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Chapter	1	

QMeans Algorithm 

 

Abstract: 
The Kmeans algorithm is a cornerstone in unsupervised learning for clustering, with a 

temporal complexity of 𝑂(𝑖𝑘𝑛𝑚), where 𝑖 represents the number of iterations, 𝑘 the number 

of clusters, 𝑛 the number of points, and 𝑚 the dimensionality of the observation space. The 

quantum-inspired variant, QMeans [1] , was introduced to address these limitations, albeit 

primarily on a theoretical front. This chapter bridges this gap by elucidating and 

implementing QMeans within a hybrid quantum-classical framework. Initially, a 

comprehensive overview of Kmeans and d-Kmeans clustering models is provided. 

Subsequently, the paper covers quantum distance computation, quantum minimum finding in 

a list, and the quantum version of the Kmeans++ initialization method [10] , QMeans++, 

along with their respective mathematical formulations, circuit designs, and implementations 

with Qiskit. Finally, these elements are assembled to formulate the QMeans algorithm. 

 

Keywords: Clustering; Kmeans; Quantum computing. 

1.1 Introduction 

Quantum computing emerges as a revolutionary paradigm, extending the frontiers of 

computational science by harnessing the principles of quantum mechanics. Unlike classical 

computing, which relies on bits as the smallest unit of information, quantum computing 

utilizes qubits. These qubits exhibit unique properties such as superposition - allowing them 

to represent multiple states simultaneously - and entanglement, which enables them to 

maintain a connection regardless of distance. This fundamental shift in information 
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processing opens new avenues for tackling computational problems that are intractable for 

classical computers, by performing complex calculations at significantly accelerated rates. 

 

Among the practical applications of quantum computing principles is the domain of machine 

learning, where the QMeans algorithm exemplifies the fusion of classical methodologies with 

quantum enhancements. Drawing inspiration from the classical KMeans, QMeans 

incorporates quantum subroutines for specific tasks such as distance estimation and minimum 

value search, enabling the determination of new centroids in quantum states. Furthermore, 

QMeans introduces a quantum-centric centroid initialization method, QMeans++, paralleling 

the effectiveness of Kmeans++ in classical settings but executed in quantum superposition. 

 

This article navigates the complexities of implementing QMeans in the context of current 

quantum computing limitations, such as the absence of QRAM [8] and the qubit availability 

on contemporary quantum machines. Through this exploration, we aim to illuminate the 

potential of quantum computing to revolutionize data analysis and machine learning by 

leveraging its inherent advantages for optimizing and accelerating computational tasks. 

1.2 Related work 

This article introduces a hybrid implementation of the QMeans algorithm for unsupervised 

clustering, building on the foundations established by Kerenidis et al. [1] in their proposition 

of a quantum version of the classic KMeans algorithm. Their innovative approach 

demonstrates an exponential speedup in the number of data points compared to the classical 

KMeans algorithm, offering a new paradigm in applying machine learning algorithms to 

increasing data volumes. 

 

The necessity for a hybrid approach stems from the practical constraint related to the use of 

QRAM, which remains theoretical to this day. While QRAM allows for efficient quantum 

access to classical data, our hybrid approach seeks to circumvent this limitation by combining 

the computational advantages of quantum systems with the robustness and availability of 

classical technologies. 
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It is worth noting that quantum clustering algorithms have been explored prior to Kerenidis et 

al. [1] , as highlighted by Lloyd et al. [11] who proposed algorithms for supervised and 

unsupervised learning using quantum states. However, these earlier works faced the 

challenge of retrieving a classical model from quantum computations, a limitation our 

method aims to overcome. 

Furthermore, research in quantum and quantum-inspired algorithms for machine learning, 

such as the works by Arrazola et al. [12] and Tang [13] [14] , has underscored the importance 

of developing techniques that can be efficiently applied on quantum computers or simulated 

with advantages on classical systems. These investigations lay the groundwork for broader 

applications of quantum technologies in the field of machine learning. 

1.3 Introduction to Kmeans 

The Kmeans algorithm solves an optimization problem by attempting to minimize the 

objective function, often referred to as inertia or cost function, defined as: 

𝐽(𝐶, 𝑐!, 𝑐", … , 𝑐#) =..‖x-c$‖"
%∈'!

(

$)!

 

Where 𝐶 is the set of 𝑘 clusters 𝐶!, 𝐶", … , 𝐶# and 𝑐* is the centroid of cluster 𝐶*. 

 

Step 1. Initialization of centroids: Several initialization methods exist, ranging from the 

random initiation of centroids to more sophisticated techniques like Kmeans++ [10] . 

 

Step 2. Assignment of points to clusters: The Euclidean distance ‖x-c$‖ is commonly used, 

although other metrics such as Manhattan distance can also be utilized. The point 𝑥 is 

assigned to the cluster that minimizes this distance, thus seeking: 

arg	min
+!∈'

‖x-c$‖" 

 

Step 3. Updating centroids: Each new centroid is the centroid of all points in the 

corresponding cluster. Formally: 

𝑐* =
1
#C$

.x
%∈'!

 

With #C$ being the number of data points in cluster C$. 
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Step 4. Convergence: The algorithm iterates steps 2 and 3 until the variation in the positions 

of centroids is below a predefined threshold 𝜀, or until a maximum number of iterations is 

reached. 

1.4 Introduction to 𝛿-Kmeans 

The 𝛿-KMeans is a variant of the KMeans algorithm that introduces a noise parameter 𝛿 to 

the steps of label assignment and centroid updating. This method proves particularly 

beneficial in scenarios involving noisy data or outliers. The QMeans algorithm serves as the 

quantum analogue to this approach, leveraging the non-deterministic and noisy nature of 

quantum computations. This enables QMeans to embody the robustness features of 𝛿-

KMeans while harnessing the computational advantages provided by quantum physics. 

 

Here are the details of the two steps that differentiate it from KMeans. 

 

Label Assignment: Unlike KMeans, the assignment is not deterministic. A set of potential 

labels L,(𝑥) is created: 

L,(𝑥) = 𝑝: Cc$*-xC
" − Cc.-xC

" ≤ 𝛿 

 

With c$∗ being the closest centroid to the data point 𝑥. A label is randomly chosen from this 

set. 

 

To clarify, L,(𝑥) encompasses all centroid indices 𝑝 for which the squared distance between 

point 𝑥 and centroid 𝑐0 is not significantly different from the squared distance between 𝑥 and 

the nearest centroid c$*. The 𝛿 quantity represents the tolerance allowed for this difference. 

 

The idea is that if a point 𝑥 is almost equidistant from two or more centroids, it could 

reasonably belong to any cluster associated with these centroids. The 𝛿 parameter introduces 

flexibility in assigning points to clusters, making the algorithm more robust to data variations 

and especially useful in scenarios where clusters are not distinctly separated. 

 

Centroid Update: Gaussian noise with variance ,
"
 is added to the centroid during its update:  
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𝑐* =
1
#C$

.x
%∈'!

+ ΝH0,
𝛿
2K 

 

This introduction of noise can help uncover subtle structures in the data that standard 

KMeans might overlook, providing a more nuanced approach to clustering in complex 

datasets. 

1.5 Quantum subroutines 

1.5.1 Quantum Estimation of the Euclidean Distance Between 

Points 

On a classical computer, Euclidean distances can be directly calculated. However, on a 

quantum computer, this task is complicated due to the probabilistic nature of qubits. Despite 

this complexity, it is essential to have a way to estimate the distances between points. For 

this, one can use the dot product, as introduced by Stephen DiAdamo et al. [2] and others, as 

an indicator of their distance. 

 

The principle is based on the fact that we do not need to know the exact distance between the 

points, but rather to have an estimation that can allow for the comparison of several distance 

values. Thus, the dot product, although not proportional to the distance, is positively 

correlated with it, which allows for efficiently determining which point is closest to another 

given point. 

 

5.1.1 Relationship between the dot product and distance 

Imagine we have an auxiliary qubit initialized to the state |0⟩	and a quantum state |	ψ⟩ =

|𝑥⟩|𝑦⟩ representing the two normalized vectors whose distance we want to estimate. Here are 

the steps to highlight the relationship between the probability of measuring the auxiliary qubit 

in the state |1⟩, denoted as 𝑃(1123), and the dot product of the vectors: 
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Definition of |	𝛙⟩ and application of the Hadamard gate: Begin with an auxiliary qubit 

initialized to |0⟩ and a quantum state |	ψ⟩, storing the normalized vectors whose distance we 

aim to estimate: 

|	ψ⟩ = |𝑥⟩|𝑦⟩ 

 

After applying a Hadamard gate to the auxiliary qubit, and using the controlled-SWAP gate 

(C-SWAP) on the auxiliary qubit, the state becomes: 
1
√2

(|0⟩|ψ⟩ + |1⟩𝐹(|ψ⟩)) 

 

Where 𝐹(|ψ⟩) = |𝑦⟩|𝑥⟩	. 

Manipulation with a second Hadamard gate: Another Hadamard gate is applied to the 

auxiliary qubit, resulting in: 
1
2 (|0⟩|(𝐼 + 𝐹)ψ⟩ + |1⟩|(𝐼 − 𝐹)ψ⟩) 

 

Where 𝐼 is the identity operator. 

 

Introducing the probability that the auxiliary qubit is at |𝟏⟩: We can substitute (𝐼 − 𝐹) 

and (𝐼 + 𝐹), yielding: 

(|0⟩|𝐴4ψ⟩ + |1⟩|𝐴!ψ⟩) 

 

Where 𝐴4 =
567
"
	 and 𝐴! =

5	9	7
"
	 

Now, utilizing the concept of quantum expectation value, we can express the probability that 

the auxiliary qubit is measured in the state |1⟩ with an inner product: 

𝑃(1123) = ⟨ψ|𝐴!|ψ⟩ 

 

Simplifications: Simplifying by substitution with 𝐼 and 𝐹: 

𝑃(1123) = Xxy Z
𝐼	 − 	𝐹
2 Z xy[ 

 

Expanding and knowing that ⟨𝑥𝑦, 𝑥𝑦⟩ = 1 and ⟨𝑥𝑦, 𝑦𝑥⟩ = ⟨𝑥, 𝑦⟩", we get: 

𝑃(1123) =
1
2	−	

1
2
⟨𝑥, 𝑦⟩" 
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Finally, we establish a relationship between the probability of measuring the auxiliary qubit 

in the state |1⟩ denoted as 𝑃(1123) and the dot product of the vectors. 

 

Theorem: The probability of measuring the auxiliary qubit in the state |1⟩ (i.e., 𝑃(1123)) is 

positively correlated with the distance between the vectors |𝑥⟩ and |𝑦⟩. This allows for 

comparing distances without explicitly calculating them. 

 

Proof: Let’s demonstrate that the previous calculated probability 𝑃(1123) is positively 

correlated with the Euclidean distance between |𝑥⟩ and |𝑦⟩. 

 

The square of the Euclidean distance between two vectors is defined as: 

𝑑" = ‖𝑥 − 𝑦‖" 

Expanding the vector subtraction, since the vectors are normalized, we get: 

𝑑" = ⟨𝑥	 − 	𝑦, 𝑥	 − 	𝑦⟩ = 2	 − 	2⟨𝑥, 𝑦⟩ 

 

If you look closely, 𝑃(1123) and the square of the Euclidean distance have forms that are 

similar in terms of the inner product ⟨𝑥, 𝑦⟩. In particular, 𝑃(1123) is positively correlated 

with 𝑑" because as the distance between the vectors increases (i.e., they become more 

orthogonal), the inner product ⟨𝑥, 𝑦⟩ decreases, and consequently, 𝑃(1123) increases. 

It’s important to note that although, we are comparing the square of the Euclidean distance 

𝑑" rather than the Euclidean distance 𝑑 itself, this poses no issue since the square function is 

monotonic for positive Euclidean distances. Thus, an increase in 𝑑" always indicates an 

increase in 𝑑, and vice versa. 

 

 

5.1.2 Encoding vector coordinates 

To apply the quantum algorithm, it’s essential to encode the points’ coordinates into qubits.  

 

This is achieved by converting classical rectangular coordinates into spherical coordinates, 

which are suitable for representation on the Bloch sphere: 

- Start with a qubit initialized to |0⟩. 
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- Apply a Hadamard gate 𝐻 to orient the qubit along the 𝑋 axis of the Bloch sphere. 

(We will use 𝜆 = 0 in a 𝑈 gate instead of an 𝐻 gate) 

- The angles 𝜑 and θ are used to represent the values of the two features of the point. 

Here, θ and 𝜑 can vary between 0 and π radians to avoid representation issues on the 

Bloch sphere.  

- The following relations allow mapping the point’s features to the angles θ and 𝜑: 

φ = (𝑑4 + 1)
𝜋
2 					𝜃	 = 	 (𝑑! + 1)

𝜋
2 

 Where 𝑑4 and 𝑑! correspond to the values of the two features of the point. 

 

5.1.3 Associated quantum circuit 

The theoretical quantum circuit corresponding to this distance estimation step is as follows: 

 
 

The qubit |0⟩ being the auxiliary qubit and the qubits |𝑥⟩ and |𝑦⟩ representing the two vectors 

whose distance we want to estimate. However, considering the 0, we can detail the circuit a 

bit more, which gives: 

 
 

Where |0123⟩ is the auxiliary qubit, and the two qubits |𝑥⟩ and |𝑦⟩ are created from a qubit 

|0⟩, a 𝑈 gate with parameters θ and 𝜑 calculated in 0 and 𝜆 with value of 0 to align the qubit 

along the 𝑋 axis of the Bloch sphere. The measurement on the auxiliary qubit allows 

calculating the probability of finding |0123⟩ in the state |1⟩ after 𝑛 circuits are run. 
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This 𝑈 gate is defined by: 

𝑈(𝜃, 𝜑, 𝜆) = g
𝑐𝑜𝑠 H

𝜃
2K −𝑒*:𝑠𝑖𝑛 H

𝜃
2K

𝑒*;𝑠𝑖𝑛 H
𝜃
2K 𝑒*(;6:)𝑐𝑜𝑠 H

𝜃
2K
k 

 

We obtain the result of the pseudo distance by measuring the auxiliary qubit, which is the 

first qubit, and counting the number of times it is measured in the state |1⟩. To now measure 

the distance between 1 point and 𝑛 other points, we parallel this operator (thus this circuit) to 

perform the algorithm on the 𝑛 points at the same time. Here is the form of the circuit: 

 
Figure 1. Quantum circuit for calculating distances with 𝒏 points. 

 

We have 𝑛 registers of 3 qubits, each containing a qubit that corresponds to the duplication of 

the point whose distance with the 𝑛 others needs to be found, a qubit representing one of the 

𝑛 points, and an auxiliary qubit. We can express this circuit as an operator 𝐾n> such that: 

 

𝐾n> =⊗*)4
> 𝐾n* 
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Where 𝐾n* is defined by: 

 

𝐾n* = p𝐻n ⊗	𝐼q 	⊗	𝐼qr. 𝐶 − 𝑆𝑊𝐴𝑃123",(3,0"). p𝐻n ⊗	𝑈n(𝜃4, 𝜑4, 𝜆4) ⊗	𝑈n(𝜃* , 𝜑* , 𝜆*)r 

 

Where: 

- θ4, 𝜑4	𝑎𝑛𝑑	𝜆4 come from the encoding of the first point. 

- 𝜃* , 𝜑* and 𝜆* come from the encoding of the 𝑖-th point among the 𝑛. 

- 𝐶 − 𝑆𝑊𝐴𝑃123",(3,0") is the SWAP gate between qubit 𝑥 and 𝑝* (the point and the 𝑖-th 

point) controlled by the qubit 𝑎𝑢𝑥* (the 𝑖-th auxiliary qubit) 

 

The corresponding circuit is: 

 
Figure 2. The 𝒊-th component of the distance calculation circuit. 

 

Calculating distances between 𝟏 data point and 𝒏 points thus requires 𝟑𝒏 qubits. 

 

After measuring the 𝑛 auxiliary qubits, each bit of the final states represents one of the 𝑛 

specific points (involved in the CSWAP gate in the circuit). To interpret the results, we count 

the occurrences for each bit position where a 1 appears, that is, the bit at index 𝑖. Thus, the 

index of the point associated with a reduced number of occurrences of 1 is considered as the 

most likely to be the closest to the point in question, due to the way distances are measured in 

this context.  

Indeed, as demonstrated in 5.1.1, the probability of measuring the auxiliary qubit in the state 

|1⟩ is positively correlated with the distance between the first and the second point. The 

auxiliary qubit being represented by the bit at position 𝑖 in the circuit output. 
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5.1.4 Hand-on example 

We consider the point 𝑋 with coordinates (𝑥4, 𝑦4) = (0.1,0.2), and the points 𝑝!, 𝑝" and 𝑝@ 

with respective coordinates (𝑥!, 𝑦!) = (0.1,0.2), (𝑥", 𝑦") = (0.3,0.4) and (𝑥@, 𝑦@) =

(0.5,0.6).  

 

We start by encoding these points into qubits, according to 0. 

 

For 𝑋(𝑥4, 𝑦4) = (0.1,0.2): 

𝜑A = (𝑥4 + 1)
𝜋
2 =

(0.1 + 1)
𝜋
2										𝜃A =

(𝑦4 + 1)
𝜋
2 =

(0.2 + 1)
𝜋
2 

For 𝑝!(𝑥!, 𝑦!) = (0.1,0.2): 

𝜑B! = (𝑥! + 1)
𝜋
2 =

(0.1 + 1)
𝜋
2										𝜃B! =

(𝑦! + 1)
𝜋
2 =

(0.2 + 1)
𝜋
2 

For 𝑝"(𝑥", 𝑦") = (0.3,0.4): 

𝜑B" = (𝑥" + 1)
𝜋
2 =

(0.3 + 1)
𝜋
2										𝜃B" =

(𝑦" + 1)
𝜋
2 =

(0.4 + 1)
𝜋
2 

For 𝑝@(𝑥@, 𝑦@) = (0.5,0.6): 

𝜑B@ = (𝑥@ + 1)
𝜋
2 =

(0.5 + 1)
𝜋
2										𝜃B@ =

(𝑦@ + 1)
𝜋
2 =

(0.6 + 1)
𝜋
2 

 

The resulting circuit is as follows: 
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Running this circuit 4096 times yields the following frequencies: {‘001’: 322, ‘011’:4, 

‘000’:3689, ‘010’: 81}. As previously explained, we count the appearances of 1 for each 

position. This gives us the frequency table: [0,85,326]. That is, the first auxiliary qubit was 

measured in state |1⟩ zero times, the second 85 times, and the third 326 times. Since the 

probability of each auxiliary qubit being in state |1⟩ is proportional to the distance between 

the two points involved in the SWAP, we then look for the smallest value. Here, 0 is the 

minimum, which means that the first point 𝑝! is the closest to point 𝑋 (which is accurate, 

looking at the coordinates of the points). This calculation of the minimum for this list is the 

subject of cluster assignment in the 1.5.3. 

1.5.2 Comparing two integers 

To compare two integers, we will use the Quantum Bit String Comparator [3] algorithm, 

introduced in 2007 by D. Oliveira and R. Ramos. We will start by comparing two bits and 

then extend this to comparing two integers of 𝑛 bits. Ultimately, we will be able to determine, 

from two integers 𝑎 and 𝑏, whether 𝑎 < 𝑏 or 𝑎 ≥ 𝑏. 

 

5.2.1 Encoding integers into qubits 

To compare two integers using a quantum circuit, it is essential to encode these numbers into 

qubits. This is done by converting them into their binary representation. Thus, encoding 

numbers in a quantum circuit requires a number of qubits corresponding to the size of the 

numbers in question. For instance, one qubit can encode two values (0 and 1), while two 

qubits can encode four values (00 = 0, 01 = 1, 10 = 2, 11 = 3). Ultimately, 𝑛 qubits allow 

the encoding for 2> numbers. 

 
Figure 3: Encoding the integer 13, ‘1101’ in binary. 
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As we go through the binary representation of the integer, if the bit is 1, a 𝑋 gate (NOT gate) 

is applied to the qubit, changing it from the state |0⟩ to the state |1⟩. If the bit is 0, no action 

is taken, and the qubit remains in the state |0⟩. Thus, a classical bit is translated into a 

quantum state. 

 

5.2.2 Comparing two integers 

Now, the goal is to compare two integers encoded in the quantum circuit using the method 

described above in 5.2.1. The comparison of the integers is performed bit by bit and uses 

auxiliary qubits to indicate which bit is greater. The comparison starts with the most 

significant bits of the two integers. If these bits are equal, the process continues with the next 

bits. If the bits are different, the bit-by-bit comparison function determines which integer is 

larger. 

 
Figure 4: Operator to compare two bits. 

 

The Figure 4. presents the circuit 𝑈C for determining which bit is greater. It requires two 

qubits |𝑎⟩ and |𝑏⟩ to represent the two bits and two auxiliary qubits initialized to|0⟩. We 

prepare the states |𝑎⟩ and |𝑏⟩ following 5.2.1. Then, a multi-controlled NOT gate is applied 

to the first auxiliary qubit with the pair |𝑎⟩ and |𝑏⟩ as control. This first auxiliary qubit is thus 

in the state |𝑎 ∧ 𝑏�⟩. Next, a second multi-controlled NOT gate is applied to the second 

auxiliary qubit with the pair |𝑎⟩ and |𝑏⟩ as control, |𝑎⟩ having undergone a NOT gate. Thus, 

the second auxiliary qubit will contain the state |𝑎� ∧ 𝑏⟩. 

These states can be elucidated according to the different values of |𝑎⟩ and |𝑏⟩ using a truth 

table: 
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|𝑎⟩ |𝑏⟩ |𝑎 ∧ 𝑏�⟩ |𝑎� ∧ 𝑏⟩ 

0 0 0 0 

0 1 0 1 

1 0 1 0 

1 1 0 0 

 

We can conclude that if the auxiliary qubits are in the state |01⟩ then 𝑎 < 𝑏, otherwise 𝑎 ≥ 𝑏. 

We also define the operator 𝑈C9! which allows us to uncompute the qubits used by the 

operator 𝑈C. We then construct the following operator: 

 
Figure 5. Operator to uncompute the qubits from the comparison operator. 

 

Finally, here is the circuit for determining which bit is greater between |𝑎4⟩ and |𝑏4⟩. The last 

qubit is the qubit that contains the result of the comparison (as previously, the qubits |𝑎4⟩ and 

|𝑏4⟩ are prepared following 5.2.1). 

 
Figure 6. Complete circuit for comparing two bits |𝒂𝟎⟩ and |𝒃𝟎⟩. 
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Thus, by following the previous truth table and noting that the comparison is determined by 

the auxiliary qubits of the operator 𝑈C, we can interpret the results as follows: 

 

� 𝑎4 < 𝑏4		𝑖𝑓		𝑄DEF = |1⟩
𝑎4 ≥ 𝑏4		𝑖𝑓		𝑄DEF 	= 	 |0⟩

 

 

To compare multiple bits at once, the comparison information generated by the operator 𝑈C  

is conditionally propagated through the circuit, from the most significant bits to the least 

significant ones. For this, we use the multi-controlled 𝑋 gate (𝑀𝐶𝑋). This gate applies an 

operation to a target qubit only if certain conditions on the control qubits are met. In this 

context, it allows the propagation of the comparison results from previous bit-by-bit 

comparisons through the circuit. As soon as we find that one of the bits is greater than the 

other, we can conclude which integer is larger.  

 

To begin, we present the circuit for comparing two integers of 2 bits. 

 

 
Figure 7. Circuit for comparing two integers 𝒂 and 𝒃 over 𝟐 bits. 
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The comparison circuit is broken down into several parts. We use the dashed red lines to 

locate them. Again, qubits |𝑎*⟩ and |𝑏*⟩ are prepared following the 5.2.1.  

 

- The 𝑈C gates before line 1 perform the bit-by-bit comparisons. 

- Between line 1 and line 2, a multi-controlled 𝑋 gate is applied to modify the auxiliary 

qubit for each pair of qubits (except the last one) when the auxiliary qubits from the 

𝑈C gate are in |00⟩. 

- Between line 2 and line 3, the comparison results from the least significant qubits are 

propagated to the more significant qubits. 

- Between line 3 and line 4, the result qubit is updated. 

- After line 4, all the qubits used, except for the result qubit 𝑆, are uncomputed. 

 

To obtain the results, as previously, we measure the auxiliary qubit 𝑆 and observe its state 

over multiple shots. The most probable state allows us to conclude the comparison between 

the two integers. If 𝑆 = |0⟩, then 𝑎 ≥ 𝑏; otherwise, if 𝑆 = |1⟩, then 𝑎 < 𝑏. 

 

In the Figure 7., we encode two integers 𝑎 and 𝑏. The integer 𝑎 is written in binary as 𝑎4𝑎! 

and 𝑏 as 𝑏4𝑏!,	with the most significant bit being the bit at index 0. We first compare the 

most significant bits of the two integers; if we can deduce at this point which is smaller, 

subsequent comparisons will not impact, otherwise, we continue with the next bit in each 

integer. Finally, we measure a 1-bit string 𝑆.  

This circuit can be generalized for comparing two integers of 𝑛 bits while maintaining the 

same logic for the result, that is, if 𝑆 = |0⟩ then 𝑎 ≥ 𝑏; otherwise, if 𝑆 = |1⟩, then 𝑎 < 𝑏. 
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We then obtain the following circuit: 

 

 
Figure 8. Circuit for comparing two integers 𝒂 and 𝒃 over 𝒏 bits. 

 

To compare two integers over 𝒏 bits, 𝟓𝒏 qubits are required. 
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5.2.3 Hand-on example 

Here we take 𝑎 = 4 and 𝑏 = 6. Thus, 𝑎 in binary is 𝑎4𝑎!𝑎" = 100 and b is 𝑏4𝑏!𝑏" = 110. 

We get 𝑆 = |1⟩ which means that 𝑎 is strictly less than 𝑏. 

 

 
Figure 9. Circuit for comparing 𝒂 = 𝟒 and 𝒃 = 𝟔. 

 

1.5.3 Computation of the minimum of a list of integers 

To find the minimum of a list of integers, several quantum algorithms are available, such as 

the Dürr-Hoyer algorithm [4] or the Quantum Minimum Search algorithm [5] , both based on 

Grover's algorithm [6] . In this article, we will use the final circuit constructed in 5.2.2 to 

create an Oracle to approximate the Dürr-Hoyer algorithm. 
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5.3.1 Algorithm steps 

Step 1. Choice of the reference value 𝒚𝒊: If 𝑖 = 0, then we choose 𝑦4 randomly from the 

list; otherwise, we use the output value from the previous iteration. The binary representation 

of this value requires 𝑛 qubits and will be the reference value for comparisons in the integer 

comparison Oracle. 

 

Step 2. Quantum machine initialization: We initialize a quantum machine in the state: 

 

|𝜓4⟩ =
1
√2>

.|𝑥⟩|0⟩⊗>|−⟩
"$

3)4

 

 

This state is obtained by the operation 𝐻⊗>𝐼⊗>, which creates a superposition over the first 

register (the |𝑥⟩) and keeps the second register in the state |0⟩⊗>. The state |−⟩ for the 

auxiliary qubit is obtained by applying a 𝑋 gate followed by a Hadamard gate to a |0⟩ qubit. 

This preparation exploits the phase kickback effect [7] . 

 

Step 3. Preparation of superposed states: The superposition creates 2> states, but not all 

these states necessarily correspond to elements of the list. Thus, we will amplify the states 

present in the list by using Grover's operator applied to multiple solutions (The number of 

values in the list). 

 

Step 4. Initialization of the value 𝒚𝒊 in the quantum machine: We initialize the n qubits 

|0⟩ so they represent the value 𝑦* on n bits, following the logic described in 5.2.1. We thus 

obtain the state: 

|𝜓!⟩ =
1
√2>

.|𝑥⟩|𝑦*⟩|−⟩
"$

3)4

 

 

Step 5. Application of the Integer Comparison Oracle and Diffusion: The integer 

comparison Oracle is applied to mark states corresponding to integers less than 𝑦*. If a state 

satisfies this condition, the Oracle will invert the phase of this state through the phase 

kickback mechanism. That is, a Z gate will be applied to the auxiliary qubit. 
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The diffusion operator is then applied to amplify the probabilities of the marked states, 

thereby increasing the chance of measuring a state that represents an integer less than 𝑦*. 

 

Step 6. Measurement and Iteration Logic: Measurements are performed on the first n 

qubits. The most frequently observed states are those representing integers less than 𝑦* . If the 

value with the highest probability is in the list and the maximum number of iterations √𝑁 has 

not been reached, it becomes the new reference 𝑦*. If it is not in the list, then either we 

choose a new value 𝑦4 if it is the first iteration, or we conclude and exit the loop, providing 

the last value of 𝑦* 	belonging to L as the answer. 

In the Dürr-Hoyer algorithm version [4] , QRAM [8] is used to dynamically select and 

change the reference value 𝑦*. However, to implement and execute our algorithm, we cannot 

use QRAM, because it’s still theoretical. This is how our algorithm differs from that of Dürr-

Hoyer. We need to run the circuit multiple times, changing the reference value 𝑦* each time. 

 

The algorithm for finding the minimum of a list of integers encoded on n bits requires 

𝟓𝒏 qubits. Indeed, it iterates through a circuit based on the circuit for comparing two 

integers presented in 5.2.2, which also uses 𝟓𝒏 qubits. 

 

5.3.2 Oracle for superposition state preparation 

When the n qubits are in superposition, 2> states are created, however, not all these states 

necessarily correspond to the integers in the list. Therefore, we will use Grover's operator, to 

amplify the states corresponding to the elements of the list. According to Grover's algorithm 

and as demonstrated in [9] , the number of iterations to be performed is on the order of 	

I
J
�"$

K
− !

"
  where 2> corresponds to the set in which we are searching for values and 𝑁 is the 

number of values to find and amplify. The Oracle of Grover's operator to amplify the states 

corresponding to the values on the list is a series of multi-controlled 𝑍 gates, each 

recognizing an integer from the list. 
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Here, for example, is the Oracle for the list 𝐿 = [5,1,3]: 

 

 
Figure 10. Oracle circuit for state preparation with 𝑳 = [𝟓, 𝟏, 𝟑] 

 

Thus, we indeed have 5 = 𝑎4𝑎!𝑎" = 101 for the first 𝑀𝐶𝑍 gate. Then 1 = 𝑎4𝑎!𝑎" = 001 

for the second and finally 3 = 𝑎4𝑎!𝑎" = 011 for the last. As such, as soon as a state 

corresponds to one of the elements of L, its phase will be inverted by the application of a Z 

gate on the auxiliary qubit, and its probability will be amplified by the diffusion operator. 
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5.3.3 Integer comparison oracle 

Before creating the complete circuit of our algorithm, we will revisit the description of the 

Oracle for comparison. Thus, the Figure 11. shows what the Oracle circuit looks like for 

comparing two integers over n bits by applying a 𝑍 gate on the auxiliary qubit if 𝑎 < 𝑏. 

 

 
Figure 11. Complete circuit of the comparison Oracle. 

 

As previously mentioned, the Oracle must apply a Z gate on the 𝑄DEF qubit of the circuit if 

𝑎 < 𝑏, i.e., when the second auxiliary qubit of the first 𝑈C gate (of the most significant bit in 

binary notation) is in |1⟩. We consider that a is the integer represented by the superposed 

states and b is the reference value 𝑦*. We then change the 𝐶𝑁𝑂𝑇 gate from Figure 8. on the 

qubit 𝑄DEF to a 𝐶𝑍 gate. Afterward, we apply the diffusion operator to amplify the states that 

meet the comparison condition. 



Publisher / Editor Buyya, Gill: Quantum Computing: Principles and Paradigms,  
 

23 

 
 

5.3.4 Definition of the diffusion operator 

The diffusion operator is defined for a state |ψL⟩ = 𝐻⊗>|0>⟩ = |+>⟩ by: 

 

𝑆M% = 2|ψL⟩⟨ψL| − 𝐼q	

= 2|ψL⟩⟨ψL| − (𝐻n𝐼q𝐻n)⊗>	

= 2𝐻n⊗>|0>⟩⟨0>|𝐻n⊗> − (𝐻n𝐼q𝐻n)⊗>	

= 𝐻n⊗>(2|0>⟩⟨0>| − 𝐼q)Hn⊗>	 

 

Here is an example of its implementation in a circuit with a superposition of 4 qubits. The 

qubits |𝑎*⟩ have previously undergone 𝐻 gates to superpose them, then the Oracle to mark 

those that need to be marked and which should be amplified by this operator: 

 

 
Figure 12. Circuit of the diffusion operator for 𝒏 = 𝟒. 

 

This diffusion operator is Grover's, and it will be used both to amplify states after the Oracle 

for state preparation and by the Oracle for integer comparison. 

 

 

 

 

 

 



Publisher / Editor Buyya, Gill: Quantum Computing: Principles and Paradigms,  
 

24 

 
 

5.3.5 Complete circuit 

The circuit presented in this section is used in each iteration of the minimum search 

algorithm. We denote 𝐺� as the operator to be repeated approximately 𝑔 ≈ I
J
�"$

K
− !

"
 times, 

which allows finding the 𝑁 states that correspond to an integer from the list among the 2> 

values created by the superposition and amplifies them with 𝑆M%, the diffusion operator. We 

also denote 𝑃� as the operator to be repeated approximately 𝑝 ≈ I
J
�"$

K
− !

"
 times, which 

contains the integer comparison oracle presented in 5.3.3 and the diffusion operator. 

 

The value 𝑦*, the reference value for comparison during the 𝑃� Oracle, is initialized as 

described in 5.2.1 and plays the role of b in it. Thus, 𝐺� applies a 𝑍	gate on the auxiliary qubit 

|−⟩ when 𝑎 is an element of the list 𝐿, and 𝑃� does the same when 𝑎	is less than 𝑏, meaning 

the compared state 𝑎 is smaller than the reference state 𝑏 = |𝑦*⟩. 

 

Note that 𝑦* is encoded on 𝑛 qubits, and due to its construction, the states created by 

superposition are also states on 𝑛 qubits. Furthermore, we do not show the auxiliary qubits of 

the Oracle in the circuit inputs for clarity. 

 

 
Figure 13. Complete circuit for marking elements of 𝑳 less than 𝒚𝒊 

 

With the 𝐺� operator applied to the 2> superposed states, applying a 𝑍 gate on the auxiliary 

qubit to mark the states present in the list. After diffusion, the auxiliary qubit is uncomputed 

for the next operator 𝑃�. Note that 𝑈N = 𝑈N9!. 
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And the 𝑃� operator is applied to all qubits in the circuit and, with the help of internal 

auxiliary qubits, allows applying a 𝑍 gate on the auxiliary qubit when the comparison 

condition is validated. The comparison oracle is detailed in 5.3.3. Here is a detail of both 

operator 𝐺� and 𝑃�. 

 
Figure 14. Detail of operators 𝑮4 and 𝑷4 

 

This circuit thus marks integers less than a certain value 𝑦*. There are n qubits for the 

superposition of integers from the list, another n qubits for the reference value 𝑦*, and 

3𝑛	auxiliary qubits, of which 3𝑛 − 1 are for the integer comparison Oracle and 1 to invert the 

sign of the states marked by the various Oracles. Measurements allow recovering 𝑛-qubits, 

whose most probable states are integers less than 𝑦*. 

As the operators 𝐺� and 𝑃� are repeated about I
J
�"$

K
− !

"
  times, the circuit's complexity can be 

estimated as 𝐶(𝑛, 𝑁) = I
J
�"$

K
− !

"
. Thus, the larger the list, the lower the complexity. 

 

5.3.6 Algorithm specification 

Given that this algorithm for finding the minimum in a list of integers encoded on 𝑛 bits 

requires 5𝑛 qubits, then on a quantum computer with 𝑘 qubits, one could handle a list with 

integers ranging from 0 to 2# − 1. 
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5.3.7 Complete algorithm test 

The complete algorithm involves initially selecting a random value from the list, denoted as 

𝑦4, and providing the circuit presented in 5.3.5 with the list 𝐿 and this element 𝑦4. The circuit 

is run 𝑡 times, each time using the previous value 𝑦*. The algorithm stops when the found 

minimum 𝑦* is no longer an element of the list, or we have reached the maximum number of 

iterations set to √𝑁 in which case we choose the last computed value as the minimum. All 

tests of these circuits are also performed on the noiseless simulator_mps simulator of the 

IBM Cloud platform. 

 

Taking the list 𝐿 such as: 

𝐿 = [3, 4, 7, 8, 10, 13, 5, 12, 1, 11, 6, 2, 9] 

 

And choosing a random value 𝑦4 = 4, a number of iterations of 𝐺� equal to 1, and a number 

of iterations of 𝑃� equal to 1, here is the circuit output in terms of probability: 

 

 
Figure 15. First iteration of the minimum search algorithm. 

 

After this first iteration, the most probable states are those in 𝐿 and strictly less than 𝑦4 = 4. 

For the next iteration, we thus choose 𝑦! = 2. 
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Here are the results of the second iteration: 

 
Figure 16. Second iteration with 𝒚𝟏 = 𝟐 

 

After this second iteration, the most probable states are limited to |1⟩. We will therefore 

choose 𝑦" = 1 as the new value. Here are the results of the third iteration: 

 

 
Figure 17. Third iteration with 𝒚𝟐 = 𝟏 

 

At this stage, the most probable state corresponds to |0⟩, but since 0 is not in 𝐿, we conclude 

that the minimum of the list is the last found value, thus 1 is the result of the algorithm. In 

this example, 1 is indeed the true minimum. 
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1.6 QMeans algorithm 

We will now assemble the quantum subroutines developed in the previous section to 

construct the QMeans algorithm. This version is a hybrid one, alternating between classical 

and quantum computations. 

 

6.1.1 QMeans++ initialization 

The QMeans algorithm comes with its initialization derived from Kmeans++ [10] , named 

QMeans++. The principle is the same as its classical counterpart, except that the distance 

calculation and the minimum finding are done quantumly. 

 

We start by choosing a random point from the data, which will be the first centroid of the 

model. Then, for each new centroid to select, the process is a bit more complex and uses the 

capabilities of quantum computing. Specifically, for each data point, we calculate the 

distance between this point and the current set of centroids using the circuit detailed in 5.1.3. 

And we calculate the minimum of this list with the algorithm detailed in 5.3.1.  

 

We thus obtain the set of minimum distances from each point as follows: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = [𝑑(𝑥!, 𝐶), 𝑑(𝑥", 𝐶), … , 𝑑(𝑥>, 𝐶)] 

 

Where 𝑑(𝑥, 𝐶) is the distance from point 𝑥 to the closest centroid 𝐶. 

 

After obtaining these minimum distances for all points, they are classically normalized to 

obtain a probability distribution. This distribution is used to probabilistically select the next 

centroid, favoring points that are further away from the already selected centroids. We thus 

calculate the probability for a point 𝑥* to be selected as a cluster. 

 

𝑝(𝑥*) =
𝑑(𝑥* , 𝐶)

∑ 𝑑p𝑥O , 𝐶r>
O)!

 

 

By repeating this procedure until the required number of centroids is reached, we finalize the 

initialization of centroids for the QMeans algorithm. 
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6.1.2 Estimation of centroid distances 

At each iteration of QMeans, we estimate the distance between each point and the cluster 

centroids. For this, we will use the quantum procedure described in 1.5.1. It allows, from a 

point 𝑋 and 𝑛 centroids 𝐶*, to estimate the distance between 𝑋 and each of the 𝐶*. For each of 

the data points 𝑋, we assign it to a cluster, following the next section. 

 

6.1.3 Cluster assignment 

For each data point 𝑋, we thus obtain an estimation of the distance with all centroids. All that 

remains is to calculate the minimum distance to know the closest centroid and thus assign the 

point to the correct cluster. For the calculation of the minimum, we use the procedure detailed 

in 5.3.1. 
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1.7 QMeans pseudo code 

QMeans++ initialization: 

Centroids are initialized following QMeans++ algorithm described in 6.1.1. 

For 𝑛 clusters, 3𝑛 qubits will be needed for distance estimation. For a list of integers 

of 𝑛 bits, 5𝑛 qubits will be required to find the minimum. 

 

While the centroids continue to change positions: 

 Step 1: Distance estimation to centroids (Quantum) 

To estimate distances quantumly between a point 𝑥and a centroid 𝑦, the dot 

product is used as a distance indicator, as explained in 5.1.1. 

Thus calculated: 

	

𝑃(1123) =
1
2	−	

1
2
⟨𝑥, 𝑦⟩" 

 

  So, for each point, an estimation of the distance with all centroids is obtained. 

  For 𝑛 clusters, 3𝑛 qubits will be needed. 

 Step 2: Cluster assignment (Quantum) 

For each point, the minimum of the distances with the centroids is calculated 

to associate them with the correct cluster using the Quantum Bit String 

Comparator algorithm associated with the Dürr-Hoyer algorithm, as explained 

in 1.5.3. 

For a list of integers of 𝑛 bits, 5𝑛 qubits will be required to find the minimum. 

  Step 3: Updating centroids (Classical) 

  Each new centroid is the centroid of all points in the corresponding cluster.

  Thus: 

𝑐* =
1
#𝐶*

. 𝑥
3∈B"

 

  With #𝐶* being the number of points in the cluster 𝐶*. 

Result: 

 Ultimately, the positions of the centroids are obtained. 
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1.8 Implementation 

This article is associated with code, where Kmeans and δ-kmeans have been coded for 

comparison purposes, as well as QMeans with all the subroutines presented in the previous 

sections. However, simulating such an algorithm is not feasible with a large number of qubits 

because it requires too much computational power. And the use of real quantum computers is 

limited by the waiting time to access IBM's quantum computing platform. Despite this, each 

quantum subroutine can be used independently with a reasonable number of qubits. 

1.9 Future research directions 

Testing on Larger Datasets with Increased Quantum Bits (Qubits): A significant 

direction for future work involves the application of the QMeans algorithm to much larger 

datasets as the number of qubits in quantum computers increases. The current limitation in 

qubit availability restricts the scale at which quantum algorithms can be effectively deployed. 

As quantum hardware continues to advance, enabling the processing of larger datasets, it will 

be crucial to evaluate the scalability and performance of QMeans in handling big data 

scenarios. This exploration could unveil the algorithm's practicality for real-world 

applications, where massive datasets are the norm rather than the exception. 

 

Development of Practical Quantum Random Access Memory (QRAM): The theoretical 

concept of QRAM plays a pivotal role in the efficiency of quantum algorithms, including 

QMeans. However, the physical realization of QRAM remains a challenge. Future research 

should focus on developing practical and scalable QRAM solutions, which would 

significantly reduce the gap between theoretical quantum algorithms and their practical 

implementation. Achieving a breakthrough in QRAM technology would not only enhance the 

performance of QMeans but also unlock new possibilities for quantum computing in 

processing and analyzing large-scale datasets. 

 

Integration into Machine Learning Frameworks: Another vital area of future research is 

the integration of QMeans, and quantum algorithms in general, into existing machine 

learning frameworks. This integration would facilitate the adoption of quantum algorithms by 

the broader machine learning and data science communities. Efforts should be directed 
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towards creating quantum-enhanced versions of popular machine learning libraries, thereby 

making quantum algorithms more accessible to practitioners. Additionally, developing 

guidelines and best practices for incorporating quantum computing techniques into traditional 

machine learning pipelines can accelerate the practical applications of quantum machine 

learning. 

 

By addressing these future research directions, we aim to bridge the gap between the current 

state of quantum computing and its potential to revolutionize machine learning. 

Advancements in these areas could significantly impact the efficiency, scalability, and 

applicability of machine learning algorithms, paving the way for groundbreaking discoveries 

in various fields. 

1.10 Conclusion 

In summary, this article has delved into the potential offered by the QMeans algorithm, a 

quantum variant of the classical Kmeans clustering approach. Emerging at the crossroads of 

quantum computing and machine learning, this work diverges from the initial theoretical 

approach proposed by Kerenidis et al. [1] , as we utilize a sequential method rather than a 

single quantum circuit. While this approach allows for simpler implementation and aligns 

with the current constraints of quantum computers, it does not realize the full speed potential 

suggested by theory. 

 

Anecdotally, this project required the deployment of no less than 100,000 quantum circuits 

on IBM's servers. Despite these challenges, our exploration highlights the transformative 

potential of quantum computing in enhancing machine learning algorithms. By leveraging 

quantum subroutines for specific tasks such as distance estimation, minimum value search, 

and quantum-centric centroid initialization, QMeans++ introduces a novel method that 

parallels the effectiveness of Kmeans++ in classical settings but executed in quantum 

superposition. 
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