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ABSTRACT 
A novel dictionary learning approach that utilizes Mel-scale frequency warping in detecting overlapped acoustic 

events is proposed. The study explored several dictionary learning schemes for improved performance of 

overlapping acoustic event detection. The structure of NMF for calculating gains of each event was utilized for 

including in overlapped signal for its low computational load. In this paper, we propose a method of frequency 

warping for better sound representation, and apply dictionary learning by a holistic-based representation, namely 

nonnegative K-SVD (NK-SVD) in order to resolve a basis sharing problem raised by part-based representations. 

We confirm that the proposed method of Mel-scale with NK-SVD delivered significantly better results than the 

conventional methods. 

1 Introduction 

Real acoustic environments are generally filled with 

complex sound fields generated by multiples of 

different sources at different locations. Often in 

acoustic signal processing, such as event detection or 

event classification, separating signals from different 

sources is an important step. One of the earliest 

source separation methods is of spectral type [1].  

Performance of these frequency-based methods often 

degrades dramatically when these sources overlap in 

their frequency regions. 

In recent years, effectiveness of matrix 

decomposition methods for dictionary learning in 

overlapping acoustic event detection has sparked 

interests among researchers [2-3]. By using these 

methods, a given data matrix can be decomposed into 

a product of basis and weight matrices forming a 

salient structure from raw data. Among the matrix 

decomposition methods, such as principal component 

analysis and vector quantization, Non-negative 

Matrix Factorization (NMF) is widely used to detect 

overlapping acoustic events [4-6]. NMF, however, 

may not converge in cases when the number of 

components present in the sound is not accurately 

matched with the number of NMF bases. K-SVD is 

an effective alternative in cases when the number of 

acoustic components is not well known in advance [7]. 

However, according to Bertin et al, computational 

load of K-SVD is about an order of magnitude higher 

than that of NMF [8]. This is obviously a special case 

since these techniques were applied to musical sounds 

of a piano. The number of bases present in such 

sounds is finite and NMF can be effective in 

generating sufficient number of bases for capturing 

key characteristics of the sounds. When applied to 
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non-musical sounds, NMF may not be as effective 

since the number of bases required can be quite large 

and difficult to estimate. Since each basis generated 

by NMF represents a certain part of the spectrogram, 

a threshold number of bases is necessary to 

adequately characterize energy structure of a 

spectrogram. When the number of NMF bases is less 

than the threshold, the decomposition would result 

incomplete representation of the sound. To resolve 

this part-based representation issue, we propose a 

holistic-based approach for dictionary learning, 

namely the nonnegative K-SVD (NK-SVD) [7]. 

Additionally, by using Mel-scale features, the human 

auditory system was exploited to be well known for 

its ability of easily distinguishing or interpreting a 

variety of acoustic events in different acoustic 

backgrounds [9]. 

2 Proposed Method for Overlapping 
Acoustic Event Detection 

The overall system for detecting overlapping acoustic 

event consists of three parts as depicted in Fig. 1. In 

the first part, a nonnegative dictionary from training 

data was constructed for each acoustic event as a 

training procedure. As observed earlier, an auditory 

system recognizes acoustic events non-linearly in 

frequency domain. Therefore, we propose a 

nonnegative dictionary learning method based on 

Mel-scale which extracts relevant features 

nonlinearly in frequency domain. Thus, higher 

resolution is applied in lower frequency regions that 

contain more salient frequency changes. 

Next, gain or weight is calculated for a given mixed 

acoustic input by NMF method as a source 

decomposition procedure.  

As the third step, the decomposed signal for each 

event is integrated and the final decision is delivered. 

A more detailed description is given in the following 

section. 

 

 

Figure 1. Proposed system diagram. 

2.1  Nonnegative dictionary learning methods 

In overlapping acoustic event detection, NMF is used 

mainly for constructing a dictionary representing 

characteristics of the input data. It delivers excellent 

results in extracting an arbitrary number of sources 

from monophonic signals. Given a nonnegative data 

matrix V (m×n), NMF finds an approximate 

factorization of nonnegative factors D (m×r) and X 

(r×n) as 

                              V DX  (1) 

where r m   while the reconstruction error is 

minimized. A cost function measures the 

reconstruction error between the original matrix and 

the product of the NMF factors. One form of cost 

function is generalized Kullback-Leibler divergence, 

which is denoted as follows.  
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For minimization of cost function, NMF iteratively 

modifies D and X using multiplicative update rules. 

As it can be seen from the above, NMF process does 

not allow negative entries in the matrix factors. These 

non-negativity constraints only permit additive 

combinations. For these reasons, it called that NMF 

is a method for finding a part-based representation 

[10]. 
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However, due to its so-called part-based 

representation, resultant dictionary of each acoustic 

event shares common basis that degrades detection 

performance [10]. To resolve this common basis 

sharing problem, a holistic-based representation 

method was incorporated, namely the Spherical K-

Means (SKM) [11] and NK-SVD [7]. 

SKM is represented as the closest dictionary, K-

means algorithm used by the cosine distance instead 

of Euclidean distance [11]. The objective of SKM 

clustering is to maximize the average cosine 

similarity 

 2

,
min  subject to ,  x e  for some .i i iF

k  
D X

V DX  (3) 

Also, K-SVD algorithm, which is a generalization of 

K-means algorithm, adjusts sparsity, T0, for 

controlling relative magnitudes of the two 

decomposed matrices as shown in Eq. (4).  

2.2  The importance of holistic based 
representation in acoustic signal Page 
Headers 

Like NMF, K-SVD is an iterative method that 

alternates between sparse coding and update process 

for the dictionary elements to better fit the data. In 

each iteration there are two stages: one for sparse 

coding that evaluates X and one for updating the 

dictionary D. In the sparse coding stage, any pursuit 

algorithm can be used to compute the representation 

vectors xi for each example vi, by an approximate 

solution of 
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In the dictionary update stage, both X and D are 

assumed to be fixed, and a penalty term of an 

objective function defined as follows is minimized.  
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where K is the number of bases, dk is the kth column 

of the dictionary, xT
k is the kth row of X, and Ek stands 

for the error for all the N frames when the kth element 

is removed. Revised dk and xT
k can be acquired by 

SVD applied to Ek. In NK-SVD, any negative value 

calculated in the error matrix is set to zero in the 

iteration. Note that when the sparsity T0 is set to 1, the 

decomposition becomes K-means. 

K-SVD is an algorithm for training an overcomplete 

dictionary that best suits a set of given signals [7]. 

Due to the dictionary being overcomplete, this 

algorithm represents holistic bases that composed 

dictionary of events. 

      :1 :2 :, ,...,  subject to +l l l l r l i j D d d d d d d  (6) 

where Dl is the dictionary of the l th event, dl is basis 

vectors of the l th event and di, and dj is an arbitrary 

basis vector. 

For acoustic event detection, discernibility between 

dictionaries of different events is essential. Naturally, 

if a dictionary of a particular event shares basis with 

a different event, detection performance may degrade. 

To validate the holistic-based representation, it is 

shown in Fig. 2 that the basis vector is in conformity 

with the dictionary learning methods. The first basis 

vector of NK-SVD based dictionary fully represents 

harmonics of a speech for a given frames. On the 

other hand, the NMF based dictionary exhibits the 

basis sharing problem raised by the part-based 

representation in the first and ninth basis vector of 

NMF. This constitutes a problem that includes other 

dictionaries that have the same basis, and is a 

phenomenon that reduces performance. The 

discriminability of a dictionary between dictionaries 

of different events is very important. 

SKM as a holistic-based representation technique 

shows better performance than the part-based 

representation, although its performance is with some 

limitations. SKM generates basis vectors by the 

voiceless and microphone mute, we can be seen by 

the seventh and eighth basis vector of SKM in Fig. 2 

(b). Because these basis vectors are poor at 

representing harmonics, SKM can be regarded as 

worse basis vector than NK-SVD.  

Figure 2 shows a dictionary obtained by applying 

each dictionary learning algorithm with respect to a 

speech of a single speaker. Test samples were used 

for about 8 seconds of Women's reciting voice DB of 

ETRI 2002, the number of a basis vector for every 

algorithm was set to 10. Also, the basis vector was 
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arranged in the order of high contribution to configure 

a large energy and occurrence. 

 

Figure 2. Basis vectors obtained by dictionary 

learning methods of (a) NMF, (b) SKM and (c) NK-

SVD. 

2.3  Signal decomposition and final decision 

NMF was utilized as a framework for calculating gain 

of each event included in overlapped signal. Although 

there are various sparse coding methods for 

calculating gain in given signal, such as basis pursuit 

[12], and orthogonal matching pursuit [13], their 

computation load is very demanding compared to 

NMF. It has been shown that their computation time 

is roughly 10 times greater than that of the NMF 

which utilizes simple matrix multiplication [8]. A 

dictionaries of each event are concatenated by 

column-wise where each column contains a spectrum 

corresponding to one of the sources. A fixed 

dictionary obtained by different dictionary learning 

methods as mentioned earlier can be readily 

applicable to NMF for calculating gain. Then, update 

rule is applied for gain while fixing the concatenated 

dictionary matrix. Final decision scheme is presented 

in 

                   
:

1
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r
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where x,l:j is a gain of l th event, j is the number of 

basis, θl is threshold of l th event and p(wl|Xl) is 

conditional probability of weighting factor wl given 

event Xl. The gain represents activations of basis for 

each event along temporal line, and score of each 

event is calculated by summation of the gains that 

belong to each event category. When the score of an 

event in a frame exceeds a predefined threshold, the 

frame is regarded as that the event has occurred. 

3 Experimental result and analysis  

3.1  Database  

Database from the Audio and Acoustic Signal 

Processing (AASP) Challenges was used [14]. There 

were 16 event classes that may occur in office 

environments. (Table 1) All of the acoustic signals 

were recorded at a sampling rate of 16 kHz using 16-

bit stereo-channel format, and equally mixed two 

channels to create mono-channel signal. The training 

dataset contains 20 examples for each acoustic event. 

The total recording length of an event ranges from 1 

to 3 minutes. The evaluation dataset consists of 9 

artificial samples created by concatenated 

overlapping acoustic events (subtask_OS). The 

dataset contains signals with various SNRs (-6dB, 

0dB, 6dB) with respect to the background noise and 

different levels of density (high, med, low) of 

acoustic events. Experiments was conducted on the 

high density evaluation data with all of SNRs. 

Alert Clear throat Cough Door slam 

Drawer Keyboard Keys Knock 

Laughter Mouse Page turn Pen drop 

Phone Printer Speech Switch 

Table 1. Sixteen classes of acoustic event. 

3.2  Experimental setting and result analysis 

Experiments were conducted on overlapping event 

detection by the proposed Mel-scale transformed and 

original spectrograms. Also linear-scale transform 

was conducted in order to verify the effect of 

dimension reduction by using the filterbank.  
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Different settings of the dictionary learning method 

and SNR value were used for evaluating performance 

of the proposed method. The FFT size was set to 1024 

with 50% overlap, which results in 513 dimensional 

spectrogram. Each frame is multiplied by a Hamming 

window before applying FFT. The number of filters 

was empirically set to 80 as a trade-off between 

representation power and generalization. The number 

of basis for each event was set to 40. 

F-score is used as a measure for performance 

evaluation, which is the harmonic mean of precision 

and recall. Because of the trade-off relation between 

precision and recall, F-score can vary by different 

setting of the threshold. For evaluating the 

effectiveness of the proposed method regardless of 

setting the threshold, we set the threshold for oracle 

performance, i.e. the best result that a given system 

can achieve. 

Table 2 shows the performance of the proposed 

method compared to two other conventional 

dictionary learning methods, namely NMF and SKM. 

Regardless of the methods, the dictionary acquired by 

Mel-scale transform gives best detection performance. 

Comparing with the linear-scale transform, it can be 

inferred that the performance improvement is not due 

to the dimensionality reduction but because of the 

non-linear frequency warping by the Mel-scale. 

When comparing the proposed NK-SVD to the other 

methods, the proposed performed best among the 

three methods. The poor performance by the NMF 

method was attributed mainly due to the common 

basis sharing problem caused by part-based 

representation nature intrinsic in NMF method. The 

proposed NK-SVD performed better over SKM 

because it can discern frames with higher energy 

(containing more relevant information) more 

effectively. 

4 Conclusions 

In this paper, we proposed a nonnegative dictionary 

learning method inspired by human auditory 

perception. We confirmed that Mel-frequency 

warping applied to spectrogram gives consistent 

performance improvement over the conventional 

dictionary learning methods. The proposed NK-SVD 

based dictionary learning showed the best 

performance because it can discern frames with 

higher information content more effectively and also 

it does not lead to the part-based representation issue 

inherent in NMF. The NMF structure based gain 

calculation led to the overall lower computational 

requirements. 
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