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ABSTRACT 

Assessing pavement condition is essential in any efforts to reduce future economic losses and 

improve the pavement performance. The resulting data are used as a record to evaluate pavement 

performance and assess their functionality and reliability. Traditional pavement condition assessment 

approaches rely on expert visual inspection and observational information along with testing using 

specialized equipment. However, these approaches are challenging because of the cost associated 

with assessment, safety issues, and the accessibility restrictions, especially after natural hazard 

events. This paper aims to develop an automated classification model to rapidly assess pavement 

condition by classifying pavement distresses using image classification that is based on 

Convolutional Neural Network (CNN) model. High-resolution aerial images representing alligator 

and longitudinal cracks for flexible pavements are collected using Unmanned Aerial Vehicle (UAV) 

images. The results of the developed model indicate an accuracy of 96.7% in classifying the two 

categories of pavement distress, while the use of UAV provides flexibility and manoeuvrability to 

capture the necessary data without risking personal safety and provides operational benefits in 

relatively lesser time. The methodology behind the developed model will help to reduce the need for 

on-site presence, increase safety, and assist emergency response managers in deciding the safest route 

to take after hurricane events. Additionally, application of the model will enable pavement engineers 

in rapidly assessing the pavement damage, aid in making quick decisions for road rehabilitation and 

recovery and devise a restoration or repair plan. 
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1 INTRODUCTION 

Transportation, more importantly, road networks, are significant components of infrastructure, 

which greatly impact the economic and social well-being of a region as people heavily depend on 

them for their daily activities. Asphalt (or flexible) pavements are a vital part of the transportation 

networks. Acquiring critical information on the pavement damage through pavement condition 

assessment is essential, especially after hurricane events. This information helps gain knowledge 

about the underlying physical phenomena, examines the impact of a natural hazard on the pavement, 

assesses and mitigates the damage, determines the need for external assistance (Lindell et al., 2003), 

and aids in rehabilitation and alternative hazard management practices. However, pavement condition 

assessment is a very challenging process because it is expensive, protracted, and laborious, especially 

after hurricane events when access to the disaster-struck area is restricted (Morton et al., 2011).  

Conventional ground-based approaches for pavement condition assessment mainly rely on 

expert human visual inspection and observational information along with testing using specialized 

equipment (Aksamit et al., 2011;Weinmann et al., 2004). These techniques are labor-intensive and 

time-consuming and require both field and laboratory testing, which may cause further damage to the 

pavements. Recent technological advancement in the form of Unmanned Aerial Vehicles (UAVs) has 

proven to aid in rapid data collection through aerial reconnaissance, provide emergency responses 

and humanitarian relief, facilitate aerial monitoring and damage evaluation (Estrada et al., 2019; 

Restas, 2015), especially for inaccessible areas (Floreano et al., 2015), and provide operational and 

economic benefits (Adams et al., 2010; Ezequiel et al., 2014).  
Several studies have used image classification approaches to assess pavement conditions. These 

studies used either images collected from UAVs or from high- resolution cameras. (Ersoz et al., 2017; 

Gopalakrishnan et al., 2017; Ibragimov et al., 2020; Li et al., 2019; Zakeri et al., 2016) . A general 

deficiency within current pavement condition assessment approaches is twofold 1) limitation of 

image classification applications to either specific distress (cracking) or binary distress (crack or no 

crack), and 2) relying on image pre-processing to extract relevant information for the model. The 

advancement in technology and computer vision has made several progresses to reduce human effort 

in various fields, including civil infrastructure, creating possibilities for automatic pavement distress 

detection and classification. Hence, to rapidly identify and classify pavement distresses, novel non-

traditional pavement condition assessment methods that use aerial images and are based on machine 

or deep learning classification algorithms are needed to be developed. In this paper, a convolutional 

neural network (CNN) is developed to classify two distress types of flexible pavements (i.e., alligator 

and longitudinal cracking) using aerial images collected from UAVs. The aerial images are captured 

using DJI Mavic Mini UAV and used in their raw form without pre-processing. Model performance 

is validating using a cross validation, and the model accuracy is expressed in terms of cross-

classification rate (CCR).   

2 METHODOLOGY 

2.1 Data 

The field data collection consisted of the acquisition of aerial images for pavement distress 

using Unmanned Aerial Vehicles (UAVs). Streets shown in Figure 1 with flexible pavements at East 

Carolina University (ECU) campus in Greenville, United States were selected with two types of 

distress (i.e., alligator and longitudinal cracks). The UAV flight was manually operated, and the 

recorded videos for the streets were captured in segments of single flights in one direction. Still, 
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images were then extracted from the collected videos and cropped to represent the distresses in post-

processing. The aerial images were manually labeled and classified into the two categories before 

inputting them into the model for training. 

 

Figure 1: Locations of surveyed streets with pavement distresses on ECU campus 
 The resulting dataset consists of 100 high-resolution aerial images of two types of pavement 

distress (i.e., alligator and longitudinal cracking) and is randomly divided into training and validation 

sets. The training set comprises 70% of the original dataset and is used to train the model, and the 

validation set comprises 30% of the original dataset and is used to validate the model. Table 1 shows 

the pavement distress categories and number of images for the training and validation sets.  

Table 1. Pavement distress categories and frequency of collected data for training and 

validation 

Categories Training Set Validation Set Total 

Alligator Cracks 35 15 50 

Longitudinal Cracks 35 15 50 

Total 70 30 100 

 

2.2 Model Training  

To assess the pavement condition, image classification approach named Convolutional Neural 

Network (CNN) (Xie et al., 2017) is used. CNN classifies images by perceiving information from the 

raw input data (i.e., aerial images) and then learning from the features of these data. CNNs are being 

widely used for structural and road damage detection, pavement crack analysis, and pavement distress 

detection (Abdeljaber et al., 2018; Nie et al., 2018; Wang et al., 2018; Wang et al., 2017). Two 

primary operations, named as convolutions and pooling operations, and three secondary operations, 

named as ReLU activation, normalization, and dropout operations, take place in the feature extraction 

part. The rationale behind the primary operations is extracting features of the input images, while the 

rationale behind the secondary operations is enhancing the network performance. For features with 

two categories, probabilities of being in one of the two categories are calculated using logistic 

regression. For the two categories of pavement distress, the probabilities of being in one of the two 

categories are calculated as  𝑝(𝜃) =
1

1+𝑒𝑥𝑝
𝜃𝑗

 , where; p is the probability associated with the class j 

during the observation n, and θ are the model parameters. 

Due to a sample size restriction, a transfer learning approach using AlexNet, a pre-trained 

CNNs, is adopted and modified to match the smaller dataset (Gopalakrishnan et al., 2017). All the 

feature layers are considered for the modified network except the last two layers of the network (i.e., 

final fully connected and the softmax layers), which are initially configured to classify 1,000 objects. 

Therefore, to enable detection of the new two categories, the properties of these layers are modified.  

The fully connected layer is modified with new learning rate factor, and the softmax layer is 
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customized using a logistic regression model. The input images are resized to 227227 to fit the 

network requirements and prevent model overfitting.  

The model is then trained using a stochastic descent gradient (SGD) algorithm with momentum. 

SGD updates the network parameter after each input during the training process to increase accuracy 

(Li et al., 2019). The mini-batch size is set to 35 images, which is number of images used per update 

during training. The maximum number of epochs , which is the number times that the learning 

algorithm will work through the entire training dataset, is set to 6, which is the number of complete 

updates of the entire dataset during training. The initial learning rate is set to 0.0001, and the feature 

layer is specified as drop 7. This layer extracts the distress features for the CNN model.  

 

 

2.3 Model Validation  

After the CNN model is trained, the predictive performance of the model is validated using 

cross-validation. Cross-validation is a technique to estimate the accuracy at which the model will 

perform in practice, illustrating the model's ability to predict new or unseen data. The validation set 

comprising 30% of the original dataset is used to perform the cross-validation. Model performance 

is assessed by finding the cross-classification rate (CCR), which indicates the percentage of pavement 

distress where the predicted distress class corresponds to the observed distress. The percentage of the 

correctly classified distress is calculated as 𝐶𝐶𝑅 =
∑ 𝐹𝑑𝑑
𝐷
𝑑=1

∑ ∑ 𝐹𝑐𝑑
𝐶
𝑐=1

𝐷
𝑑=1

, where 𝐹𝑑𝑑 are observations along the 

diagonal of the error matrix, and 𝐹𝑐𝑑 are all observations in the error matrix.  

 

3 RESULTS 

The CNN model was trained using a training set that counts for 70% of the original dataset. A 

randomly generated array of images for model training is shown in Figure 2 

 

 
 

Figure 2: Array of random images of pavement distress used for model training 

 

Results of model training are illustrated in Figure 3. The accuracy and loss during training are 

indicated with the blue and orange lines in the graph, respectively. The training accuracy gradually 
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increases (i.e., from approximately 58% to 97%) as the algorithm passes through the dataset, with 

each epoch updating the parameters and learned features. Simultaneously, the loss during the training 

is reduced over the epochs increases (i.e., from approximately 1.1 to 0.18). The dotted line represents 

the accuracy and loss based on the validation data set for which a similar trend is observed (i.e., an 

increase in accuracy and decrease in loss) over the subsequent epochs.  

 
 

Figure 3: Traces of training and validation accuracy (top) and loss (bottom) during model 

training 

 

The predictive performance of the CNN model was validated using a validation set that counts 

for 30% of the original dataset. The validation accuracy was represented every three iterations during 

the training in Figure 3. The overall model accuracy is represented by the confusion matrix (Table 2) 

and was found to be 96.7%, misclassifying only one image for a single class during model validation 

which indicated a satisfactory model performance.  

Table 2 Target vs. output model confusion matrix and CCR for the pavement classification model 

 Target Class  

Output Class 

 Alligator  Longitudinal  
CCR 

96.7% 
Alligator 14 (46.7%) 0 (0%) 

Longitudinal 1(3.3%) 15(50%) 

 

The output class refers to the prediction from the model, whereas the target class refers to the 

actual label of the input image. The diagonal from left to right represents the correctly classified 

quantity (the number on top) and the correctly classified percentage (the percentage on bottom) of 

the corresponding categories. 

 

4 CONCLUSION 

The major contribution includes the use of advanced technology (Unmanned Aerial Vehicle) 

to collect aerial imagery for flexible pavement distresses and development of a deep learning 

classification model (Convolutional Neural Network) for the classification of the two pavement 

distresses (alligator and longitudinal cracks) in MATLAB.   

The specific conclusions of this paper are: 

• Based on the overall model accuracy, the developed CNN classification model proved to be 

a successful approach for automated pavement distress classification.  

https://en.wikipedia.org/wiki/Convolutional_neural_network
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• The use of computer vision resulted in a reduction of human effort and time spent in the field 

for assessing pavement conditions.  

• The finding from this research will aid transportation engineers in rapidly assessing the 

damages to pavements and devise a restoration or repair plan for pavements in a quick, 

effective, and economic manner.  

• Application of the developed model will provide a platform to minimize the damage to the 

pavements, which is sometimes caused by traditional approaches for pavement assessment 

and make the examination process efficient and rapid.  

Collecting data for various distresses and types of pavements and using techniques such as 

LIDAR or multispectral camera and creating 3D models for pavement distresses will aid in more 

realistic and improved evaluation of the pavement distresses. Expanding the methodology to a road 

network level and geo-referencing the location of pavement distress will provide an exact record of 

distress locations, which enable emergency responders to locate the safe routes for relief, especially 

after natural hazards and aid in decision-making regarding immediate repair and maintenance. 
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