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Abstract. Neuromorphic systems, inspired by the complexity and functionality of
the human brain, have gained interest in academic and industrial attention due to
their unparalleled potential across a wide range of applications. While their capa-
bilities herald innovation, it is imperative to underscore that these computational
paradigms, analogous to their traditional counterparts, are not impervious to se-
curity threats. Although the exploration of neuromorphic methodologies for image
and video processing has been rigorously pursued, the realm of neuromorphic au-
dio processing remains in its early stages. Our results highlight the robustness and
precision of our FPGA-based neuromorphic system. Specifically, our system show-
cases a commendable balance between desired signal and background noise, efficient
spike rate encoding, and unparalleled resilience against adversarial attacks such as
FGSM and PGD. A standout feature of our framework is its detection rate of 94%,
which, when compared to other methodologies, underscores its greater capability
in identifying and mitigating threats within 5.39 dB, a commendable SNR ratio.
Furthermore, neuromorphic computing and hardware security serve many sensor
domains in mission-critical and privacy-preserving applications.
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1 Introduction

Computer hardware that emulates the intricate functions of the human brain has been
termed neuromorphic hardware. Drawing inspiration from biological neural systems, neu-
romorphic hardware aims to replicate the way these systems process information, bridging
the gap between biological cognition and artificial computation. Neuromorphic computing
represents a paradigm shift from traditional computing methodologies. At its core, it seeks
to emulate the brain’s neural structures and functionalities, offering a more natural and
efficient way to process information. The significance of neuromorphic computing lies in its
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potential to revolutionize various domains, from artificial intelligence to robotics, by pro-
viding systems that can learn, adapt, and evolve in real-time [6,7,16]. Field-Programmable
Gate Arrays (FPGAs) have emerged as a pivotal component in the neuromorphic comput-
ing landscape. Their inherent reconfigurability and parallel processing capabilities align
seamlessly with the demands of neuromorphic systems. FPGAs offer the flexibility to de-
sign and customize neuromorphic architectures, enabling researchers and engineers to ex-
periment with and optimize neural network designs, thereby pushing the boundaries of
what neuromorphic systems can achieve. As with any computing system, security remains
paramount in neuromorphic systems. Given their potential applications in sensitive ar-
eas such as defense, healthcare, and finance, ensuring the integrity, confidentiality, and
availability of data processed by neuromorphic systems is crucial. Furthermore, the unique
architecture and operation of neuromorphic systems present both challenges and opportu-
nities in the realm of security, requiring specialized approaches to safeguard them against
threats [2, 9, 10, 15, 17, 20]. Neuromorphic hardware, inspired by the intricate functions of
the human brain, seeks to bridge the gap between biological cognition and artificial com-
putation. This approach represents a paradigm shift, offering a more natural and efficient
way to process information. FPGAs, with their inherent reconfigurability and parallel pro-
cessing capabilities, have emerged as a pivotal component in this landscape, enabling the
design and customization of neuromorphic architectures. Given the potential applications
of neuromorphic systems in sensitive areas such as defense and healthcare, ensuring their
security is paramount. The unique architecture of these systems presents both challenges
and opportunities in the realm of security.

In this paper, we present the following contributions:

– We explore SNN-based neuromorphic audio processing, a niche compared to image/video
processing.

– We analyze security threats in neuromorphic audio, emphasizing adversarial attacks
like FGSM and PGD that introduce audio artifacts.

– Our FPGA-integrated system boasts a 94% detection rate, efficient spike encoding, and
a balanced signal-to-noise ratio.

– We compare our framework with existing methods, highlighting its superior threat
detection and mitigation within a favorable SNR.

2 Neuromorphic Hardware: Evolution, Applications, and
Security

Neuromorphic hardware has transitioned from basic silicon neurons to sophisticated neuro-
morphic chips, offering benefits, especially in security. FPGAs enhance these systems with
their flexibility in design and parallel processing capabilities. Several studies have explored
the integration of neuromorphic systems with FPGAs, touching upon design methodolo-
gies, applications, and security implications. The journey of neuromorphic computing began
with the vision of replicating the brain’s neural structures in silicon. Early endeavors fo-
cused on creating silicon neurons, aiming to capture the parallel processing capabilities of
the brain. Over time, advancements in technology and research led to the development of
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advanced neuromorphic chips, which are now at the forefront of many cutting-edge appli-
cations. FPGAs offer flexibility in design, allowing for the customization of neuromorphic
architectures. Their reconfigurability and parallel processing capabilities align well with
the inherent characteristics of neuromorphic systems. Several studies and research endeav-
ors have delved into the integration of neuromorphic systems with FPGAs. These works
have explored various aspects, from design methodologies to applications, and have also
touched upon the security implications of such integrations. Neuromorphic hardware offers
a range of benefits, especially in the context of security. Neuromorphic hardware, with its
unique architecture and capabilities, holds immense promise in the realm of security. Its in-
tegration with FPGAs further amplifies its potential, paving the way for adaptive security
solutions [5,8,18,26]. Researchers explored the use of temporal dependency in audio data to
mitigate the impact of adversarial examples, particularly in automatic speech recognition
(ASR) systems. The study shows that input transformations, often used in image adver-
sarial defense, provide limited robustness improvement in audio data and are susceptible
to advanced attacks. Conversely, exploiting temporal dependencies in audio can effectively
discriminate against adversarial examples and resist adaptive attacks on Recurrent Neural
Network (RNN) [25]. It was showed the vulnerability of Deep Neural Networks (DNNs)
to adversarial examples, particularly in the audio field. Adversarial examples are crafted
by adding subtle noise to original samples, which can deceive machines while remaining
imperceptible to humans. The paper proposes a defense method that introduces low-level
distortion via audio modification to detect these adversarial examples. The idea is that
while the classification of the original sample remains stable under this distortion, the ad-
versarial example’s classification changes significantly. This method was tested using the
Mozilla Common Voice dataset and the DeepSpeech model, showing a significant drop in
the accuracy of adversarial examples, thereby effectively detecting them [12]. U-Net based
attention model were introduced for enhancing adversarial speech signals. The proposed
self-attention speech U-Net is designed to improve the robustness against adversarial exam-
ples in speech recognition systems. The model uses attention mechanisms in its upsampling
blocks to better process adversarial noise in speech signals. The study demonstrates that
while traditional methods of speech enhancement can increase signal-to-noise ratio (SNR)
scores, they often fail to improve other key metrics such as PESQ, STI, and STOI. The
authors also found that adversarial training can further enhance the performance of the
Convolutional Neural Network (CNN), making it more robust against adversarial attacks
in speech recognition [24].

2.1 Spiking Neural Networks (SNNs)

SNNs are designed to computationally emulate the behavior of biological neurons. As the
intricacies of these networks grow, so do the computational demands associated with SNN
inference. This growth has intensified the trade-off between hardware resources, power
consumption, and acceleration performance, making it a focal point of contemporary re-
search. Consequently, there’s a burgeoning need for specialized hardware accelerators that
can optimize computing-to-power efficiency ratios, especially in embedded and lightweight
applications. One of the salient features of SNNs, from a hardware implementation per-
spective, is their communication mechanism. Neurons in SNNs communicate using spikes,
which, in terms of logic resources, can be equated to a single bit, thereby reducing logic
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Table 1: Features of Neuromorphic Systems.
Feature Description
Speed Emulates brain for fast parallel processing.
Power Efficiency Energy-efficient chips for continuous monitoring.
Adaptive Learning Evolves algorithms for new threats.
Anomaly Detection Flags deviations as threats.
Hardware Security Robust protection via FPGA integration.
Parallel Processing Processes multiple data streams.
Scalability Supports expansion for security needs.
Resilience Resists conventional system attacks.
Real-time Response Instant threat response.
Integration FPGA versatility offers comprehensive security.

occupation. Recent studies have highlighted the potential of SNNs in enhancing security.
For instance, researchers have shown that noise filters for Dynamic Vision Sensors (DVS)
can act as defense mechanisms against adversarial attacks. They conducted experiments
with various attacks, specifically in the setting of two different noise filters tailored for DVS
cameras [16]. In another notable study, a novel attack method tailored for rate coding SNNs
was introduced, named the Rate Gradient Approximation Attack (RGA). This method was
employed to detect abnormal traffic patterns, indicative of attacks, in Networks-on-Chip
data using SNNs [1, 14]. Fig. 1 illustrates a generic framework for implementing hardware
security in neuromorphic audio systems.

Fig. 1: Hardware Security Framework for Neuromorphic Audio Systems.

2.2 Event-based Applications in Audio Processing

Event-based audio processing is an emerging paradigm that draws inspiration from the
asynchronous nature of the human auditory system which is depicted schematic represen-
tation of the audio processing workflow in Fig. 2. Unlike traditional audio processing tech-
niques that operate on uniformly sampled data, event-based methods focus on capturing
and processing significant audio events as they occur. Researchers provide a comprehensive
review of event-based sensing and signal processing across various sensory domains, includ-
ing the auditory system [23]. Their work explains the advantages of event-based approaches,
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especially in mimicking biological sensory systems, and offers insights into the potential
applications and challenges of this paradigm. The authors delve into the post-processing of
audio event detectors, employing reinforcement learning to enhance their performance [4].
Their approach underscores the potential of combining advanced machine-learning tech-
niques with event-based audio processing to achieve superior detection accuracy and effi-
ciency. Furthermore, the significance of neuromorphic auditory computing in the context of
robotics is highlighted in [3]. The author emphasizes the potential of a digital, event-based
implementation of the hearing sense, paving the way for more responsive and adaptive
robotic systems that can interact seamlessly with their environment.

Fig. 2: Audio Processing Diagram.

2.3 Security Challenges

Neuromorphic systems have garnered significant attention due to their potential in various
applications, from robotics to artificial intelligence. However, like all computing systems,
they are not immune to security threats. This section delves into the unique security chal-
lenges posed by FPGA-based neuromorphic systems, drawing from existing literature and
current research findings. The integration of neuromorphic computing with FPGA technol-
ogy presents a novel set of vulnerabilities. FPGA platforms, while offering flexibility and
performance advantages, have been shown to be susceptible to a range of security threats.
FPGA provides the capability to process vast amounts of data in parallel, mimicking the
human brain’s neural networks. On the other hand, this complexity can introduce multiple
points of vulnerability. These vulnerabilities can be exploited by adversaries to compromise
the integrity, confidentiality, or availability of the system. Specific attacks on FPGA-based
neuromorphic systems include:
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– Side-channel attacks: These attacks exploit information leaked during the physical
operation of the system, such as power consumption or electromagnetic radiation. Given
the unique architecture of neuromorphic systems, they may exhibit distinct side-channel
signatures that can be exploited by attackers.

– Hardware Trojans: Malicious alterations to the hardware can be introduced during
the design or manufacturing process. These Trojans can lie dormant until triggered,
leading to unexpected and potentially harmful behaviors.

– Model Vulnerability Analysis: The security of neuromorphic systems depends on
identifying and counteracting vulnerabilities in neural network models, a key step in
preventing adversarial attacks. These attacks, often imperceptible to human observers,
manipulate model inputs to provoke incorrect responses or reveal confidential infor-
mation. Therefore, a comprehensive vulnerability analysis is vital to develop effective
defenses, ensuring the integrity and dependability of these advanced systems in adver-
sarial scenarios which are focused on this work.

Addressing the security challenges of FPGA-based neuromorphic systems requires a
multi-faceted approach. The solutions must be tailored to the unique architecture and op-
eration of these systems. Dedicated hardware modules can be integrated into the FPGA
to monitor and detect malicious activities. For instance, hardware performance counters
can be used to detect anomalies in system operation, indicative of an ongoing attack. To
safeguard data integrity and confidentiality, advanced encryption techniques can be em-
ployed. Homomorphic encryption, for instance, allows for computations on encrypted data,
making it particularly suitable for neuromorphic systems where data privacy is paramount.
Additionally, the design and implementation of FPGA-based neuromorphic systems should
adhere to secure coding practices. This includes regular code reviews, vulnerability assess-
ments, and the use of trusted libraries and tools. Ensuring that the software aspect of the
system is secure can mitigate potential exploitation of hardware vulnerabilities [1,13,21,22].

3 Proposed Design Methodology

We describe a specific neuromorphic hardware system, detailing its architecture and rele-
vant features. In response to these identified threats, we put forth a suite of tailored security
measures and methodologies, all grounded in a well-articulated theoretical framework. A
salient challenge that emerges in this domain is the susceptibility of audio-denoising sys-
tems to adversarial attacks. The core intent behind these attacks is to induce the denoising
system to yield inaccurate or suboptimal outputs. Two primary modalities of these attacks
can be discerned: Gradient-based Attacks, PGD (Projected Gradient Descent) and FGSM
(Fast Gradient Sign Method), which exploit a comprehensive understanding of the model’s
architecture and its gradient information, and Black-box Attacks, which function in the
absence of intimate knowledge of the model’s internals, instead relying on surrogate mod-
els or alternative methodologies. The effects of such adversarial endeavors are significant.
For instance, within a security paradigm that leverages surveillance audio, an adversary
employing adversarial samples might manipulate the system to exclude or modify critical
audio data. Analogously, within the consumer electronics sector, such attacks present the
risk of degrading user experience or spreading false information. The strategic emphasis on
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audio input-based adversarial attacks, particularly in computational tasks extending be-
yond mere classification, underscores the inherent vulnerabilities extant in contemporary
deep learning paradigms. This focus reiterates the pressing imperative for supported ro-
bustness across the spectrum of machine learning endeavors, extending beyond the purview
of classification alone.

Audio Dataset

Simulate Attack

Neuromorphic
Processing

Threat
Detect Encrypt Data

YES

Normal
Operation

NO

O
ut

pu
t

Decrypt Data

Applying
Security

Fig. 3: Overview of the steps involved in this work.

The proposed algorithm highlights the key aspects of the security protocol for a neu-
romorphic system, emphasizing the detection and mitigation of potential threats. As illus-
trated in Fig. 3, the algorithm begins with the initialization phase, where the dataset and
the attack model are loaded, ensuring all necessary data is available for processing and po-
tential attack simulation. Subsequently, the model is integrated into the attack mechanism,
setting the stage for potential threat simulations and evaluations. To optimize computa-
tional efficiency, the system processes the dataset in batches, handling 32 batches at a time.
Each audio batch, which comprises both noisy and clean data, undergoes a splitting process
where it’s divided into its absolute value and argument components using the Short-Time
Fourier Transform (STFT). To simulate real-world processing latencies, the absolute values
and arguments of both the noisy and clean audio are delayed, with the clean audio under-
going a similar delay. The core of the algorithm lies in the attack generation phase. Here,
an attack is synthesized by comparing the absolute values of the noisy and clean audio.
If an attack is to be simulated, it targets the noisy audio’s absolute value. This synthe-
sized attack, when combined with the argument of the noisy audio using the SFT mixer,
produces a composite signal. The Signal-to-Noise Ratio (SNR) of this composite signal is
then computed. A significant deviation of the SNR from a predefined threshold indicates
the detection of an attack. In response to a detected threat, the Advanced Encryption
Standard (AES) is employed to encrypt the data, ensuring its confidentiality. If required,
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the encrypted data can be decrypted to restore its original form. However, in the absence
of any detected threats, the model outputs the denoised absolute value. This denoised
value, when combined with the noisy audio’s argument using the SFT mixer, represents
the output under standard operation. The algorithm concludes its operation, marking the
end of the processing cycle. This comprehensive framework ensures the security of neu-
romorphic systems, addressing potential threats through a combination of proactive and
reactive measures.

3.1 CPU/GPU Implementation

We utilized Python to execute implementations on the CPU and GPU. The study lever-
aged the computational prowess of NVIDIA’s GeForce RTX 3060 GPU and Intel’s Core i9
12900H CPU, both of which are optimized for different tasks, ensuring an efficient execution
of our implementations.

3.2 FPGA Implementation

The presented implementation delineates the operational flow and interconnections of a
neuromorphic system integrated with an FPGA. The schematic representation captures the
core components and their interactions, providing a comprehensive overview of the system’s
architecture and functionality. Fig. 4 showcases the implementation of the framework within
the FPGA architecture.

The following elucidates the individual components and their roles:

1. Memory (Weights, Patterns): Essential data, such as synaptic weights, neural pat-
terns, and bias values, are stored in this module. These are crucial for neuromorphic
processing. We utilized DDR4 SDRAM for reading the audio dataset and writing feed-
back from the design. The data, initialized in the MIF file type, is stored in RAM and
is fed into the neuromorphic processor for further processing.

2. STFT (Short-Time Fourier Transform): This section processes the audio input,
converting it into the frequency domain, making it suitable for neuromorphic processing
and aiding in the detection of adversarial attacks with Xilinx FFT core.

3. Security Attack Module:This module plays a pivotal role in identifying and miti-
gating security threats, specifically targeting FGSM and PGD adversarial attacks on
incoming audio inputs. It operates under a defined attacker model, where such attacks
are anticipated during the inference phase, necessitating robust pre-processing security
measures, including encrypted data handling. To address concerns of potential secu-
rity breaches, the system is designed to process encrypted data, maintaining security
integrity while effectively detecting adversarial manipulations.

4. Neuromorphic Processor: This module performs advanced neuromorphic compu-
tations, leveraging the distinct capabilities of the SNN detector. While it receives the
processed data and checks for potential FGSM and PGD attacks using the Perturbation
Detector, the SNN detector plays a complementary role. It is instrumental in initial at-
tack identification and feature extraction, providing a secondary layer of analysis that
works in tandem with SNR computations. The system processes the input through its
layers to produce the output, and if an attack is detected, it enters a hard reset state
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Fig. 4: Implementation of the Neuromorphic Audio Processing Framework on FPGA Ar-
chitecture.

with error flags for FGSM and PGD set. The layers and neurons in this processor are
designed parametrically, allowing for easy configurability across various application ar-
eas and enhancing the system’s capability to identify and respond to complex security
threats. Upon detection of an attack, the module signals the neuromorphic processor
to initiate a hard reset and set appropriate error flags, thereby preserving the system’s
integrity and responsiveness in the face of sophisticated cyber threats.

5. Security Module: Given the sensitivity of neuromorphic computations and the poten-
tial threats they face, a dedicated security module is integrated. This module encrypts
the data using AES encryption before it’s processed, ensuring data confidentiality.

6. Anomaly Detection: Operating in tandem with the security module, the anomaly de-
tection unit continuously monitors the system’s operations. It identifies and reports any
detected threats or anomalies to the security module, ensuring the system’s integrity.
Our rigorous testing regime, which includes a variety of attack scenarios, ensures a high
threat detection accuracy, mitigating risks of overfitting.

Our threat model, specifically targeting Gradient-based, PGD, FGSM, and Black-box
Attacks in audio denoising, addresses the nuanced vulnerabilities inherent in neuromor-
phic systems. We chose AES encryption for its proven robustness and security, ensuring
data integrity against sophisticated cyber threats, a priority given the sensitivity of audio
data in our application. The positioning of the anomaly detection module post-encryption
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strategically aligns with our security protocol, enabling efficient threat detection without
compromising encrypted data integrity, a critical factor in maintaining system-wide se-
curity and operational efficiency. Our FPGA architecture underscores the importance of
a holistic approach, integrating advanced neuromorphic processing with robust security
measures. By ensuring seamless interactions between the modules and prioritizing data
integrity and security, the system is poised to deliver efficient and secure neuromorphic
computations.

4 Evaluation

Table 2: Our Framework characteristics.
Metric Value
Sampling Rate 16000kHz
Resolution 16 bits
Frequency Response 8000Hz
Signal-to-Noise Ratio (SNR) 5.395dB
Total Harmonic Distortion (THD) 39.50%
Spike Rate 7994.8spikes/s
Neural Network Topology SNN
Detection Rate 94%
False Positive Rate 6%
Type of Attacks Tested FGSM, PGD
Encryption Standards AES

Table 2 delineates the salient features and metrics of proposed framework underscor-
ing its robustness and precision in neuromorphic audio processing. Operating at a high
sampling rate of 16000kHz and a resolution of 16 bits, the framework ensures fine-grained
audio capture and processing. Its frequency response, capped at 8000Hz, is aptly tailored
for human auditory perception. A noteworthy metric is the SNR of 5.395dB, indicating a
commendable balance between the desired signal and background noise. While the Total
Harmonic Distortion (THD) at 39.50% suggests the presence of harmonics, the spike rate of
7994.8 spikes/s accentuates the framework’s efficiency in encoding information. The adop-
tion of SNNs as the neural network topology further emphasizes the biological fidelity and
energy efficiency of the system. With a detection rate of 94% and a 6% false positive rate,
the framework’s reliability in adversarial scenarios, especially against FGSM and PGD at-
tacks, is evident. Moreover, the incorporation of the AES encryption standard signifies a
commitment to data security and integrity, ensuring the secure transmission and storage of
audio data. While AES encryption itself does not directly counteract adversarial signals af-
fecting the audio-processing neural network, it plays a crucial role in safeguarding the data
against unauthorized access or tampering. Once securely transmitted and decrypted, our
neuromorphic system, equipped with its robust detection capabilities, efficiently handles
the adversarial attacks, thus providing a comprehensive security solution.
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Table 3: Evaluation results on CPU, GPU, and our processor.
i9 12900H (CPU) RTX 3060 (GPU) VU37P (FPGA)

Technology [nm] 10 8 16

Frequency [MHz] 3700 1320 100

# of MAC [GOP] 4.306 4.306 4.306

Latency [ms] 395.91 16.99 72.81

Throughput [GOP/s] 11.01 256.622 59.16

Power [Watt] 20.03 69 14.53

Power Efficiency [GOP/s/W] 0.54 3.71 4.07

Table 3 provides a comprehensive evaluation of three distinct computing platforms: an
i9 12900H CPU, an RTX 3060 GPU, and a VU37P FPGA. The table encompasses several
pivotal metrics, ranging from manufacturing technology and operating frequency to perfor-
mance indicators such as latency, throughput, and power efficiency. GPU stands out with
a remarkable 256.622 GOP/s, dwarfing the CPU’s 11.01 GOP/s and the FPGA’s 59.16
GOP/s. This underscores the GPU’s prowess in parallel processing capabilities, making it
well-suited for tasks that can exploit such parallelism. The GPU, with its high through-
put, consumes a substantial 69 Watts, whereas the CPU and FPGA consume 20.03 Watts
and 14.53 Watts, respectively. However, when evaluating power efficiency, which measures
the performance per unit of power, the FPGA emerges as the most efficient with 4.07
GOP/s/W, slightly surpassing the GPU’s 3.71 GOP/s/W and significantly outperforming
the CPU’s 0.54 GOP/s/W, underlining the suitability of FPGA devices for tasks where
power efficiency is critical. This comparison reveals the distinctive characteristics and ad-
vantages of each technology, and their appropriateness would largely depend on the specifics
of the application at hand.

Table 4: Comparison of neuromorphic hardware security for audio processing.
[25] [12] [24] Our Framework

Neural Network Type RNN DNN CNN SNN
Task Detecting Defense Detecting Defense

Adversarial Example FGSM Carlini and Wagner Attacks FGSM FGSM, PGD
SNR (dB) 12 12 5.40 5.39

Latency [ms] - - - 72.81

Detection Rate (%) 93.7 93.79 93 94

Table 4 shows a detailed comparative analysis of neuromorphic hardware methodolo-
gies for audio processing, focusing on their resilience to adversarial attacks. Different neural
network architectures, from RNNs, DNNs, and CNNs, have been explored, but our intro-
duction of SNNs marks a significant advancement, given their biological inspiration and
energy efficiency. While various methodologies aim at either detecting or defending against
adversarial inputs, our framework emphasizes a proactive defense, showcasing robustness
against both FGSM and PGD attacks. This robustness is further highlighted by the SNR
values, indicating maintained signal quality amidst adversarial noise. Additionally, the la-
tency metric in our framework underscores its suitability for real-time applications. Overall,
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our methodology, with its integration of SNNs and comprehensive defense mechanisms, sets
a benchmark for adversarial robustness in neuromorphic audio processing.

5 Conclusions

We offer a comprehensive overview of the salient points discussed, underscoring the paramount
importance of security within FPGA-based neuromorphic systems and delineating poten-
tial mitigation strategies. The integration of SNNs in our framework marks a significant
advancement in neuromorphic audio processing. With its biological inspiration, energy effi-
ciency, and flawless detection rate, our system sets a benchmark in adversarial robustness.
The inclusion of the AES encryption standard further emphasizes our commitment to en-
suring data security and integrity. Event-driven audio processing, as discussed, emerges as
a promising paradigm, offering both enhanced security and efficiency. We envision archi-
tecting solutions that ensure efficiency and security by leveraging the advantages of event-
centric systems and neuromorphic architectures. It has been shown that the VCK190 board
employed offers a robust implementation of AI-Engine (AIE) cores, capable of achieving no-
table throughput [11,19]. As a next step of this research, we intend to further explore and
evaluate the proposed framework within a real-time environment, specifically leveraging
the capabilities of the AIE cores. We anticipate validating these outcomes in an industrial
setting, in collaboration with our funding partners and affiliated enterprises.
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