. Therefore, fiber angles of -75° to 90° 

at an interval of 15° are all considered, and the mesh density is set as 80×80. 

The compliance of the L-bracket is listed in Fig. 5. With the increase of fiber angle, the compliance first 

increases and then decreases. To analyze the variation of compliance, stress distribution of single-layers 

is presented in Fig. 8. 

  

(a) -60° single-layer- S1 (b) -45° single-layer- S1 
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(c) -15° single-layer- S1 (d) 0° single-layer- S1 

  

(e) 15° single-layer- S1 (f) 30single-layer- S1 

  

(g) 60° single-layer- S1 (h) 60° single-layer- S2 

  

(i) 75° single-layer- S1 (j) 90° single-layer- S1 

Figure 8. Stress distribution of L-bracket case with different fiber angles. 
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From Fig. 8 (a)-(b), for -75° to -30° fiber angles, the internal tension-compression balance is clear and 

established by a pair of balanced opposite sides along fiber direction. Due to the geometry of L-bracket, 

opposite sides in the -75° and -60° single-layers are directly connected to supports with fewer elements 

in intermediate stress state. Thus, the compliance of -75° and -60° fiber angle conditions is lower. From 

-75° to -30°, the fiber angle gradually deviates from the external force direction, and elements 

transmitting stress increases. Therefore, the compliance increases. Additionally, the stress concentration 

in this condition is mainly borne by 𝐸1, i.e. by fibers. 

From Fig. 8 (c)-(e), for -15° to 15° fiber angles, the stress in most areas of the final topological structure 

is close (except stress concentration area). There are no clear force paths in these single-layers. The 

transversal modulus 𝐸2  gradually involved. These induces low load bearing efficiency, thus the 

compliance increases. 

From Fig. 8 (f)-(j), for 30° to 90° fiber angles, force paths and opposite sides are re-clear. The fiber angle 

is gradually closer to the external force direction, inducing gradually decreased compliance. In the 60° 

and 75° single-layers, another pair of opposite sides connected with supports appear. While in the 90° 

single-layer, two opposite sides are integrated and completely along the external force direction. Due to 

the L-bracket geometry, stress concentration in this condition is mainly borne by 𝐸2 (as shown in Fig. 

20 (h)), and elements transmitting stress are more compared with the corresponding opposite angle 

conditions. Thus, the compliance for the positive fiber angle is larger. 

In aggregate, the L-bracket and Michell-type structure cases have similar topology properties. The 

compliance is affected by fiber angles and topological shapes together. When force paths are clear, the 

load bearing efficiency is enhanced with lower compliance. Due to the larger longitudinal modulus 𝐸1, 

the stress concentration borne by fibers can also induce lower compliance. 

4. Conclusion 

In this study, a topology optimization technique based on the BESO method is developed to maximize 

the stiffness of fiber reinforced composite laminates. The conclusions are as follows: 

(1) By means of the composite material interpolation scheme, an extended BESO method is proposed 

for the topology optimization of fiber reinforced composite laminates. Through three numerical cases, 

the developed BESO method is verified to be efficient in the topology optimization of single-layer 

composite laminates for the maximum stiffness. It is identified as an effective technique to analyze the 

topological properties of composite laminates. 

(2) Through the cantilever case, the effect of fiber angles is analyzed. When structure has less freedom 

in forming, the fiber angle is the main factor affecting compliance. In this case, as the fiber angle 

increases, the compliance increases accrodingly due to the transverse modulus gradually working. 

(3) Through the Michell-type structure and L-bracket cases, the concurrent effect of topological shapes 

and fiber angles on the compliance is analyzed. Low compliance is the result of clear and direct force 

paths. When there are opposite sides with uniform tension and compression in fiber direction (similar to 

bar elements), corresponding load bearing efficiency is enhanced. If stress concentration is borne by the 

fibers, the compliance will also decrease. 
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