
EasyChair Preprint
№ 9934

Anomaly Based Intrusion Detection System
Using Integration of Features Selection
Techniques and Random Forest Classifier

A Srinivas and K Sagar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 6, 2023

 Anomaly based Intrusion Detection System Using Integration
of Features Selection Techniques and Random Forest
Classifier

A Srinivas [1] and S Dr. K. Sager [2]

1 Osmania University, Hyderabad 500007, India

 2 Chaitanya Bharathi Institute of Technology-CBIT, Hyderabad 500075, India

Abstract

Today’s internets are made up of nearly half a million different networks. In any
network connection, identifying the attacks by their types is a difficult task as differ-
ent attacks may have various connections, and their number may vary from a few to
hundreds of network connections. . To solve this problem,IDS-based on machine
learning (ML) has been developed to monitor and analyze data packets to detect ab-
normal behaviors and new attacks. The datasets used for this anomaly based intruder
detection famous data set NSLKDD[5]. It contains a large number of features and
computational time is more. The more computational time leads to decay the accuracy
of model, the reason behind is curse of dimensionality and Imbalance of data so han-
dle these issues i. Feature selection algorithm[3] to reduce the dimensionality of fea-
tures and include in the model, which produce better results and require less compu-
tation time than using all of the features. ii. Imbalance of data is handle by adjust
over fitting and under fitting of data.In this paper, we developed a system that com-
bines feature selection Techniques and Random Forest model as a classifier. The
NSL-KDD dataset[4] used to validate our system. We have compared with existing
algorithms and found that our proposed model outperformed the others in terms of
accuracy, recall, precision, F-measure, and false-alarm rate.

Keywords: Feature selection method, Random Forest, NSL-KDD.

1 Introduction

In day-to-day operations people usage of Internet is increased drastically. Communi-
cation, Transactions, IOT Applications but operations on Internet still facing a prob-
lem of Secure communication. Hackers come up with new techniques and compro-
mising the network and -hacks the information ,so many algorithms tried to detect in-

2

truders still facing problem of detect new intruders , for efficient detection of intrud-
ers we applied combined feature selection algorithms and classification algorithms to
detect intruders

Research in network security [1] is a vastly emerging topic in the domain of com-
puter networking due to the ever-increasing density of advanced cyberattacks. The in-
trusion detection systems (IDSs) are designed to avert the intrusions and to protect the
programs, data, and illegitimate access of the computer systems. The IDSs can clas-
sify the intrinsic and extrinsic intrusions in the computer networks of an organization
and activate the alarm if security infringement is encompassed in an organization

 A network anomaly is a sudden and short-lived deviation from the normal opera-
tion of the network. Some anomalies are deliberately caused by intruders with mali-
cious intent such as a denial-of-service attack in an IP network

 An unexpected change within these data patterns, or an event that does not con-
form to the expected data pattern, is considered an anomaly. In other words, an anom-
aly is a deviation from business as usual.

An anomaly describes any change in the specific established standard communica-
tion of a network. An anomaly may include both malware and cyber attacks, as well
as faulty data packets and communication changes caused by network capacity bottle-
necks, or equipment failures.

TYPES OF ANOMALYS

 TYPES OF ANOMALYS

Types Of Anomalies

1) Point Anomalies: If one object can be observed against other objects as anom-

aly, it is a point anomaly. This is the simplest anomaly category and a lot of re-

3

searches include them. Taking into consideration example represented in Figure 1

points O1 and O2 are point anomalies

2. Contextual Anomalies: If object is anomalous in some defined context. Only in

this case it is contextual anomaly (also known as conditional anomaly [2]). In Figure

2 can be seen periodic context. In this case point O1 is anomaly, because it differs

from periodic context

 3. Collective Anomalies: If some linked objects can be observed against other

objects as anomaly. Individual object can’t be anomalous in this case, only collec-

tion of objects.

4.These solutions only detect threats communicated

Through the specific part of the network where they are set up. Conversely, net -

work behavior anomaly detection accounts for three significant network properties—

traffic flow patterns, passive traffic analysis, and network performance data—from

across the network to detect several different types of threats, such as:

Inappropriate network behavior, such as unauthorized applications or a known pro-

gram’s

4

Unusual use of ports. On detecting such activity, the network behavior anomaly

detection solution and associated protection systems can identify and disable the asso-

ciated network processes automatically and notify the concerned security personnel.

Data exhilaration, like a suspiciously high volume of data being transferred. In case

such an activity is detected, network behavior anomaly detection and related security

solutions can automatically monitor the outbound transfer of data and report it to se-

curity teams in real-time. Some systems would even be able to identify the destination

of these data transfers further and determine whether it is a legitimate communication

or a cybersecurity event.

Hidden threats, such as advanced malware. Network behavior anomaly detection

would work with other security solutions to deploy the IDS with appropriate security

countermeasures. It notifies concerned stakeholders to detect a threat that may have

dodged perimeter security and entered the enterprise network.

Regardless of the configuration of the network or the tool, the first step taken by a

network behavior anomaly detection solution is to establish a baseline for the average

user and network behavior. This baseline is established over a prolonged period; the

longer the time, the more accurate and useful the collected behavior data. Once the

solution captures and defines the ‘normal’ parameters, it flags outliers in real-time.

2 Related work

Our work divided into 3. Phases A. Methodologies B. Data set description C. Fea-
ture selection

2.1 Methodologies

I. Bayes classification based intruder detection here

Bayes classification:
Dataset:
 INPUT OUTPUT
 {A1,A2,A3,A4}} {B}
 BAYES THEOREM: P(B/A) = (A/B).P(B)
 ---------------- ---------eqn ①

5

 P(A)
 P(B/A1,A2,A3,A4) = (P(A1/B) .P(A2/B) .P(A3/B) .P(A4/B)).P(B)

 ------------------------------------- - - ----eqn ②
 P(A1) .P(A2) .P(A3) .P(A4)

 P(B) ni P(Ai/B)
 P(B/A1,A2,A3,A4) = --- -------eqn③
 P(A1). P(A2) .P(A3) .P(A4)

 From the equations ①②③

P(B/A1,A2,A3,A4) P(B) P(Ai/B)

 P(B/Ai) Argument MAX P(B π P(Ai/B)
Here input attributes are Ai and class value “B”.
2. Decision Tree Split Classifier: In information Gain “pi “is total number of

class value1 and “ ni” is total number of value2 Binary class values.

1.Information Gain (P, N) - P /(P N) log2(P/(P N)) - N /(P N) log2(N /₊ ₊ ₊ ₊
(P N)) ₊

2.For each Attribute information Gain(Pi, ni):

(Pi /(Pi ni) log2(Pi/(Pi ni)) - ni /(Pi ni)) log2(ni /(Pi ni)) ₊ ₊ ₊ ₊ ₊

3. Entropy(A): ∑in ((Pi ni)/(P N)) . I (Pi ,ni)₊ ₊

 From the steps ①②③

4.Gain(A) Information Gain (P, N) - Entropy(A)

Where Entropy (E) is the uncertainty summation with respect to Attributes in
the dataset.

Gain(A) :Highest Gain value Attribute used for root of the tree.

3.KNN Classifier:

The KNN Algorithm
1.Load the data
2.Initialize K to your chosen number of neighbors
3. For each example in the data

6

3.1 Calculate the distance between the query example and the current example from
the data.
3.2 Add the distance and the index of the example to an ordered collection
4. Sort the ordered collection of distances and indices from smallest to largest (in as-
cending order) by the distances
5. Pick the first K entries from the sorted collection
6. Get the labels of the selected K entries
7. If regression, return the mean of the K labels
8. If classification, return the mode of the K labels
The KNN implementation (from scratch)

P(x1,y1),Q(x2,y2) here” P” is the new point and Q is the given dataset point
Find similarity Man Hattin distance = | x2-x1|+|y2-y1|

Choosing the right value for K
To select the K that’s right for your data, we run the KNN algorithm several times
with different values of K and choose the K that reduces the number of errors we en-
counter while maintaining the algorithm’s ability to accurately make predictions when
it’s given data it hasn’t seen before.
Here are some things to keep in mind:
As we decrease the value of K to 1, our predictions become less stable. Just think for
a minute, imagine K=1 and we have a query point surrounded by several reds and one
green (I’m thinking about the top left corner of the colored plot above), but the green
is the single nearest neighbor. Reasonably, we would think the query point is most
likely red, but because K=1, KNN incorrectly predicts that the query point is green.
Inversely, as we increase the value of K, our predictions become more stable due to
majority voting / averaging, and thus, more likely to make more accurate predictions
(up to a certain point). Eventually, we begin to witness an increasing number of er-
rors. It is at this point we know we have pushed the value of K too far.
In cases where we are taking a majority vote (e.g. picking the mode in a classification
problem) among labels, we usually make K an odd number to have a tiebreaker.
Advantages
The algorithm is simple and easy to implement.
There’s no need to build a model, tune several parameters, or make additional as-
sumptions.
The algorithm is versatile. It can be used for classification, regression, and search (as
we will see in the next section).
Disadvantages
The algorithm gets significantly slower as the number of examples and/or predictors/
independent variables increase.
earest neighbors (KNN) algorithm is a simple, supervised machine learning algorithm
that can be used to solve both classification and regression problems. It’s easy to im-
plement and understand, but has a major drawback of becoming significantly slows as
the size of that data in use grows.
KNN works by finding the distances between a query and all the examples in the data,
selecting the specified number examples (K) closest to the query, then votes for the

7

most frequent label (in the case of classification) or averages the labels (in the case of
regression).
In the case of classification and regression, we saw that choosing the right K for our
data is done by trying several Ks and picking the one that works best.

4.Linear Regression:

Linear regression shows the linear relationship between two variables. The equation
of linear regression is similar to the slope formula what we have learned before in ear-
lier classes such as linear equations in two variables. It is given b

 y = a+ bx
 here, y is the dependent variable.
x, are independent variable.
a=intercept of the line.
b, … is coefficients.
The measure of the extent of the relationship between two variables is shown by
the correlation coefficient. The range of this coefficient lies between -1 to +1. This
coefficient shows the strength of the association of the observed data for two vari-
ables.
Now, here we need to find the value of the slope of the line, b, plotted in scatter plot
and the intercept, a.
[

5. Logistic regression:

Logistic regression is named for the function used at the core of the method, the logis-
tic function.
The logistic function, also called the sigmoid function was developed by statisticians
to describe properties of population growth in ecology, rising quickly and maxing out
at the carrying capacity of the environment. It’s an S-shaped curve that can take any
real-valued number and map it into a value between 0 and 1, but never exactly at
those limits.
1 / (1 + e^-value)
Where e is the base of the natural logarithms (Euler’s number or the EXP() function
in your spreadsheet) and value is the actual numerical value that you want to trans-
form. Below is a plot of the numbers between -5 and 5 transformed into the range 0
and 1 using the logistic function.

8

Representation Used for Logistic Regression
Logistic regression uses an equation as the representation, very much like linear re-
gression.
Input values (x) are combined linearly using weights or coefficient values (referred to
as the Greek capital letter Beta) to predict an output value (y). A key difference from
linear regression is that the output value being modeled is a binary values (0 or 1)
rather than a numeric value.
Below is an example logistic regression equation:
y = e^(b0 + b1*x) / (1 + e^(b0 + b1*x))
Where y is the predicted output, b0 is the bias or intercept term and b1 is the coeffi -
cient for the single input value (x). Each column in your input data has an associated
b coefficient (a constant real value) that must be learned from your training data.
The actual representation of the model that you would store in memory or in a file are
the coefficients in the equation (the beta value or b’s).

6. Gradient Boosting

If you are reading this, it is likely you are familiar with stochastic gradient descent
(SGD) (if you aren’t, I highly recommend this video by Andrew Ng, and the rest of
the course, which can be audited for free). Assuming you are:
Gradient boosting solves a different problem than stochastic gradient descent.
When optimizing a model using SGD, the architecture of the model is fixed. What
you are therefore trying to optimize are the parameters, P of the model (in logistic re-
gression, this would be the weights). Mathematically, this would look like this:

Which means I am trying to find the best parameters P for my function F, where
‘best’ means that they lead to the smallest loss possible (the vertical line in F(x∣P) just
means that once I’ve found the parameters P, I calculate the output of F given x using
them).
Gradient boosting doesn’t assume this fixed architecture. In fact, the whole point of
gradient boosting is to find the function which best approximates the data. It would be
expressed like this:

The only thing that has changed is that now, in addition to finding the best parameters
P, I also want to find the best function F. This tiny change introduces a lot of com-
plexity to the problem; whereas before, the number of parameters I was optimizing
for was fixed (my logistic regression model is defined before I start training it), now,
it can change as I go through the optimization process if my function F changes.

9

Obviously, searching all possible functions and their parameters to find the best one
would take far too long, so gradient boosting finds the best function F by taking lots
of simple functions, and adding them together.
Where SGD trains a single complex model, gradient boosting trains an ensemble of
simple models.
It does this the following way:
Take a very simple model h, and fit it to some data (x, y):

When I’m training my second model, I obviously don’t want it to uncover the same
pattern in the data as this first model h; ideally, it would improve on the errors from
this first prediction. This is the clever part (and the ‘gradient’ part): this prediction
will have some error, Loss(y, ŷ). The next model I am going to fit will be on the gra-
dient of the error with respect to the predictions, ∂Loss/∂ŷ .
To think about why this is clever, lets consider mean squared error:

Calculating this gradient,

If for one data point, y=1 and ŷ =0.6, then the error in this prediction is
MSE(1,0.6)=0.16 and the new target for the model will be the gradient, (y−ŷ)=0.4.
Training a model on this target,

Now, for this same data point, where y=1 (and for the previous model, ŷ =0.6, the
model is being trained to on a target of 0.4. Say that it returns ŷ_1=0.3. The last step
in gradient boosting is to add these models together. For the two models I’ve trained
(and for this specific data point), then

By training my second model on the gradient of the error with respect to the loss pre-
dictions of the first model, I have taught it to correct the mistakes of the first model.
This is the core of gradient boosting, and what allows many simple models to com-
pensate for each other’s weaknesses to better fit the data.
I don’t have to stop at 2 models; I can keep doing this over and over again, each time
fitting a new model to the gradient of the error of the updated sum of models.
An interesting note here is that at its core, gradient boosting is a method for optimiz-
ing the function F, but it doesn’t really care about h (since nothing about the optimiza-
tion of h is defined). This means that any base model h can be used to construct F.

7. XGboost :

10

Gradient Boosting, Here’s a simple example of a CART that classifies whether
someone will like a hypothetical computer game X. The example of tree is below:

The prediction scores of each individual decision tree then sum up to get If you
look at the example, an important fact is that the two trees try to complement each
other. Mathematically, we can write our model in the for

where, first term is the loss function and the second is the regularization parameter.
Now, Instead of learning the tree all at once which makes the optimization harder, we
apply the additive stretegy, minimize the loss what we have learned and add a new
tree which can be summarised below:

Now, let’s apply taylor series expansion upto second order:

where g_i and h_i can be defined as:

Simplifying and removing the constant:

 Now, we define the regularization term, but first we need to define the model:

11

Here, w is the vector of scores on leaves of tree, q is the function assigning each
data point to the corresponding leaf, and T is the number of leaves. The regularization
term is then defined by

Now, our objective function becomes:

Now, we simplify the above expression:

where,

In this equation, w_j are independent of each other, the best for a given
structure q(x) and the best objective reduction we can get is:

where, \gamma is pruning parameter, i.e the least information gain to perform split.

Now, we try to measure how good the tree is, we can’t directly optimize the tree, we
will try to optimize one level of the tree at a time. Specifically we try to split a leaf
into two leaves, and the score it gains is

 Now, let’s calculate the similarity metrices of left and right side. Since,
it is the regression problem the similarity metric will be:

12

where, \lambda = hyperparameter

and for the classification problem

where, P_r = probability of either left side of right side.

Let’s take ,the similarity metrics of the left side

B. Data set Description:

TABLE I : LIST OF NSL-KDD DATASET FILES AND THEIR DESCRIPTION

S.N
o.

Name of the file Description

1 KDDTrain+.ARFF
The full NSL-KDD train set
with binary labels in ARFF
format

2 KDDTrain+.TXT

The full NSL-KDD train set
including attack-type labels
and difficulty level in CSV
format

3
KDDTrain+_20Perce
nt.ARFF

A 20% subset
KDDTrain+.arff file

of the

4
KDDTrain+_20Perce
nt.TXT

A 20% subset
KDDTrain+.txt file

of the

5 KDDTest+.ARFF
The full NSL-KDD test set
with binary labels in ARFF
format

6
KDDTest+.TXT

The full NSL-KDD test set
including attack-type labels
and difficulty level in CSV
format

7
KDDTest-21.ARFF

A subset of the
KDDTest+.arff file which
does not include records with
difficulty level of 21 out of 21

8 KDDTest-21.TXT

A subset of the KDDTest+.txt
file which does not include
records with difficulty level of
21 out of 21

13

TABLE II: BASIC FEATURES OF EACH NETWORK CONNECTION VECTOR

Attribute
No.

Attribute
Name

Description Sample
Data

1 Duration

Length of
time duration of the
connection 0

2 Protocol_type
Protocol used
in the
connection

Tcp

3 Service
Destination
network service used ftp_data

4 Flag

Status of the
connection – Normal or Error

SF

5 Src_bytes

Number of
data bytes transferred from source to
destination in single connection

491

6 Dst_bytes

Number of
data bytes transferred from destination
to source in single connection

0

7 Land

if source and
destination IP addresses and port numbers
are equal then, this variable takes value 1
else 0

0

8
Wrong_fragm
ent

Total number
of wrong fragments in this connec-
tion 0

9 Urgent

Number of
urgent packets in this
connection. Urgent packets are pack-
ets with the urgent bit activated

0

14

TABLE III : CONTENT RELATED FEATURES OF EACH NETWORK CONNECTION

VECTOR

Attribute
no

Attribute
Name

Description Sample
Data

10 Hot Number of
„hot indicators‟
in the content
such as:

entering a system

0

11 Num_failed
_logins

Count of failed
login attempts

0

12 Logged in Login status login is 1
Else 0

13 Num_comp

romised

Number of
``compromised'

' conditions

0

14 Root_shell 1 if root shell is ob-
tained;, otherwise 0

0

15
Su_attempt ed

If Su root attempted 1
Else 0

0

16
Num_root

Num of root access
in the connection 0

17
Num_file_
creations

Number of creation
operations in the con-
nection 0

18 Num_shells Number of shell prompts
19

Num_acces files
Number of operations
on access control files 0

20

Num_outboubd_cmds

Nuber of outbound
commands on ftp ses-
sion 0

21

Is_hot_login

If login belongs to
the hot list root or ad-
min is 1 else 0 0

22
Is_guest_login

If login is guest 1
else 0 0

15

TABLE IV : TIME RELATED TRAFFIC FEATURES OF EACH

NETWORK CONNECTION VECTOR

Attribute No Attribute Name Description Sample data

23

count

Number of connections to the same
destination host as the current connection
in the past two seconds

2

24 Srv_count Number of connections to the same ser-
vice(port number)as the current connec-
tion in the past 2 seconds

2

25 Serror_rate The percentage of connections that
have activated the flag(4)s0,s1,s2,or
s3among the connections aggregated
in count(23)

0

26 Srv_serror_rate The percentage of connections that
have activated the flag(4)s0,s1,s2,or
s3 among the connections aggregated
in srv_count(24)

0

27 Rerror_rate The percentage of connections that
have activated the flag(4)REI among
the connections aggregated in
count(23)

0

28 Srv_rerror_rate The percentage of connections that
have activated the flag(4)REI among
the connections aggregated insrv_
count(24)

0

29 Same_srv_rate The percentage of connections that
were to the same service among
the connections aggregated in
coutnt

0

30 Diff_srv_rate The percentage of connections that
were in different services among the
connections aggregated in count(23)

0

31 Srv_diff_host_rate The percentage of connections that
were to different destination ma-
chines among the connections

0

16

TABLE V: HOST BASED TRAFFIC FEATURES IN A NETWORK CONNECTION VECTOR

Attribute
No

Attribute Name Description Sample
data

32 Dst_host_count Number of connections have same
same destination IP addrtess

150

33
Dst_host_srv_count

Number of connections have
same same port number

25

34

Dst_host_same_srv_rate

The percentage of connections that
that were to the same service
among the connectionsaggregated in
dst_host_count(32)

0.17

35

Dst_host_diff_srv_rate

The percentage of connections that
were to the different service among
among the connections aggregated
in dst_host_count(32)

0.03

36

Dst_host_same_src_port_r
ate

The percentage of connections that
were to the same port among the
connections aggregated in
dst_hos_srv_count(33)

0.17

37

Dst_host_srv_diff_host_rate

The percentage of connections that
were to the different destination ma-
chines among the connections ag-
gregated in dst_host_srv_count

0

38 Dst_host_serror_rate The percentage of connections that
were activated the flag(4)
s0,s1,s2,s3 among the connections
aggregated in dst_host_count(32)

0

39 Dst_host_srv_serror_rate The percentage of connections that
were activated the flag(4)
s0,s1,s2,s3 among the connections
aggregated in
dst_host_srv_count(33)

0

40 Dst_host_rerror_rate The percentage of connections that
were activated the flag(4)REJ
among the connections aggregated
in dst_host_count(32)

0.05

41 Dst_host_srv_rerror _rate The percentage of connections that
were activated the flag(4)REJ
among the connections aggregated
in dst_host_srv_count(33)

0

17

C. Feature selections methods

1. Filter Method: It uses statistical methods

In the Filter method, features are selected based on statistical measures. It is indepen-
dent of the learning algorithm and requires less computational time.

It includes i. correlation method
 Ii .Chi square Test

2.Wrapper method: Data mining algorithmic method it includes
 i. Forward feature selection
 ii. Back ward feature elimination

3.Ensemble method: the feature selection algorithm is integrated as part of the learn-
ing algorithm
 I. LASSO method
 ii. Ridge Regression
 iii Elastic net.

3. Proposed model

3.1. Feature selection algorithm with 10 fold cross validation

3.1. Algorithm 1: Recursive Feature Elimination with
Cross-validation
1.1. Train the LR model using all features with 10-fold cross-validation.
1.2. Compute the model performance
1.3. Calculate the Feature importance or ranking
1.4. For each subset Ti,i=0,1,2,3,................, n do
1.5. Keep the Ti most important features
1.6. Train/Test model on Ti features
1.7. Recalculate model performance
1.8. Recalculate the importance of ranking
of each feature
1.9. End
1.10. Calculate the performance over Ti
1.11. Use the model with the selected optimal
features
1.12. Use the model with the selected optimal
features

18

3.2. Random Forest Classification Algorithm

4. Implementation Results:

Results are Evaluated by using
 I .Precision
ii. Recall.
Iii. Accuracy
 iv. F-measure

19

4.1.Feature selection output

20

4.2.RFE with Random forest classifier output

Output Performance evaluationEvaluation
Performance Evaluation measures using confusion matrix
i. Precision= TP/{TP+FP}
ii. Recall=TP/|(TP+FN)
iii. Accuracy=(TP+TN}/(TP+TN+FP+FN)
iv. F-measure=2* (precision *Recall)/(precision *Recall)

5. Conclusion

In the proposed model Recursive Feature elimination with Ranking Generates op-
timal number of features and classifier random Forest classifies the NSL KDD 20per-
cent data were implemented and accuracy 98.6959 generated it out performs the De-
cision tree and KNN, Byes classification future implemented with Deep learning im-
proves the accuracy

21

References

1. Intrusion Detection using Naive Bayes Classifier with Feature
Reduction, Saurabh Mukherjee and Neelam Sharma / Procedia

Technology.researchgate.net/publication/257743939
2. Decision Tree Based Algorithm for Intrusion Detection, Ajay Guleria, Kajal Rai, Int. J.

Advanced Networking and Applications Volume: 07 Issue: 04 Pages: 2828-2834 (2016)
ISSN: 0975-0290

3. Improving the Classification Accuracy using Recursive Feature Elimination with cross
validation, Puneet Misra1 and Arun Singh Yadav2 , International Journal on Emerging
Technologies 11(3): 659-665(2020)

4. Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava, “A
Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection”

5. http://en.wikipedia.org/wiki/Data_mining
6. http://nsl.cs.unb.ca/NSL-KDD/

7. http://www.cs.waikato.ac.nz/ml/weka/

8. Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani “A Detailed Analysis of the
KDD CUP 99 Data Set”, Proceedings of the 2009 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2009)

9. S. Revathi, Dr. A. Malathi, “A Detailed Analysis on NSL-KDD Dataset Using Various
Machine Learning Techniques for Intrusion Detection”, International Journal of
Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 12,
December - 2013

Mahbod
10. Vipin Kumar, Himadri Chauhan, Dheeraj Panwar, “K-Means Clustering Approach to

Analyze NSL-KDD Intrusion Detection Dataset”, International Journal of Soft Computing
and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-4, September 2013

	Anomaly based Intrusion Detection System Using Integration of Features Selection Techniques and Random Forest Classifier
	1 Introduction
	2 Related work
	2.1 Methodologies
	4.Linear Regression:
	C. Feature selections methods
	3. Proposed model
	3.1. Feature selection algorithm with 10 fold cross validation
	3.2. Random Forest Classification Algorithm
	
	4. Implementation Results:
	
	

	5. Conclusion
	References

