Note for the Prime Numbers

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Note for the Prime Numbers

Frank Vega ${ }^{1(1)}$

1 GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA; vega.frank@gmail.com

Abstract

Let $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ denote the Dedekind Ψ function where $q \mid n$ means the prime q divides n. Define, for $n \geq 3$; the ratio $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ where \log is the natural logarithm. Let $N_{n}=2 \cdot \ldots \cdot q_{n}$ be the primorial of order n. A trustworthy proof for the Riemann hypothesis has been considered as the Holy Grail of Mathematics by several authors. The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. There are several statements equivalent to the famous Riemann hypothesis. We prove if the inequality $R\left(N_{n+1}\right)<R\left(N_{n}\right)$ holds for all primes q_{n} (greater than some threshold), then the Riemann hypothesis is true. Moreover, we discuss some known implications about this inequality and the prime numbers. In this note, we show that the previous inequality always holds for all large enough prime numbers.

Keywords: Riemann hypothesis; prime numbers; Riemann zeta function; Chebyshev function

MSC: 11M26; 11A41; 11A25

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In recent years, there have been several developments that have brought us closer to a proof of the Riemann hypothesis. There are many approaches to the Riemann hypothesis based on analytic number theory, algebraic geometry, non-commutative geometry, etc [1].

The Riemann zeta function $\zeta(s)$ is a function under the domain of complex numbers. It has zeros at the negative even integers: These are called the trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros. Bernhard Riemann conjectured that the real part of every nontrivial zero of the Riemann zeta function is $\frac{1}{2}$.

The Riemann hypothesis's importance remains from its deep connection to the distribution of prime numbers, which are essential in many computational and theoretical aspects of mathematics. Understanding the distribution of prime numbers is crucial for developing efficient algorithms and improving our understanding of the fundamental structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power and allure of mathematical inquiry. It challenges our understanding of the fundamental structure of numbers, inspiring mathematicians to push the boundaries of their field and seek ever deeper insights into the universe of mathematics.
2. Materials and methods

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{q \leq x} \log q
$$

with the sum extending over all prime numbers q that are less than or equal to x, where \log is the natural logarithm. We know the following inequalities:

Proposition 1. For $r \geq 0$ and $-1 \leq x<\frac{1}{r}$ [2, pp. 1]:

$$
(1+x)^{r} \leq \frac{1}{1-r \cdot x}
$$

Proposition 2. For $x>-1$ [2, pp. 1]:

$$
\frac{x}{1+x} \leq \log (1+x) \leq x
$$

Leonhard Euler studied the following value of the Riemann zeta function (1734) [3].
Proposition 3. We define [3, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where q_{k} is the k th prime number (We also use the notation q_{n} to denote the nth prime number). By definition, we have

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where $\pi \approx 3.14159$ is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number $\gamma \approx 0.57721$ is the Euler-Mascheroni constant which is defined as

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(-\log n+\sum_{k=1}^{n} \frac{1}{k}\right) \\
& =\int_{1}^{\infty}\left(-\frac{1}{x}+\frac{1}{\lfloor x\rfloor}\right) d x
\end{aligned}
$$

Here, $\lfloor\ldots\rfloor$ represents the floor function. In number theory, $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n.

Definition 1. We say that Dedekind $\left(q_{n}\right)$ holds provided that

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right) \geq \frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta\left(q_{n}\right)
$$

A natural number N_{n} is called a primorial number of order n precisely when,

$$
N_{n}=\prod_{k=1}^{n} q_{k}
$$

We define $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ for $n \geq 3$. Dedekind $\left(q_{n}\right)$ holds if and only if $R\left(N_{n}\right) \geq \frac{e^{\gamma}}{\zeta(2)}$ is satisfied.

Proposition 4. Unconditionally on Riemann hypothesis, we know that [4, Proposition 3 pp. 3]:

$$
\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [5]. In 1916, they also introduced the two symbols Ω_{R} and Ω_{L} defined as [6]:

$$
\begin{aligned}
& f(x)=\Omega_{R}(g(x)) \text { as } x \rightarrow \infty \text { if } \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0 ; \\
& f(x)=\Omega_{L}(g(x)) \text { as } x \rightarrow \infty \text { if } \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0 .
\end{aligned}
$$

After that, many mathematicians started using these notations in their works. From the last century, these notations Ω_{R} and Ω_{L} changed as Ω_{+}and Ω_{-}, respectively. There is another notation: $f(x)=\Omega_{ \pm}(g(x))$ (meaning that $f(x)=\Omega_{+}(g(x))$ and $f(x)=\Omega_{-}(g(x))$ are both satisfied). Nowadays, the notation $f(x)=\Omega_{+}(g(x))$ has survived and it is still used in analytic number theory as:

$$
f(x)=\Omega_{+}(g(x)) \text { if } \exists k>0 \forall x_{0} \exists x>x_{0}: f(x) \geq k \cdot g(x)
$$

which has the same meaning to the Hardy and Littlewood older notation. For $x \geq 2$, the function f was introduced by Nicolas in his seminal paper as [7, Theorem 3 pp. 376], [8, (5.5) pp. 111]:

$$
f(x)=e^{\gamma} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1-\frac{1}{q}\right)
$$

Finally, we have the Nicolas Theorem:
Proposition 5. If the Riemann hypothesis is false then there exists a real b with $0<b<\frac{1}{2}$ such that, as $x \rightarrow \infty$ [7, Theorem 3 (c) pp. 376], [8, Theorem 5.29 pp. 131]:

$$
\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)
$$

Putting all together yields a proof for the Riemann hypothesis.

3. Results

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. Nevertheless, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers q_{n} such that Dedekind $\left(q_{n}\right)$ fails (i.e. Dedekind $\left(q_{n}\right)$ does not hold).

Proof. The function g is defined as [4, Theorem 4.2 pp .5$]$:

$$
g(x)=\frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1+\frac{1}{q}\right)^{-1} .
$$

We claim that Dedekind $\left(q_{n}\right)$ fails whenever there exists some real number $x_{0} \geq 5$ for which $g\left(x_{0}\right)>1$ or equivalent $\log g\left(x_{0}\right)>0$ and q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. It was proven the following bound [4, Theorem 4.2 pp .5]:

$$
\log g(x) \geq \log f(x)-\frac{2}{x}
$$

By Proposition 5, if the Riemann hypothesis is false, then there is a real number $0<b<\frac{1}{2}$ such that there exist infinitely many numbers x for which $\log f(x)=\Omega_{+}\left(x^{-b}\right)$. Actually Nicolas proved that $\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)$, but we only need to use the notation Ω_{+}under the domain of the real numbers. According to the Hardy and Littlewood definition, this would mean that

$$
\exists k>0, \forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq k \cdot y^{-b}
$$

The previous inequality is also $\log f(y) \geq\left(k \cdot y^{-b} \cdot \sqrt{y}\right) \cdot \frac{1}{\sqrt{y}}$, but we notice that

$$
\lim _{y \rightarrow \infty}\left(k \cdot y^{-b} \cdot \sqrt{y}\right)=\infty
$$

for every possible values of $k>0$ and $0<b<\frac{1}{2}$. Now, this implies that

$$
\forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq \frac{1}{\sqrt{y}}
$$

Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such that $\log f(x) \geq \frac{1}{\sqrt{x}}$. Since $\frac{1}{\sqrt{x_{0}}}>\frac{2}{x_{0}}$ for $x_{0} \geq 5$, then it would be infinitely many wide apart real numbers x_{0} such that $\log g\left(x_{0}\right)>0$. In addition, if $\log g\left(x_{0}\right)>0$ for some real number $x_{0} \geq 5$, then $\log g\left(x_{0}\right)=\log g\left(q_{n}\right)$ where q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. The reason is because of the equality of the following terms:

$$
\prod_{q \leq x_{0}}\left(1+\frac{1}{q}\right)^{-1}=\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

and

$$
\theta\left(x_{0}\right)=\theta\left(q_{n}\right)
$$

according to the definition of the Chebyshev function.
This is a new Criterion for the Riemann hypothesis.
Lemma 2. The Riemann hypothesis is true whenever for each large enough prime number q_{n}, there exists another prime $q_{n^{\prime}}>q_{n}$ such that

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right) .
$$

Proof. By Lemma 1, if the Riemann hypothesis is false and the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for each large enough prime number q_{n}, then there exists an infinite subsequence of natural numbers n_{i} such that

$$
R\left(N_{n_{i+1}}\right) \leq R\left(N_{n_{i}}\right)
$$

$q_{n_{i+1}}>q_{n_{i}}$ and Dedekind $\left(q_{n_{i}}\right)$ fails. By Proposition 4, this is a contradiction with the fact that

$$
\liminf _{n \rightarrow \infty} R\left(N_{n}\right)=\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

By definition of the limit inferior for any positive real number ε, only a finite number of elements of $R\left(N_{n}\right)$ are less than $\frac{e^{\gamma}}{\zeta(2)}-\varepsilon$. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true.

This is the main insight.
Theorem 1. The inequality $R\left(N_{n}\right)>R\left(N_{n+1}\right)$ holds for all primes q_{n} (greater than some threshold).

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes q_{n} (greater than some threshold), the inequality

$$
R\left(N_{n^{\prime}}\right)<R\left(N_{n}\right)
$$

is satisfied for some prime $q_{n^{\prime}}>q_{n}$. In particular, we will consider the case of $n^{\prime}=n+1$. That is the same as

$$
\frac{\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n^{\prime}}\right)}<\frac{\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n}\right)}
$$

and

$$
\log \log \theta\left(q_{n^{\prime}}\right)>\log \log \theta\left(q_{n}\right)+\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)
$$

after of applying the logarithm to the both sides and distributing the terms. That is equivalent to

$$
1>\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}+\frac{\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}
$$

after dividing both sides by $\log \log \theta\left(q_{n^{\prime}}\right)$. This is possible because of the prime number $q_{n^{\prime}}$ is large enough and thus, the real number $\log \log \theta\left(q_{n^{\prime}}\right)$ would be greater than 0 . We can apply the exponentiation to the both sides in order to obtain that

$$
e>\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right) \cdot\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} .
$$

For large enough prime $q_{n^{\prime}}$, we have

$$
e=\left(\log \theta\left(q_{n^{\prime}}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

since $e=x^{\frac{1}{\log x}}$ for $x>0$. Hence, it is enough to show that

$$
\log \theta\left(q_{n^{\prime}}\right)>\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right) .
$$

That is equal to

$$
\log \theta\left(q_{n+1}\right)>1+\frac{1}{q_{n+1}}
$$

under the assumption that $n^{\prime}=n+1$. In addition, the previous inequality is satisfied when

$$
\log \theta\left(q_{n+1}\right) \geq 2
$$

We would have

$$
1+\epsilon_{1}=\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right)
$$

and

$$
e \cdot\left(1-\epsilon_{2}\right)=\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} .
$$

We only need to prove that

$$
e>\left(1+\epsilon_{1}\right) \cdot e \cdot\left(1-\epsilon_{2}\right)
$$

which is

$$
\epsilon_{2}>\frac{\epsilon_{1}}{\epsilon_{1}+1}
$$

In addition, we can see that

$$
1-e^{-1} \cdot\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}=\epsilon_{2}
$$

We have

$$
\begin{aligned}
\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} & =\left(1+\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} \\
& \leq \frac{1}{1-\frac{\left(\prod_{q q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}} \\
& =\frac{\log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}
\end{aligned}
$$

by Proposition 1, since

$$
-1 \leq\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)<\log \log \theta\left(q_{n^{\prime}}\right)
$$

due to q_{n} and $q_{n^{\prime}}$ are large enough. It is a fact that if we take $n^{\prime}=n+1$, then we obtain

$$
\left(\prod_{q_{n}<q \leq q_{n+1}}\left(1+\frac{1}{q}\right)-1\right)=\frac{1}{q_{n+1}}<\log \log \theta\left(q_{n+1}\right)
$$

and thus, whenever we have

$$
1 \leq \log \log \theta\left(q_{n+1}\right)
$$

then that would be quite enough. As a consequence, we obtain that

$$
1-\frac{e^{-1} \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)} \leq \epsilon_{2} .
$$

Putting all together, we show that

$$
1-\frac{e^{-1} \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}>\frac{\epsilon_{1}}{\epsilon_{1}+1} .
$$

That is equal to say that

$$
\frac{\epsilon_{1}+1}{\epsilon_{1}}-\frac{e^{-1} \cdot \frac{\epsilon_{1}+1}{\epsilon_{1}} \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}>1
$$

and

$$
1>\frac{e^{-1} \cdot\left(\epsilon_{1}+1\right) \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)} .
$$

where

$$
\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)>e^{-1} \cdot\left(\epsilon_{1}+1\right) \cdot \log \log \theta\left(q_{n^{\prime}}\right)
$$

after making a simple distribution of the terms. If we take $n^{\prime}=n+1$, then we obtain

$$
-\frac{1}{q_{n+1}}>\left(e^{-1} \cdot\left(\epsilon_{1}+1\right)-1\right) \cdot \log \log \theta\left(q_{n+1}\right)
$$

That would be

$$
1<q_{n+1} \cdot\left(1-e^{-1} \cdot\left(\epsilon_{1}+1\right)\right) \cdot \log \log \theta\left(q_{n+1}\right)
$$

which is

$$
0<\log q_{n+1}+\log \left(1-e^{-1} \cdot\left(\epsilon_{1}+1\right)\right)+\log \log \log \theta\left(q_{n+1}\right)
$$

That could be rewritten as

$$
0<-\frac{e^{-1} \cdot\left(\epsilon_{1}+1\right)}{1-e^{-1} \cdot\left(\epsilon_{1}+1\right)}+\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)
$$

and

$$
\frac{1}{e \cdot\left(\epsilon_{1}+1\right)^{-1}-1}<\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)
$$

by Proposition 2 since $-e^{-1} \cdot\left(\epsilon_{1}+1\right)>-1$. The inequality

$$
\frac{1}{e \cdot\left(\epsilon_{1}+1\right)^{-1}-1}<\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)
$$

would be

$$
\frac{1}{\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right)-1}<\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)
$$

because of

$$
\epsilon_{1}=\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right)-1
$$

We know that

$$
\frac{1}{\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right)-1}<\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)
$$

holds when
$\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)<\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right) \cdot\left(\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)\right)$ also holds. However, we deduce that $\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)<\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right) \cdot\left(\log q_{n+1}+\log \log \log \theta\left(q_{n+1}\right)\right)$ trivially holds since

$$
\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n+1}\right)}\right)>1
$$

under the supposition that q_{n} and q_{n+1} are large enough.
This is the main theorem.
Theorem 2. The Riemann hypothesis is true.

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes q_{n} (greater than some threshold), the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for some prime $q_{n^{\prime}}>q_{n}$. Therefore, the Riemann hypothesis is true by Theorem 1.

4. Discussion

A prime gap is the difference between two successive prime numbers. The nth prime gap is the difference between the $(\mathrm{n}+1)$ st and the nth prime numbers, i.e. $q_{n+1}-q_{n}$. The Cramér's conjecture states that $q_{n+1}-q_{n}=O\left(\left(\log q_{n}\right)^{2}\right)$, where O is big O notation. This conjecture was formulated by the Swedish mathematician Harald Cramér in 1936. Nowadays, many mathematicians believe that the Cramér's conjecture is false [9]. The inequality $R\left(N_{n}\right)>R\left(N_{n+1}\right)$ is violated for infinitely many n 's under the assumption that the Cramér's conjecture is true [10, Proposition 4 pp. 5], [10, Proposition 7 pp. 7]. Using the Theorem 1, we deduce that the Cramér's conjecture is false. However, we consider this result only as a possible extension of this work since the mentioned reference [10] has never been published by a journal under peer-review.

5. Conclusion

The Riemann hypothesis has far-reaching implications for mathematics, with potential applications in cryptography, number theory, and even particle physics. Certainly, a proof of the hypothesis would not only provide a profound insight into the nature of prime numbers but also open up new avenues of research in various mathematical fields.

References

1. Connes, A. An Essay on the Riemann Hypothesis. Open problems in mathematics 2016, pp. 225-257. https://doi.org/10.1007/978-3-319-32162-2_5.
2. Kozma, L. Useful Inequalities. Kozma's Homepage, Useful inequalities cheat sheet. http://www.lkozma.net/inequalities_cheat_ sheet/ineq.pdf, 2011-2024. Accessed 27 March 2024.
3. Ayoub, R. Euler and the Zeta Function. The American Mathematical Monthly 1974, 81, 1067-1086. https:/ / doi.org/10.2307/2319041.
4. Solé, P.; Planat, M. Extreme values of the Dedekind Ψ function. Journal of Combinatorics and Number Theory 2011, 3, 33-38.
5. Hardy, G.H.; Littlewood, J.E. Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions. Acta mathematica 1914, 37, 193-239.
6. Hardy, G.H.; Littlewood, J.E. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 1916, 41, 119-196.
7. Nicolas, J.L. Petites valeurs de la fonction d'Euler. Journal of Number Theory 1983, 17, 375-388. https:/ / doi.org/10.1016/0022-314 X(83)90055-0.
8. Broughan, K., Euler's Totient Function. In Equivalents of the Riemann Hypothesis; Cambridge University Press, 2017; Vol. 1, Encyclopedia of Mathematics and its Applications, pp. 94-143. https:/ / doi.org/10.1017/9781108178228.007.
9. Visser, R. Large Gaps Between Primes. https:/ /warwick.ac.uk/fac/sci/maths/people/staff/visser/large_gaps_between_primes. pdf, 2020. Accessed 27 March 2024.
10. Choie, Y.; Planat, M.; Solé, P. On Nicolas criterion for the Riemann hypothesis. arXiv preprint arXiv:1012.3613 2010.

Short Biography of Authors

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article about the Riemann hypothesis. The article "Robin's criterion on divisibility" makes several significant contributions to the field of number theory. It provides a proof of the Robin inequality for a large class of integers, and it suggests new directions for research in the area of analytic number theory.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

