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Abstract—Maritime authorities play a key role in ensuring 
the safety and security of shipping lanes and ports. The port 
state control mechanism enables these authorities to physically 
verify suspect vessels (e.g., involved in smuggling or piracy 
events), but choosing the most relevant vessels to be inspected 
represents a challenging task. This decision can be enhanced by 
AI-powered systems that analyse large amounts of data, identify 
patterns and report all observed discrepancies. This paper 
presents a statistical analysis on the temporal durations of four 
types of naval statuses: sailing, docked in port, waiting at anchor 
and not transmitting AIS data. These durations were extracted 
from the historical activity of different classes of vessels that 
passed the Black Sea region (Romanian Exclusive Economic 
Zone) in 2022. Probability density functions were built for these 
vessels and all statuses’ durations were fitted into known 
parametric distributions. Finally, the paper shows the results of 
multiple outlier detection algorithms that searched for 
anomalous data in a multivariate manner. 
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I. INTRODUCTION 
The maritime transportation sector plays a vital role in 

facilitating international trade and the global economy, and its 
importance will continue to grow. Consequently, the 
increasing complexity of socio-economic activities in the 
maritime domain has made it the scenario of numerous 
activities with high impact on safety, security, economy and 
the environment. Nowadays, the shipping industry faces a 
wide range of risks, one threat being represented by smuggling 
events [1]. 

To combat smuggling in the maritime domain, countries 
and international organizations have implemented a range of 
measures, including maritime surveillance, intelligence-
gathering, interdiction efforts, or the use of advanced 
technology such as satellite imagery [1]. Collaboration 
between countries and organizations is also important and it is 
present in the form of different regional Memorandums of 
Understanding (MoU) and international blacklists for vessels. 
For example, Paris MoU and Black Sea MoU are two 
examples of regional agreements that include provisions for 
inspecting vessels under the port state control (PSC) 
mechanism [2], [3]. Another example is given by the United 
States Office of Foreign Affairs (U.S. OFAC) list that reveals 
vessels under economic sanctions because of their 
involvement in the proliferation of weapons of mass 
destruction (WMD) [4]. 

To support the fair usage of maritime transportation, the 
research community has also studied the potential usage of 
artificial intelligence (AI) and machine learning (ML) for 
ensuring safety and security in shipping operations. 
Consequently, modern maritime surveillance systems have 

been upgraded with advanced and automated subsystems. 
Most of them can analyse data from multiple sources in real-
time, and trigger alerts when anomalies are detected [5]. 

Most proposed methods imply the analysis of vessels’ 
attributes and associated kinematic data. In their paper, Tu et 
al. provide a comprehensive survey regarding the early 
identification of anomalous activities. The authors reveal 
several relevant aspects in which maritime related data could 
be exploited in specific domain tasks such as: maritime traffic 
anomaly detection, route estimation, collision prediction and 
path planning. They classify anomalies into three types: 
related to position, time and speed; and provide a brief 
description for multiple identified methods, such as: Fuzzy 
ARTMAP, Holst Model, Potential Field Method, Trajectory 
Cluster Modelling, Gaussian Processes, Bayesian Networks, 
etc. [6]. Martineau et. al. also classifies maritime anomaly 
detection methods into three categories: statistical methods, 
neural networks and machine learning methods. Models’ 
learning characteristics are classified into geographical (map-
dependent) and parametrical data (map-independent) [5]. 

Most of the vessels’ available data are unlabeled for the 
abnormality class. In consequence, the most common methods 
that had been studied are represented by statistical algorithms, 
such as: stochastic parametric methods (e.g., Gaussian 
Mixture Models), stochastic non-parametric methods (e.g., 
Kernel Density Estimation, Gaussian Processes) or clustering 
algorithms (e.g., K-means, Density-Based Spatial Clustering 
of Applications with Noise) [6]. For example, Wu et. al. 
investigated vessels’ travel behavior in different hotspots and 
discovered that the speed distribution of these vessels had a 
Gaussian shape [7]. 

Even though multiple maritime agencies possess relevant 
data and information, accessing it represents a serious 
challenge. Restricted access to such informational resources is 
one of the biggest difficulties into conducting research for 
maritime anomaly detection. Konrad Wolsing et al. express 
that the lack of a common dataset heavily reduces 
transparency, hinders the replication of results, and makes it 
particularly impossible to evaluate and compare the 
effectiveness of different approaches in a sound and scientific 
manner [8]. The authors also notice that there is no established 
dataset to include labelled anomalies as ground truth and many 
researchers resort to simulating their own anomalies by 
virtually creating tracks or by simulating real vessels with 
rigid-hulled inflatable vehicles.  

The following sections propose a different stochastic 
approach for detecting abnormal utilization profiles. This 
method is based on a stochastic temporal analysis of vessels’ 
navigational statuses. Its scope is to find univariate and 
multivariate outliers by fitting data into multiple parametric 
distributions and by utilizing ensembles of known outlier 



detection algorithms. The main advantage of this method is 
that it relies on analyzing data from public web platforms. 

II. THEORY ON OUTLIER DETECTION 
In machine learning, outlier detection (OD) identifies 

anomalous records in various datasets. Based on context, 
these anomalies may refer to observations from samples that 
differ from the general distributions of a population, 
measurements error, population variability or execution error 
[9]. Since early implementation, OD algorithms have been 
utilized to detect inconsistent observations in applications, 
such as fraud detection, quality control, healthcare, finance or 
cybersecurity [10]. The following subsections briefly 
describe the most common types and settings for OD 
algorithms based on the supervision mode, input data and 
working principle. 

A. Working principle 
Based on their working principle, Xi divides OD 

algorithms into classical and spatial ones. The most common 
approaches are presented in Table I [11].  

TABLE I.  OD ALGORITHMS’ CLASSIFICATION 

Type Derived 
from Description and examples 

Classical 
OD 

Statistics 
Identify data points that are 
significantly different from the 
expected distribution of the data. 

Distances 

Use a distance measure to 
identify data points that are 
farther away from the other data 
points than expected. 

Deviations 

Identify outliers by using 
statistical measures such as 
mean, median, and standard 
deviation. 

Densities 

Considering the density of the 
points in the feature space and 
locate outliers in low-density 
regions. 

Spatial 
OD 

Space  

Consider the spatial distribution 
of the points in the feature space 
and locate outliers farther away 
from other points. 

Graphs 

Construct a graph from the data 
points and identify outliers that 
have unusual or abnormal 
relationships with other points in 
the dataset. 

B. Supervision modes 
Based on the availability of abnormality data labels, the 

OD algorithms can operate in three modes [12]: 

1) Unsupervised models: often present a dataset with n 
samples 𝑋 = {𝑥!, … , 𝑥"} ∈ 	ℝ"	×	% , where each sample 𝑥& 
has d features. Given this setting, the goal is to train a model 
M to output an anomaly score	𝑂 = 𝑀(𝑋) 	∈ 	ℝ"	×	!, where 
higher values demote the highest abnormalities scores. 

2) Supervised models: possess the binary ground truth 
labels of X, i.e., 𝑦 ∈ ℝ"	×	! .  These models M are first trained 

on {𝑋, 𝑦}  and then return anomaly scores for                              
𝑂'()' = 𝑀(𝑋'()'). 

3) Semi-supervised models: only possess partial label 
information 𝑦* ∈ 𝑦. These models are trained on the entire 
feature space X with partial labels 𝑦*, i.e., {𝑋, 𝑦*}, and then 
output 𝑂'()' = 𝑀(𝑋'()'). 

Also, based on the level of generalization, OD algorithm 
can operate in either inductive or transductive settings. In the 
first case, a model learns from a training dataset and use that 
model to identify outliers in new, unseen data. In the latter 
case, a model identifies outliers in a specific dataset without 
the scope of generalizing to new data.  

C. Input data 
Depending on dataset’s dimensionality, two types of OD 

algorithms are present: 

1) Univariate OD: identifies unusual observations in 
datasets by considering each feature independently. Some 
common algorithms and methods are represented by 
univariate statistical analysis, one class Support Vector 
Machine (SVM), Isolation Forest, calculus of Z-score, 
median absolute values (MAD) or interquartile range, etc. 

2) Multivariate OD: identifies unusual observations in 
datasets by considering the relationship between multiple 
features. Some popular methods are represented by: 
clustering, Multivariate Local Outlier Factor (MLOF), 
Principal Component Analysis (PCA), calculus of 
Mahalanobis, Minkowski or Chebyshev distances, etc. 

Additionally, local OD algorithms search for outliers 
within a specific subset or neighbourhood of the data, while 
global OD algorithms identifying data points that are unusual 
in the entire dataset. 

III. RESEARCH METHODOLOGY 

A. Data collection 
The Automatic Identification System (AIS) represents a 

maritime navigation safety communications system that is 
utilized onboard naval platforms and by different maritime 
agencies. AIS allows exchanges of continuous data related to 
vessels’ live location, course, speed, maritime mobile service 
identity (MMSI) code, International Maritime Organization 
(IMO) number, navigation statuses, etc. [13]. 

For the present study, data from multiple AIS transponders 
were collected over one year, in collaboration with local 
maritime authorities [14]. These transponders were utilized to 
monitor the maritime traffic in the Black Sea region, 
especially in Romania’s Exclusive Economic Zone (EEZ). 
Next, by decoding these NMEA-0183 formatted messages, all 
MMSI codes were extracted for those vessels that transited the 
region in 2022. Subsequently, a web-scrapping module was 
implemented to extract additional data from multiple web 
platforms (e.g., Marine Traffic – Professional Plan, Fleet Mon, 
Vessel Finder). The extracted data included vessels’ subclass, 
length, tonnage, total travelled distance and utilization profile. 
All utilization profiles data included annual durations of four 
different navigational statuses. These statuses referred to the 
following types of situations: 



a) Sailing (underway): the total duration of 
transporting cargo or passengers over the sea. 

b) Docked (in port): the total duration of being 
stationary in a harbor for activities such as: manipulating 
cargo onboard, maintenance or repair. 

c) Waiting (at anchor): the total duration of being 
stationary outside harbors and held in place by an anchor. 

d) Signal Lost (inactive AIS): the total duration in 
which vessels do not transmit data over AIS radio channels. 

B. Statistical analysis and distributions’ fitting 
During 2022, approx. 4250 unique vessels’ MMSI 

identities were recorded in Romania’s EEZ. After utilizing a 
web-scraping module, the subclass field was available for 
approx. 3000 vessels. Of these, 700 vessels had been further 
investigated and classified as having low, medium or high-
risk indexes. This task was done manually and was based on 
specialized operators' expertise. These operators applied 
internal procedures and classified vessels based on their 
insolvent in suspect activities, such as: 

1) Unusual activities: MMSI manipulation, IMO code 
discrepancy, first-time visiting harbors, loitering, drifting, 
course deviations, turning off AIS, meeting at sea with other 
vessels, suspicious cargo, port calls in disputed areas, etc. 

2) Managerial changes: identity change (MMSI code or 
call sign), ownership change, registering different flags of 
convenience (flag hopping). 

3) International sanctions: vessels being mentioned in 
different blacklists, sanctioned vessel, company or country. 

These 700 vessels represented the most frequent 
subclasses of observed vessels (e.g., bulk carriers, container 
vessels, tugs, oil product tankers) and their utilization profile 
durations was extracted from the available web platforms. 
After that, a statistical analysis and a distribution fitting 
application were built upon the following Python 3.9 libraries: 
NumPy, Pandas, Matplotlib, Seaborn and Fitter. 

The median 𝑚𝑑") , mean values 𝜇")  (1) and standard 
deviations σ") (2) were calculated for each naval status (ns) 
that was recorded for all subclasses’ datasets. 

 𝜇") =	
+!"(-#$)
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, where 𝑋&  represents the selected subclass dataset,  𝑥") 
represents all records of a naval status durations, and n is the 
number of records in 𝑋&. 

The next step involved plotting the probability density 
functions (PDF) for every combination of naval statuses and 
vessels’ subclasses. The PDF representations of four different 
vessels’ subclasses are presented in Figure 1. This step was 
done by applying a Kernel Density Estimation (KDE) function 
𝑓(𝑥). It placed a kernel function 𝜙 on each observation 𝑥& of 
the training set of size n (3). Each kernel was parameterized 
by the width of an adaptive window h. The 𝜙 chosen kernel 
was the Gaussian one (4). 
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Fig. 1. PDF representations of four subclasses’ utilization profiles 

After visually inspecting the KDE distribution, it was 
observed that, excepting the tug vessels class, all other naval 
statuses’ durations had the approximate shape of a known 
parametric distribution. It must be mentioned that there were 
no tug vessels to be recorded at anchor. Also, for all other tugs’ 
statuses, the recorded datapoints were disposed evenly around 
the central tendency. 

 All other vessels' empirical data distributions were 
compared with multiple theoretical distributions (e.g., 
Gaussian, Log-normal, Gamma, Rayleigh, Weibull). The 
Summed Squared Error (SSE) (5) was utilized as a criterion 
for choosing the best-fitted parametrical distributions: 

 𝑆𝑆𝐸 =	∑ (𝑝-" − 𝑓-")
/"

&3!  (5) 

, where n is the total number of captured records, 𝑝-" is the 
empirical probability density for all 𝑥& records and 𝑓-" is the 
predicted density value that was extracted from the 
distribution fit. 

The statistical methodology described above was inspired 
by a practical procedure used to identify anomalous maritime 
utilization profiles. Specifically, operators often utilize a 
univariate technique that involves selecting the top and 
bottom 5% of the available data (especially waiting status 
durations and AIS dark activities durations). The use of 
parametrical models could facilitate the development of a 
standardized methodology for understanding maritime 
patterns. For example, these models could aid in identifying 
anomalous data points that have a cumulative density 
function (CDF) below certain threshold.  

C. Multivariate OD implementations 
This study's last part consisted of comparing the 

performance of multiple OD algorithms (e.g., KNN, MCD, 
LOF, Isolation Forest, PCA). These algorithms analyzed all 
naval statuses in a multivariate manner for each category of 
vessels. For this, the open-source PyOD library was chosen. 
This library provides a wide range of unsupervised and 
supervised outlier detection algorithms, including both 
traditional and recent methods [15]. The experimental 
evaluation was conducted using standard implementations of 



all tested algorithms, and the sole hyperparameter that was 
varied was the contamination parameter c. It had values 
ranging from 0.01 to 0.5 with an increment step s = 0.01. K-
nearest neighbors (KNN) and OCSVM samples are presented 
in Figure 2 and Figure 3 for comparison (c = 0.1).  

 
Fig. 2. KNN results for bulk carriers (left) and oil tankers (right) 

 

Fig. 3. OCSVM results for bulk carriers (left) and oil tankers (right) 

A preliminary comparison was performed after Receiver 
Operating Characteristic (ROC) curves were built for all OD 
algorithms (see Figure 4). This was done under the naïve 
assumption that there is a correlation between the outlines 
score of all naval statuses’ datasets and the vessels’ associated 
risk (labeled data based on human expertise). The ROC curves 
plotted the true positive rates (TPR) against the false positive 
rates (FPR) at various c contamination levels (0.01 ≤ c ≤ 0.50). 
The TPR (6)  represented the proportion of true positive cases 
correctly identified by the classifiers, while the FPR (7) 
represented the proportion of false positive cases incorrectly 
identified as true. 

 𝑇𝑃𝑅 =	 78
789:;

	 (6) 

 𝐹𝑃𝑅 =	 :8
:897;

	 (7) 

, where TP, FN, FP, TN represent the true positive, false 
negative, false positive and true negative rates between the 
OD algorithms results and the vessels’ risk labels. 

After that, the performances of all these binary classifiers 
were measured by calculating the Area Under the Curve 
(AUC) for each ROC. A higher AUC value indicated that the 
classifier was able to better distinguish between risk classes 
(normal and suspect vessels).  

The next step involved selecting all ROC points that had a 
TPR score greater than 0.5. For those points, ratios between 
TPR and FPR were calculated. It was observed that a 
contamination level of c = 0.35 represents a good setting 

where most algorithms recorded higher TPR/FPR ratios 
(average r ≈ 1.6) and TPM scorers greater than 0.5. 

 
Fig. 4. ROC curve samples of multiple OD algorithms 

After that, two ensemble classifiers were built. The first 
one combined the results of all individual OD algorithms 
(”Ensemble_all_Clf”) while the second one utilized the top 
five algorithms (”Ensemble_5_Clf”), based on their AUC 
score. Ensemble learning uses combinations of various base 
estimators and creates more reliable and robust results than 
their individual counterparts [16], [17]. The built ensembles 
were composed of 𝑛! = 15 and 𝑛/ = 5 different estimators and 
computed the final anomaly score 𝐴) (8) for each category of 
vessels. This was done by averaging the binary scores 𝑠& of all 
selected estimators. A threshold t = 0.5 was picked for 
selecting the vessels with the highest anomaly scores (𝐴) > 𝑡) 
for their class. 
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In the next stage, all OD algorithms were tested by 
performing Monte Carlo simulations. This was done by 
random selecting anomalous vessels (the outliers in 
utilization profiles’ datasets) and by counting how many of 
them were also classified by experts as suspect (TP - true 
positives). The selections were performed incrementally at 
various rates, between 1 and 200 vessels. Finally, the overall 
performance increase over random change was calculated for 
each OD algorithm.  

IV. RESULTS 
All previous steps were applied to describe the behavioural 

profiles of multiple classes of vessels. This involved the 
temporal analysis of four complementary maritime behaviours 
in univariate (distributions fitting) and multivariate (ensemble 
OD) manners. 

Table II highlights the results of fitting the durations of 
four types of maritime activities for the six main classes of 
observed vessels. Most activities obtained an SSE score lower 
than 102/  and were fitted into a known parametric 
distribution. Figure 5 displays a graphical representation of 
fitting “in port” and “at anchor” activities for chemical 
tankers.  



 
Fig. 5. Fittings “in port” (left) and “at anchor” (right) distributions for 
chemical tankers 

 

Fig. 6. Fittings “sailing” (left) and “signal lost” (right) distributions for 
chemical tankers 

TABLE II.  BEST FITTED DISTRIBUTIONS 

Subclass 

NS md 
(≈) 

𝝁 
(≈) 

𝛔 
(≈) 

Best 
fitted 

distributi
on 

SSE 
score 
(≈) 

(No. of 
records) 

Bulk 
Carriers 

(100) 

Sailing 118 120 49 mielke 0.002 
In port 115 115 36 dgamma 0.003 

Waiting 87 96 50 exponnor
m 0.002 

AIS off 10 34 57 lomax 0.001 

Container 
Vessels 
(101) 

Sailing 173 168 44 dgamma 0.003 
In port 121 126 32 dgamma 0.003 

Waiting 60 64 29 skewnorm 0.004 

AIS off 3 8 11 weibull_
min 0.096 

General 
Cargo 
(100) 

Sailing 115 120 43 dgamma 0.003 

In port 104 111 41 exponnor
m 0.003 

Waiting 104 104 37 burr 0.004 
AIS off 15 29 41 burr12 0.001 

Crude 
Oil 

Tanker 
(78) 

Sailing 194 190 39 dgamma 0.001 
In port 46 47 21 loglaplace 0.007 

Waiting 108 112 37 loglaplace 0.002 

AIS off 9 16 22 halfgenno
rm 0.003 

Oil 
Products 
Tanker 

(82) 

Sailing 122 118 47 dgamma 0.003 

In port 66 67 46 tukeylam
bda 0.001 

Waiting 135 134 48 dgamma 0.002 
AIS off 29 46 56 fatiguelife 0.001 

Chemical 
tanker 
(100) 

Sailing 155 151 45 beta 0.003 
In port 100 104 30 dgamma 0.002 

Waiting 88 90 38 dgamma 0.002 
AIS off 7 20 48 invgauss 0.001 

 
Regarding the operator’s analysis, after eliminating the 

tugs’ class, 637 vessels were classified as follow: 120 
suspicious (74 – high and 46 – moderate risk) and 517 – low 
risk vessels. These classifications were later used as labels for 
preliminary testing the performance of multiple OD 
classifiers. Table III highlights a preliminary ranking of all 
implemented OD algorithms, based on their AUC scores. 

Also, TPR and FPR scores are represented for a 
contamination levels c = 0.35.  

TABLE III.  OD ALGORITHMS RANKING BASED ON AUC SCORE 

OD Algorithms TPR score 
(c = 0.35) 

FPR score 
(c = 0.35) AUC score 

KNN 0.525 0.309 0.185 
IForest 0.525 0.309 0.182 
ROD 0.525 0.309 0.178 
PCA 0.533 0.307 0.178 
COF 0.508 0.311 0.178 

ABOD 0.525 0.321 0.178 
MCD 0.508 0.313 0.175 
LODA 0.508 0.313 0.173 
LOF 0.508 0.313 0.173 

CBLOF 0.475 0.321 0.172 
ECOD 0.491 0.317 0.170 
SOS 0.4 0.338 0.144 

DeepSVDD 0.425 0.332 0.141 
ALAD 0.291 0.357 0.128 

OCSVM 0.358 0.292 0.117 
 
KNN, IForest and ROD had the highest scores while 

DeepSVDD, ALAD and OCSVM registered the lowest 
performances. 

After performing the Monte Carlo simulations, 
”Ensemble_all_Clf” was designated to be the best classifier 
in the naval statuses’ datasets. When configured to a 
contamination level of c = 0.35, ”Ensemble_all_Clf” 
registered the following results in detecting suspicious 
vessels: TP - 61, FP - 147, TN - 370, FN - 59, TPR – 0.5, FPR 
– 0.28 and FPR/FPR ratio – 1.78. The next best performances 
were obtained by LODA, PCA, KNN, ROD, ABOD and 
”Ensemble_5_Clf”. Figure 6 and Figure 7 display the 
performances of several OD algorithms, at various pickup 
rates. These performances are represented by the total 
number of suspect vessels discoveries (true positives) and the 
overall performance over random chance pickup. 

 

 
Fig. 7. Average number of suspect vessels being discovered 

A public GitHub repository provides access to all 
datasets used in the project and its source code. The 
repository was created to enable other researchers and 
practitioners to replicate and investigate the research results. 
The link to the repository is provided below: 
https://github.com/Navy-APh/OD-for-anomalous-maritime-
profiles. 



 
Fig. 8. OD algorithms’ improvement over random chance pickup 

At first glance, the OD algorithms showed a significant 
improvement over randomly selecting vessels 
(approximately 50% better on average). The results support 
the naïve assumption that there is a correlation between the 
calculated outlines score and the associated risk of vessels. 
However, it should be noted that the calculation of vessels' 
risk was based on specific internal procedures that may differ 
from those used by other maritime organizations. 
Furthermore, the statistical significance of this experiment is 
limited as it was conducted only once and in a specific region. 
To increase the robustness of the results, further similar 
experiments should be conducted in other regions with the 
application of different classification procedures. 

V. CONCLUSION 
Restricted access to information and a scarcity of data 

labels are two significant challenges in developing efficient 
maritime anomaly detection algorithms. However, this paper 
proposes a different approach that could help maritime 
authorities select more relevant vessels for investigation and 
inspection on board. The approach combines the results of 
multiple outlier detection algorithms that take four vessels' 
statuses as inputs. One advantage of this approach is its 
transparency, making it impossible to suspect discrimination 
against any vessels or operators. Additionally, it utilizes data 
from public web platforms, which could aid in data 
dissemination and algorithm testing if further analysis is 
conducted. 

Overall, using AI models in port state control activities has 
shown potential to improve efficiency, accuracy, and safety 
by enabling authorities to identify and respond to potential 
issues more quickly and effectively. 
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