
EasyChair Preprint
№ 8026

Automated Test Production - Complement to
“Ad-hoc” Testing

José Gomes and Luiz Dias

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 22, 2022



JOURNAL OF SOFTWARE ENGINEERING, VOL. VV, NO. N, MMMMM 2021 1

Automated Test Production
Complement to “Ad-hoc” Testing

José Marcos Gomes ID , Luiz Alberto Vieira Dias ID ,

Abstract—A view on software testing, taken in a broad sense
and considered a important activity is presented. We discuss the
methods and techniques for applying tests and the reasons we
recognize make it difficult for industry to adopt the advances
observed in academia. We discuss some advances in the area
and briefly point out the approach we intend to follow in the
search for a solution.

Index Terms—Software Engineering; Software Testing; Auto-
mated Test Production; Generative Testing; Test Driven Devel-
opment.

I. MOTIVATION

Accepting that tests are important, but are not always imple-
mented or kept up to date during the lifetime of a program, we
conclude that nothing has changed since the introduction of the
Agile Manifesto earlier this century [1] which we reproduce
below and from which we highlight the passage “Software that
works rather than complete documentation”[1].

• “Individuals and interactions over processes
and tools”

• “Working software over comprehensive docu-
mentation”

• “Customer collaboration over contract negotia-
tion”

• “Responding to change over following a plan”
This view has come to become an important industry trend

[2]1, where face-to-face interactions are preferable to formal
communication processes and working programs are prefer-
able to comprehensive documentation, leaving the interpreta-
tion of the term “comprehensive” to each agile development
team to decide [4]. In fact the agile method suggests that all
documentation can be replaced by informal communication
with an emphasis on tacit rather than explicit knowledge [5].

On the other hand, the adoption of continuous integration
and continuous delivery processes and tools has been steadily
and unequivocally growing in both industry [6], [7] and open
source projects [8], which can to some extent be interpreted
as a denial of one of the principles of the Agile Manifesto:
“Individuals and interactions over processes and tools”, yet
this does not come as a relief to the fact that many see benefits
in building and maintaining formal models, but are not content

Gomes, J.M. and Dias, L.A.V. are with Instituto Tecnológico de
Aeronáutica.

This work was partially funded by the STAMPS project, a partnership
between the Instituto Tecnológico de Aeronáutica, the Fundação Casimiro
Montenegro Filho and Ecossistema Negócios Digitais

Manuscript received MMMMM DD, 2021; revised MMMMM DD, 2021.
1The 14o annual report STATEofAGILE from 2020 points out that 95% of

organizations practice agile software development methods. [3].

to build them as they believe they consume too much time
and resources, even believing in the slim chances of success
of projects that do not use some modeling [9].

The implications of this view for the construction and
maintenance of programs and the use and application of
development methods and tools are discussed.

II. TEST PRODUCTION METHODS

The present discussion is a contribution to the understanding
of how software testing fits into the present realities perceived
by both industry and academia, even if these realities, as
we shall see, do not correspond and will not converge. The
TDD (Test Driven Development) technique is widely cited and
recommended by the signers of the Agile Manifesto [10],
even though it is not part of the manifesto or its twelve
principles [1], so we can conclude that the IT (Information
Technology) industry at least recognizes the importance of
testing programs. The academia, on the other hand, perceives
program testing based on formal specifications as inevitable in
pioneering studies since the 1970s [11], [12], the foundations
for combining formal methods and program testing being
established and accepted, and it is up to the community to
put them into practice, optimize and extend them.

In general, we classify the tests in Formal: verifiable by
theoretical means or pure logic; and Empirical: verifiable
through observation or direct experience2.

A. Formal Testing

Hoare and Floyd introduced formal methods by introducing
the “Hoare calculus” for proving the correctness of a program
as well as the notions of pre and postconditions, invariants
and assertions. His ideas were gradually developed into the
current formal software engineering tools and techniques, such
as the OCL (Object Constraint Language) [15] used to specify
constraints in UML (Unified Modelling Language) diagrams.

According to Gaudel, for each and every specification
method, there is a notation. Depending on the method, spec-
ifications can include expressions in various logical forms,
used to write pre and postconditions, axioms of data types,
constraints, temporal properties. They can represent definitions
of process states, such as:

• CSP (Communicating Sequential Processes) [17]
• CCS (Calculus of Communicating Systems) [18]

2We take into account the formality of the test and not the conduct of the
test, as it is perfectly possible to conduct empirical tests by adopting formal
practices in their execution.

https://orcid.org/0000-0001-9223-7512
https://orcid.org/0000-0001-5958-8011


2 JOURNAL OF SOFTWARE ENGINEERING, VOL. VV, NO. N, MMMMM 2021

• LOTOS (Language Of Temporal Ordering Specification)
[19]

• Circus [20]
Or they can have annotated diagrams, such as:
• FSM (Finite State Machine) [21]
• LTS (Labelled Transition Systems) [22]
• Petri Networks [23]
• etc.
But there is more than a syntax. First, there is a formal

semantics, in terms of mathematical notions such as:
• Predicate transformers for pre and post conditions
• Classified sets and algebras for axiomatic definitions
• Various types of automata, traces, faults, divergences, for

process algebras
Second, there is a formal deduction system, making it

possible to perform proofs, or other checks (such as model
checking), or both. Thus, formal specifications can be analyzed
to guide the identification of appropriate test cases.

In addition to syntax, semantics, and the deduction system,
formal methods come with some relations between speci-
fications that formalize equivalence or correct step-by-step
development. Depending on the context, such relations are
called: refinement, conformance, or, in the case of formulas,
satisfiability, and are fundamental to test methods [16].

Gaudel concludes that model-based tests are tests of the
black-box3 type, where the internal organization of the pro-
gram under test is ignored and the strategy is based on
a description of the desired properties and behavior of the
program4, which may be formal or not, or in other words,
these methods target certain classes of faults and assume that
the program is exempt from other types and classes of faults
[16].

B. Empirical Tests

Without formal defined specifications a priori, which as
we have seen in “Motivation” is a trend in the industry,
we are left only with informal and empirical practice5 for
the verification and validation of the correctness of computer
program implementation6. One of the practices advocated by
supporters of agile methods is TDD, where tests are written
even before the program itself, but it does not show clear
benefits7 compared to the option of implementing the tests
after the program is ready [25]–[27], or it may be linked to
the fact that processes like TDD encourage stable and refined
steps of continuous improvement [28].

In the informal test, we have a relation of the hypothesis
to an observation statement, which is nothing more than a

3Method of validating functional and external aspects of a computer
application.

4We separate these tests into a category - that of Formal Tests - that is,
tests with a formal basis and that originate from models.

5Which generally means: verifiable by direct observation or experience
rather than by theory or pure logic, even though it is possible to adopt formal
practices during an empirical procedure.

6Nothing prevents that, even starting from a basis of formal specifications,
empirical tests be adopted in the verification of the implementation.

7The practice of TDD is advocated mainly because the alternative is to
have no tests at all after the program is ready[24].

proposition about the perceptible properties of some entity, set
of entities, or system, followed by a rule transmission where,
if the observation statement directly confirms the hypothesis,
then indirectly it confirms any of its logical consequences [29].

We can state that formal tests are cases of inductive infer-
ence8, and that in empirical tests we have a direct confirmation
of the hypothesis, baut without the soundness and precision
that formal methods9 guarantee [30] because of the ad hoc
attitude with which the informality of design10 of empirical
testing is practiced.

Just as using only Formal Methods we are unable to judge
all the possibilities of flaws that a program may present[31],
we can state that Empirical Methods are also so, and for
the same reasons, with the aggravating factor of introducing a
certain randomness11 to the process.

C. Static and Dynamic Analysis

This is a case where the test can either be defined a priori
(as in TDD or model-based) or a posteriori (as most informal
tests are done), and which according to Gaudel, would be the
answer to the lack of coverage of Formal Tests, but which
as we will see below, also present problems of application in
practice.

Static analysis was introduced in 1980 with the work “Meth-
ods to ensure the standardization of FORTRAN software.
[PFORT, DAVE, POLISH, and BRNANL, for analysis and
editing of codes, in FORTRAN for PDP-10 and IBM 360 and
370]” by Gaffney and Wooten [32]. The nature of verification
performed by static parsers include [33], [34] (but not limited
to only these) the following analyses:

• Layout and source code formatting
• Identifying language constructs known to be non-portable
• Identifying algorithm constructs known to be unsafe
• Use of variables or constants with suspect names and

contents (for example: PASSWORD = ’SECRET’)
• Detection of faults not considered by compilers
• Control flow analysis (detection of loops)
• Detect data usage in variables before a value has been

entered
• Detect value overloading in variables (assign a very large

value to a variable that only supports small values - in
some languages assign a DOUBLE value to a simple
INT variable)

• Detect memory overflow (leak) or the non-validation of
may memory overflow (assigning a very long constant to
a variable that supports a small memory size)

• Detect leakage of handles (the reference to the control
structure) of files and accesses to communication re-
sources

• Check permission to perform certain operations
• Ensuring the termination of a processing (or ensuring

indications that it will not terminate)

8We cannot call “formal tests” a case of “indirect confirmation”.
9Formal methods pursue qualitative and quantitative metrics of the sound-

ness and precision of the method itself.
10And as we said earlier, not necessarily of the actual conduct, which can

be perfectly formal.
11The observer’s objectivity and his judgment.



GOMES et al.: AUTOMATED TEST PRODUCTION 3

Classe Descrição

Lexical Analysis Lexical analysis is based on the grammatical structure of the language. It divides the program
into small parts that are compared to known fault libraries. Disregarding syntax, semantics and
interaction between subroutines, the incidence of false positives is high [42].

Type Inference It infers the type of variables and functions by the compiler or interpreter, and checks that
accesses to these variables and functions conform to predefined rules for the type [43].

Data Flow Analysis Refers to collecting semantic information from source code, and using algebraic method
determines the definition and use of variables at compile time. Starting from the execution flow
graph, a data flow analysis determines whether values in a program are flagged as potentially
vulnerable variables [44].

Rule Checking Checks the security of a program using pre-set rules [45]. Some rules, such as requiring execution
under elevated privilege, carry security implications [42] and are detected.

Constraints Analysis Divided between constraint generation and constraint resolution during the analysis process.
Constraint generation sets variable types or analyzes the constraint system between different
states of execution using predetermined rules; constraint resolution applies and resolves the
generated constraints [42].

Comparison of
Correction Snippets

Comparison of source or binary code snippets changed during the process of fixing flaws is
used to find known implementation gaps. After patches have been applied to a program, the
comparison serves to determine the location and causes of the vulnerability to which they apply
[42].

Symbolic Execution It represents program inputs as symbols instead of the actual data, and produces algebraic
expressions over the symbol in the implementation process. By the constraint solving method
symbolic execution can detect possible failures [46]–[49].

Abstract Interpretation It is a formal description of program analysis, which maps the program to abstract domains.
The technique requires completeness, which makes it impractical for very large programs, but
proves correct for all possible inputs [50], [51].

Proof of Theorems Semantic analysis of the program, which can solve infinite state system problems [52], [53].
First convert the program into a logical formula, then prove that the program is a valid theorem
using axioms and rules [42].

Model Verification Starting from formal models, such as state machines or directed graphs, it runs through them and
compares the model with the implementation to see if it matches the characteristics predefined
by the first [54].

TABLE I: Classification of Static Analyzers

• Ensure the order in which processing is performed and
terminated in a way that maintains the integrity of the
information (or ensure that it gives indications that the
information is not intact)

• Ensure that the process can be observed as deterministic12

(or ensure that there are indications that the process
cannot be observed as deterministic)

Many of these validations can be (and most often are) done
by compilers (when the language is compiled)[35]. Since the
purpose of the compiler is to generate executable code and not
to check for programming faults, and other classes of faults
can only be determined at runtime, such as memory overflow,
which only occurs if a very long constant is supplied during
program use,13, then specialized checkers such as Linters[36]
are adopted. Capable of detecting a wide range of faults,
including style (layout of source code), some use source code
annotations to achieve better problem detection, at the expense
of extra developer work [37]–[41].

Static analyzers can then be classified (see Table I) into
various types and capabilities, covering the detection of several
possible fault categories, from implementation to vulnerability
and security related.

The problem with static analyzers is the high false positive
rate (alerts that are not real problems), low understandability
of alerts and lack of automation in quick fixes for the large

12If an action is visible to the environment (i.e. if it performs data retrieval
or changes data), then we say it is observable. The order of execution of non-
priority rules will make a difference in the order of appearance of observable
actions.

13Although it is possible, as we can see later, to predict overflow using one
of the many static analysis methods available.

number of identified problems [55], such as: [56] code struc-
ture and [57] coding patterns, which could easily be fixed
using automatic refactoring techniques [58], but as we will
see below, the available tools are not in line with the latest
advances made by the scientific community.

Dynamic analysis, on the other hand, is in contrast to static
analysis and contemplates the forms best known and adopted
by the industry in the application of software testing [59] (see
Table II).

III. THE CHALLENGE OF TESTING

A. Software Quality

C. A. R. Hoare in the research “How did software get so
reliable without proof?” conducted in 1996 states that it was
reasonable to predict that the size and ambition of software
products would be severely limited by the lack of reliability
in their components. Estimates suggested, in its study, that
professionally written programs may contain between one and
ten correctable faults for every thousand lines of code; and any
one software fault, in principle, can have a spectacular effect
(or worse: a subtly misleading effect) on the behavior of the
entire system [61].

Hoare found at the time that the software patch problem
turned out to be far less serious than anticipated. An analysis
by Mackenzie [62] showed that of several thousand deaths
attributed to computer applications, only ten or so could be
explained by software crashes: most due to a few cases of
incorrect dosage calculations in radiation cancer treatment.
Similarly, predictions of collapse due to the size of computer
programs have been falsified by the continuous operation of



4 JOURNAL OF SOFTWARE ENGINEERING, VOL. VV, NO. N, MMMMM 2021

Classe Descrição

Unit Test The process of testing subprograms, subroutines, classes, or functional units within a program
to verify that there are no programming flaws [60, p. 486].

Integration Test Testing phase where the functional units are combined and tested as a group to assess whether
they worked properly in the complete system [60, p. 235].

System Testing Test conducted on multiple integrated systems to evaluate their ability to communicate with each
other and achieve general and specific integration requirements [60, p. 545].

Acceptance Test Testing of a system or functional unit generally performed by the buyer or user on-site after
installation of the software to make sure that the contractual requirements have been met [60,
p. 5].

TABLE II: Classification of Dynamic Tests

real-time software systems now measured in tens of millions
of lines of code and subject to thousands of updates per year.

In his review Hoare concludes that, despite appearances,
modern software engineering practice owes much to the the-
oretical concepts and ideals of early research in this field;
and that formalization and proof techniques have played an
essential role in the validation and progress of research.

Hoare concludes that the main factors for the apparent
success of the software are:

• Management - The most dramatic advances in the de-
livery of reliable software are directly attributable to a
wider recognition of the fact that the process of program
development can be predicted, planned, managed, and
controlled just as in any other branch of engineering.

• Test - Thorough testing is the cornerstone of reliability in
quality assurance and control in modern production engi-
neering. Tests are applied as early as possible throughout
the production line. They are rigorously designed to
maximize the probability of detecting failures and as
quickly as possible.

• Debugging - The secret of successful testing is that it
checks the quality of the process and methods by which
the code was produced. But there is an entirely different
and very common response to the discovery of a flaw
by testing: simply fix it and get on with the job. This is
known as debugging, by analogy with trying to get rid
of a mosquito infestation by killing the ones that bite -
much faster, cheaper and more satisfying than draining
the swamps in which they breed.

• Excess Engineering - The concept of safety factor is very
widespread in engineering. After calculating the worst
case load on a beam, the civil engineer will try to build it
at least twice as strong. In computing, a continuous drop
in the price of storage and increased processing power
has made it acceptable to add redundancies to reduce the
risk of software failures and a smaller scale of damage.
This leads to the same kind of over-engineering required
by law for bridge construction; and it is extremely effec-
tive, although there is no clear way to measure it by a
numerical factor.

• Programming Methodologies - Most of the measures
described so far for achieving reliability in software are
the same ones that have been proven equally effective
in all engineering disciplines. But the best general tech-
niques for management, quality control, and safety would
be totally useless by themselves; they are only effective

when there is a general understanding, a common con-
ceptual framework and terminology for discussing the
relationship between cause and effect, between action
and consequence. Research in programming methodology
has this goal: to establish a conceptual framework and
a theoretical basis to assist in the systematic derivation
and justification of each design decision by a rational
and explicable line of reasoning.

B. Perceived Quality when Using Software

According to the NIST (National Institute of Standards
and Technology) report, the estimated impact (in the United
States) of inadequate software testing infrastructure is 859
billions dollars and the potential cost savings from feasible
improvements is 822 billions dollars. Software users account
for a larger share of the total costs of inadequate infrastructure
(64 percent) compared to “viable” cost reductions (52 percent)
because a large share of user costs are due to prevention
activities. Whereas mitigation activities decrease proportion-
ally to the decrease in the number of failures, prevention
costs (such as redundant systems and investigating purchasing
decisions) are likely to persist, even if only a few errors are
expected. For software developers, the feasible cost savings
are approximately 50 percent of the total costs of inadequate
infrastructure. This reflects a more proportional decrease in
testing effort as testing resources and tools improve [63].

If we add up everything from minor inconveniences in
our daily lives to incalculable human and social damage
from software failures, the perception we have may be quite
different from that of Hoare in his study. This is because today
the penetration of computerized systems in our lives, with its
own challenges and opportunities due to the great convergence
of connected systems, interoperability and massive distribution
of information, can make the most insignificant failure from a
mere annoyance (such as losing access to your favorite music
playlist) to a catastrophe of global proportions (such as a
widespread failure in a worldwide satellite communications
system).

C. The Gap Between Industry and Scientific Advances

In 1996 Hoare noted that academic research gains in pro-
gramming methodologies took up to 20 years to be adopted by
industry as a sign of maturity and sanity - only in very specific
areas and for a brief period would it be justified to apply
the latest pure research advances to people’s everyday lives
[61]. This mismatch also has the benefit of providing adequate



GOMES et al.: AUTOMATED TEST PRODUCTION 5

Testers /
Employees
(millions)

Cost of inadequate testing
infrastructure

Potential cost reduction with feasible
improvements

Unit cost Total cost (million
US$)

Unit cost (million
US$)

Total Cost
(million US$)

Developers 0,302 69.945 21.155 34.964 10.575
Users

Industry 25,0 459 11.463 135 3.375
Services 74,1 362 26.858 112 8.299

Total 59.477 22.249

TABLE III: Estimated national impact in the US (adapted from [63])

Research Type Tests Time Defects

“A case study on pairwise testing application” [66] Ad-hoc 14,041 20h 10
Pairwise 68 4h 10

“A case study using testing technique for software as a service
(SaaS)” [67]

Manual 159 6h 3
Pairwise 17 1h 3

TABLE IV: Pairwise Application Research Results

planning of research and education as well as adequacy of the
installed park in the industry. The result of not following this
step is to adopt immature technologies and practices, with
unpredictable and undesirable results, with no skilled labor
available to apply it and make the necessary corrections when
failures occur14.

Another consequence of not observing the maturity of
cutting-edge research before its adoption in practice is the
fact that, paradoxically, mature and effective technologies
have not yet been adopted by industry, or when they are,
they are isolated cases that cause astonishment when they
present better results than those obtained with “state-of-the-
art technologies”. As an example we cite the adoption of the
pairwise technique for test generation. The mathematical the-
ory behind this technique has been around since the 1960s (see
DESIGN, TESTING AND ESTIMATION IN COMPLEX EX-
PERIMENTATION. I. EXPANSIBLE AND CONTRACTIBLE
FACTORIAL DESIGNS AND THE APPLICATION OF LIN-
EAR PROGRAMMING TO COMBINATORIAL PROBLEMS
publishied in 1965 [64]), the application in software testing
using pairwise was presented earlier this century (see Combi-
natorial group testing and its applications published in 2000
[65]). Recent research using these techniques (see Table IV)
shows promising numbers15:

With results like this, it was expected that the adoption of
the Pairwise technique to tests production in a cost-effective
way would be more welcomed by the industry16.

IV. PROMISES OF FORMAL DEVELOPMENT

A. Model Driven Development

One of the most promising approaches to computer program
development was MDD (Model Drive Development) and MDA
(Model Drive Architecture), where models are the primary

14If this scenario sounds like something that is happening in your industry,
then maybe this is the reason.

15We are aware that this sampling is neither meaningful nor representative,
but only illustrative from our point of view.

16Informally, in our contacts with software development practitioners and
testing experts and discussions about the practice of Pairwise have ranged
from ignorance of its existence to negative concepts and objections to its use
as ineffective.

artifacts and the others, such as code, are generated from
them [68]. The goal is to raise the level of abstraction, mak-
ing software development closer to solving the requirements
and problems outlined by its future users and making the
developer’s life simpler and easier [69] and providing mainly
automation of the process [70]. According to Yusuf, Chessel,
and Gardner and Swithinbank, Chessell, Gardner, et al., the
advantages of using MDD are:

• Increased developer productivity - because of automation
and focus on requirements analysis

• Ease of maintenance - many software was developed by
specialists who left the organization at some point, and
the technique would facilitate the evolution by retaining
the knowledge of these specialists

• Legacy reuse - can make it easy and feasible to migrate
old applications to new systems by applying the technique

• Adaptability - adding or modifying is made easy given
the automation already in place

• Consistency - every application will strictly follow the
pattern established by the tools

• Repetition - great return on investment if applied through-
out an organization

• Improved communication with sponsors - models are
easier to interpret than code

• Improved project communication - templates help to
understand the system design and assist in the discussion
about the system itself

• Domain knowledge capture - if there is sufficient docu-
mentation of the system, the organization’s knowledge is
maintained

• Long-term asset - high-level models and abstractions of
business solutions are immune to technological change

• Ability to postpone technology decisions - focus on solv-
ing business problems allows decisions on non-functional
problems to be left for a more opportune time

1) Problems with models: The biggest problem with using
models as the only source for software production is that trying
to solve an organizational problem from conceptual abstrac-
tions larger than the machine languages used by computers to
run programs implies a reduction of information [72, p. 90].



6 JOURNAL OF SOFTWARE ENGINEERING, VOL. VV, NO. N, MMMMM 2021

This information has to be supplanted by the MDD tool itself
by means of ready-made patterns, or from the developer by
means of extensions, and that leads, according to Hailpern and
Tarr [69] to other problems:

• Redundancy - because of the widespread use of ready-
made code examples

• Unbridled back and forth problems - to adjust the model
to conform to another system or module

• Moving complexity elsewhere rather than reducing it,
requiring even more specialization

2) Future of MDD: Standardization around UML and
tool interoperability around the XMI (XML Metadata Inter-
change)[73] standard can lead the open source community to
produce products that can leverage development using MDD.
Tools such as the Eclipse Modeling Framework (see https:
//www.eclipse.org/modeling/emf/) is an example of technology
with this kind of potential, however this leads us to another
conclusion.

3) Prospects: Our view is that, the main barrier to the
adoption of technologies like MDD, is how quickly this kind
of solution becomes irrelevant.

This irrelevance happens as the application and use of
information technologies and platforms evolve.

In the 1970s and 1980s, the adoption of CASE (Computer
Aided Software Engineering) tools, which we can say were
the precursors of MDD and MDA, was seen as a solution
to the same problems we have listed above. At that time
software development took place mainly on large computers,
the Mainframes. But at the same time personal computers
emerged, which at first were not seen as business tools, this
soon became an untruth with the release of the IBM PC in
1981[74] and since then software development has moved
from the older and more expensive platform (Mainframes) to
the more modern and cheaper (PCs (Personal Computers)),
and this became increasingly true with the adoption of local
networks like Novell in 1979 [75] with over 500.000 com-
puters installed in the world [76] at the time. This move-
ment continued, but once again changed focus. In 1989 Tim
Berners-Lee invented the World Wide Web, in 1993 we had the
release of the Mosaic browser by NCSA (National Center for
Supercomputing Applications), and in 1994 we had Netscape
Navigator created by the same developers, now in a private
company of the same name. Since then the development
has been turning to applications presented by the browsers
but running on corporate servers on the Internet. In early
2007 Apple introduces the iPhone, and at the end of the
following year Google introduces Android. Still supported
by the basic Internet infrastructure, application development
shifts focus once again to the new mobile platform. And
these days, some technologies are on the threshold, or at
least promise to be, of creating new platforms, and among
them we can mention Bitcoin (announced in 2009), virtual
reality (as used in airplane pilot training and introduced as a
consumer product in the 1990s by computer game companies
like Sega in 1991) and augmented reality (made popular in
games like Pokémon Go in 2016) and finally the renaissance of
Artificial Intelligence with the adoption of Machine Learning
techniques.

This rapid evolution and shift of focus to different plat-
forms, with different approaches that decisively impact the
architecture of the systems, databases, operating systems,
programming languages, forms of presentation, number of
application layers, and different APIs (Application Program-
ming Interfaces) employed to mediate an increasingly large
and complex network of interconnected products and services
makes it practically impossible to develop, train personnel, and
make them productive in the employment of any technology
with the nature of the MDDs tools, which end up being
relegated only to the role of modeling, right at the initial
requirements gathering phase, within a longer development
life cycle and without fulfilling the promise of covering it
completely that has been made since the 1970s and 1980s
by the CASE[77] tools, and which, as we saw earlier in this
introduction, often does not motivate software development
professionals and decision makers to bear the cost and time
required in their absortion and deployment.

V. CONCLUSIONS AND FUTURE WORK

If in one hand we have the promise of great advances and
improvements in the quality of software products by applying
techniques and tools developed by both academia and industry,
despite the expected (and even desirable) delay between the
development and adoption of these new technologies, we also
have on the other hand the adoption of practices by the
industry that make it difficult to incorporate certain mature
technologies, or even to put them to the test, due to the lack
of formalization that these practices prescribe in the name of
agility in producing products quickly and meeting the desires
of their customers.

Without the adoption of formal software development meth-
ods, it is not possible to continue and progress with the
advanced quality methods and methodologies developed in
academia.

The solution to this would be a back-and-forth approach,
whereby by reverse engineering and starting from the source
code of the computer programs, formal models are deduced
and then complemented by the developers in order to produce
the artifacts and inputs necessary for formal methods of quality
verification and validation. Automation and adoption of stan-
dards are key to keeping costs within acceptable parameters
for the industry.

This approach has its pros and cons. Using reverse engineer-
ing to produce formal models will cause loss of information
17, and this and other problems to come are what we set out
to address.

We intend to continue these studies with an analysis of the
State of the Art in the conception and production of computer
program tests, followed by ways of bringing together the
methods and practices adopted by industry and the techniques
developed by academia.

17In general, models have less information than the finished products that
originated from them

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/


GOMES et al.: AUTOMATED TEST PRODUCTION 7

ACRONYMS
API Application Programming Interface - page: 6

CASE Computer Aided Software Engineering -
page: 6

CCS Calculus of Communicating Systems -
page: 1

CSP Communicating Sequential Processes -
page: 1

FSM Finite State Machine - page: 2

IT Information Technology - page: 1

LOTOS Language Of Temporal Ordering Specifica-
tion - page: 2

LTS Labelled Transition Systems - page: 2

MDA Model Drive Architecture - pages: 5, 6
MDD Model Drive Development - pages: 5, 6

NCSA National Center for Supercomputing Appli-
cations - page: 6

NIST National Institute of Standards and Technol-
ogy - page: 4

OCL Object Constraint Language - page: 1

PC Personal Computer - page: 6

TDD Test Driven Development - pages: 1, 2

UML Unified Modelling Language - pages: 1, 6

XMI XML Metadata Interchange - page: 6
XML Extensible Markup Language - pages: 6, 7

REFERENCES

[1] K. Beck, M. Beedle, A. Van Bennekum, et al., “Mani-
festo for agile software development,” 2001.

[2] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can
distributed software development be agile?” Commu-
nications of the ACM, vol. 49, no. 10, pp. 41–46, 2006.

[3] V. One, “14th annual state of agile report,” Online:
https://stateofagile.com, 2020.

[4] R. Hoda, J. Noble, and S. Marshall, “How much is
just enough? some documentation patterns on agile
projects,” in Proceedings of the 15th European Confer-
ence on Pattern Languages of Programs, 2010, pp. 1–
13.

[5] A. Cockburn and J. Highsmith, “Agile software devel-
opment, the people factor,” Computer, vol. 34, no. 11,
pp. 131–133, 2001.

[6] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “De-
velopment and deployment at facebook,” IEEE Internet
Computing, vol. 17, no. 4, pp. 8–17, 2013.

[7] G. G. Claps, R. B. Svensson, and A. Aurum, “On the
journey to continuous deployment: Technical and social
challenges along the way,” Information and Software
technology, vol. 57, pp. 21–31, 2015.

[8] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D.
Dig, “Usage, costs, and benefits of continuous integra-
tion in open-source projects,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), IEEE, 2016, pp. 426–437.

[9] M. Canat, N. P. Català, A. Jourkovski, S. Petrov, M.
Wellme, and R. Lagerström, “Enterprise architecture
and agile development: Friends or foes?” In 2018 IEEE
22nd International Enterprise Distributed Object Com-
puting Workshop (EDOCW), IEEE, 2018, pp. 176–183.

[10] K. Beck, “Aim, fire [test-first coding],” IEEE Software,
vol. 18, no. 5, pp. 87–89, 2001.

[11] J. B. Goodenough and S. L. Gerhart, “Toward a theory
of test data selection,” IEEE Transactions on software
Engineering, no. 2, pp. 156–173, 1975.

[12] T. S. Chow, “Testing software design modeled by finite-
state machines,” IEEE transactions on software engi-
neering, no. 3, pp. 178–187, 1978.

[13] C. A. R. Hoare, “An axiomatic basis for computer
programming,” Communications of the ACM, vol. 12,
no. 10, pp. 576–580, 1969.

[14] R. W. Floyd, “Toward interactive design of correct
programs,” in Readings in artificial intelligence and
software engineering, Elsevier, 1986, pp. 331–334.

[15] J. B. Warmer and A. G. Kleppe, The Object Constraint
Language: Precise Modeling with UML. Addison Wes-
ley, 1999.

[16] M.-C. Gaudel, “Formal methods for software testing,”
in 2017 International Symposium on Theoretical As-
pects of Software Engineering (TASE), IEEE, 2017,
pp. 1–3.

[17] B. Roscoe, “The theory and practice of concurrency,”
1998.

[18] R. Milner, “Lectures on a calculus for communicating
systems,” in International Conference on Concurrency,
Springer, 1984, pp. 197–220.

[19] E. Brinksma, “An algebraic language for the specifica-
tion of the temporal order of events in services and
protocols,” in Proc. of the European Teleinformatics
Conference, Varese, Italy, 1983, pp. 533–542.

[20] M. de Almeida Xavier, “Definição e implementação
do sistema de tipos da linguagem circus,” M.S. thesis,
Universidade Federal de Pernambuco, 2006.

[21] M. L. Minsky, Computation. Prentice-Hall Englewood
Cliffs, 1967.

[22] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications,” ACM Transactions
on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[23] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia,
vol. 3, no. 4, p. 6477, 2008.



8 JOURNAL OF SOFTWARE ENGINEERING, VOL. VV, NO. N, MMMMM 2021

[24] B. George and L. Williams, “A structured experiment
of test-driven development,” Information and software
Technology, vol. 46, no. 5, pp. 337–342, 2004.

[25] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep,
and H. Erdogmus, “What do we know about test-driven
development?” IEEE software, vol. 27, no. 6, pp. 16–19,
2010.

[26] M. Josefsson, “Making architectural design phase
obsolete-tdd as a design method,” in Seminar course on
SQA in Agile Software Development Helsinki University
of Technology, 2004.

[27] L. Madeyski, “The impact of test-first programming
on branch coverage and mutation score indicator of
unit tests: An experiment,” Information and Software
Technology, vol. 52, no. 2, pp. 169–184, 2010.

[28] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N.
Juristo, “A dissection of the test-driven development
process: Does it really matter to test-first or to test-
last?” IEEE Transactions on Software Engineering,
vol. 43, no. 7, pp. 597–614, 2016.

[29] C. G. Hempel, “Studies in the logic of confirmation
(i.),” Mind, vol. 54, no. 213, pp. 1–26, 1945.

[30] G. ISO, “Information technology, open systems in-
terconnection, conformance testing methodology and
framework,” International Standard IS, vol. 9646, 1991.

[31] E. Dijkstra, “Structured programming,” in Classics in
software engineering, 1979, pp. 41–48.

[32] P. W. Gaffney and J. W. Wooten, “Methods to ensure the
standardization of fortran software. [pfort, dave, polish,
and brnanl, for analysis and editing of codes, in fortran
for pdp-10 and ibm 360 and 370],” May 1980.

[33] A. Aiken, J. M. Hellerstein, and J. Widom, “Static
analysis techniques for predicting the behavior of ac-
tive database rules,” ACM Transactions on Database
Systems (TODS), vol. 20, no. 1, pp. 3–41, 1995.

[34] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgen-
thaler, and J. Penix, “Using static analysis to find bugs,”
IEEE software, vol. 25, no. 5, pp. 22–29, 2008.

[35] R. P. Wilson and M. S. Lam, “Efficient context-sensitive
pointer analysis for c programs,” ACM Sigplan Notices,
vol. 30, no. 6, pp. 1–12, 1995.

[36] I. F. Darwin, Checking C Programs with lint. ” O’Reilly
Media, Inc.”, 1988.

[37] D. Evans, “Static detection of dynamic memory errors,”
ACM SIGPLAN Notices, vol. 31, no. 5, pp. 44–53, 1996.

[38] D. Jackson, “Aspect: Detecting bugs with abstract
dependences,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 4, no. 2,
pp. 109–145, 1995.

[39] D. L. Detlefs, “An overview of the extended static
checking system,” in Proceedings of The First Workshop
on Formal Methods in Software Practice, Citeseer,
1996, pp. 1–9.

[40] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe, “Extended static checking,” 1998.

[41] J. L. Jensen, M. E. Jørgensen, M. I. Schwartzbach, and
N. Klarlund, “Automatic verification of pointer pro-
grams using monadic second-order logic,” in Proceed-

ings of the ACM SIGPLAN 1997 conference on Pro-
gramming language design and implementation, 1997,
pp. 226–234.

[42] P. Li and B. Cui, “A comparative study on software
vulnerability static analysis techniques and tools,” in
2010 IEEE international conference on information the-
ory and information security, IEEE, 2010, pp. 521–524.

[43] C. Hankin and D. Le Métayer, “Deriving algorithms
from type inference systems: Application to strictness
analysis,” in Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, 1994, pp. 202–212.

[44] L. D. Fosdick and L. J. Osterweil, “Data flow anal-
ysis in software reliability,” ACM Computing Surveys
(CSUR), vol. 8, no. 3, pp. 305–330, 1976.

[45] F. Hayes-Roth, “Rule-based systems,” Communications
of the ACM, vol. 28, no. 9, pp. 921–932, 1985.

[46] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a
formal system for testing and debugging programs by
symbolic execution,” ACM SigPlan Notices, vol. 10,
no. 6, pp. 234–245, 1975.

[47] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–
394, 1976.

[48] W. E. Howden, “Experiments with a symbolic evalua-
tion system,” in Proceedings of the June 7-10, 1976,
national computer conference and exposition, 1976,
pp. 899–908.

[49] L. A. Clarke, “A program testing system,” in Proceed-
ings of the 1976 annual conference, 1976, pp. 488–491.

[50] S. Abramsky and C. Hankin, Abstract interpretation
of declarative languages. Prentice Hall Professional
Technical Reference, 1987.

[51] F. Nielson and N. Jones, “Abstract interpretation: A
semantics-based tool for program analysis,” Handbook
of logic in computer science, vol. 4, pp. 527–636, 1994.

[52] M. Davis, “The early history of automated deduction:
Dedicated to the memory of hao wang,” in Handbook
of Automated Reasoning, Elsevier, 2001, pp. 3–15.

[53] W. Bibel, “Early history and perspectives of automated
deduction,” in Annual Conference on Artificial Intelli-
gence, Springer, 2007, pp. 2–18.

[54] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled,
and H. Veith, Model checking. MIT press, 2018.

[55] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools
to find bugs?” In 2013 35th International Conference
on Software Engineering (ICSE), IEEE, 2013, pp. 672–
681.

[56] S. Panichella, V. Arnaoudova, M. Di Penta, and G.
Antoniol, “Would static analysis tools help develop-
ers with code reviews?” In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and
Reengineering (SANER), IEEE, 2015, pp. 161–170.

[57] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and
M. Di Penta, “How open source projects use static code
analysis tools in continuous integration pipelines,” in
2017 IEEE/ACM 14th International Conference on Min-



GOMES et al.: AUTOMATED TEST PRODUCTION 9

ing Software Repositories (MSR), IEEE, 2017, pp. 334–
344.

[58] M. Agnihotri and A. Chug, “A systematic literature
survey of software metrics, code smells and refactoring
techniques,” Journal of Information Processing Systems,
vol. 16, no. 4, pp. 915–934, 2020.

[59] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler,
The art of software testing. Wiley Online Library, 2004,
vol. 2.

[60] I. ( O. for Standardization), Iso/iec/ieee 24765: 2017
systems and software engineering-vocabulary, 2017.

[61] C. A. R. Hoare, “How did software get so reliable
without proof?” In International Symposium of Formal
Methods Europe, Springer, 1996, pp. 1–17.

[62] D. MacKenzie, “Computer-related accidental death:
An empirical exploration,” Science and Public Policy,
vol. 21, no. 4, pp. 233–248, 1994.

[63] S. Planning, “The economic impacts of inadequate
infrastructure for software testing,” National Institute
of Standards and Technology, 2002.

[64] S. R. Webb, “Design, testing and estimation in complex
experimentation. i. expansible and contractible factorial
designs and the application of linear programming to
combinatorial problems,” ROCKETDYNE CANOGA
PARK CA, Tech. Rep., 1965.

[65] D. Du, F. K. Hwang, and F. Hwang, Combinatorial
group testing and its applications. World Scientific,
2000, vol. 12.

[66] C. B. Monteiro, L. A. V. Dias, and A. M. da Cunha,
“A case study on pairwise testing application,” in 2014
11th International Conference on Information Technol-
ogy: New Generations, IEEE, 2014, pp. 639–640.

[67] A. C. da Silva, L. R. Correa, L. A. V. Dias, and
A. M. da Cunha, “A case study using testing tech-
nique for software as a service (saas),” in 2015 12th
International Conference on Information Technology-
New Generations, IEEE, 2015, pp. 761–762.

[68] L. Yusuf, M. Chessel, and T. Gardner, “Implement
model-driven development to increase the business
value of your it system,” Retrieved January, vol. 29,
p. 2008, 2006.

[69] B. Hailpern and P. Tarr, “Model-driven development:
The good, the bad, and the ugly,” IBM systems journal,
vol. 45, no. 3, pp. 451–461, 2006.

[70] R. Jacobs, ARCast with Ron Jacobs, English. [Online].
Available: https://channel9.msdn.com/Shows/ARCast+
with+Ron+Jacobs/ARCast-5 (visited on 11/19/2020).

[71] P. Swithinbank, M. Chessell, T. Gardner, et al., Pat-
terns: Model-Driven Development Using IBM Rational
Software Architect. IBM, International Technical Sup-
port Organization, 2005.

[72] S. K. Langer, Feeling and form. Routledge and Kegan
Paul London, 1953, vol. 3.

[73] O. M. Group, XML Metadata Interchange, English,
Technology Standards Consortium, Jun. 2015. [Online].
Available: https : / / www. omg . org / spec / XMI / About -
XMI/.

[74] M. J. Miller, Why the IBM PC had an Open Architec-
ture, English, News Site, publisher: Ziff Davis, Aug.
2011. [Online]. Available: https : / / www. pcmag . com /
archive/why- the- ibm- pc- had- an- open- architecture-
286065.

[75] L. Proven, How the clammy claws of Novell NetWare
were torn from today’s networks, English, News Site,
publisher: Situation Publishing, Jul. 2013. [Online].
Available: https : / /www. theregister.com/2013/07/16/
netware 4 anniversary/.

[76] R. Payne and K. Manweiler, CCIE: Cisco Certified In-
ternetwork Expert Study Guide: Routing and Switching.
John Wiley & Sons, 2006.

[77] V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and
G. Radin, “Ad/cycle strategy and architecture,” IBM
Systems Journal, vol. 29, no. 2, pp. 170–188, 1990.

https://channel9.msdn.com/Shows/ARCast+with+Ron+Jacobs/ARCast-5
https://channel9.msdn.com/Shows/ARCast+with+Ron+Jacobs/ARCast-5
https://www.omg.org/spec/XMI/About-XMI/
https://www.omg.org/spec/XMI/About-XMI/
https://www.pcmag.com/archive/why-the-ibm-pc-had-an-open-architecture-286065
https://www.pcmag.com/archive/why-the-ibm-pc-had-an-open-architecture-286065
https://www.pcmag.com/archive/why-the-ibm-pc-had-an-open-architecture-286065
https://www.theregister.com/2013/07/16/netware_4_anniversary/
https://www.theregister.com/2013/07/16/netware_4_anniversary/

	Motivation
	Test Production Methods
	Formal Testing
	Empirical Tests
	Static and Dynamic Analysis

	The Challenge of Testing
	Software Quality
	Perceived Quality when Using Software
	The Gap Between Industry and Scientific Advances

	Promises of Formal Development
	Model Driven Development
	Problems with models
	Future of MDD
	Prospects


	Conclusions and Future Work
	Acronyms

