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Abstract: Deep neural networks (DNNs) in intelligent point cloud processing have achieved remarkable progress in 
recent years. Most existing methods and models were adopted on either outdoor or indoor scenes while very few previous 
studies were conducted in GNSS-denied environments. In this paper, we carried out a comparative study in semantic 
segmentation outputs using different DNNs in an underground parking lot dataset. Manually labeled indoor point cloud 
data were trained and tested using 7 different DNNs (e.g., PointNet, KPConv, FPConv, BAAF-Net, etc.). Our experiments 
demonstrated how well different DNNs perform in GNSS-denied environments with performance assessments in mIoU, 
Mean Accuracy (mAcc), Overall Accuracy (OA), as well as visualization outputs. The main contribution of this 
comparative study is to compare state-of-the-art DNN algorithms’ performance in semantic segmentation directly on the 
raw indoor mobile laser scanning (iMLS) data from a GNSS-denied underground parking lot and evaluate the 
effectiveness and potentials of different DNNs in underground 3D taskings. Draw upon that, which current algorithms 
are optimal and how future work in GNSS-denied environments can be inspired and implemented would be discussed. 

Keywords: Deep learning, semantic segmentation, indoor point cloud processing, GNSS-denied environment, 
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1. Introduction 
Nowadays, with widespread and profound technological 
advancement in point cloud processing, the applications 
regarding navigation, autonomous parking, digital twins 
development as well as geodata management are getting 
mature [1]. Driven by rapid urbanization and city 
advancement, underground parking lots play as important 
roles in city daily commutes and urban space planning as 
they become great alternatives for relieving space and 
traffic burdens on the ground level. However, the existing 
iMLS datasets are not rich enough to stimulate large-scale 
Public Participatory GIS (PPGIS) collaboration like 
outdoor point cloud datasets. To support the development 
of autonomous driving and parking, there is an increasing 
demand for standardizing 3D point cloud management as 
well as indoor facility planning, especially in a GNSS-
denied environment like underground parking lots. 
However, our current knowledge and understanding are 
insufficient to evaluate how well technologies can be used 
to support accurate planning and 3D geodata tasking in 
underground environments.  
Due to the inherent nature of point clouds such as 
irregularity and lack of orders, automating the taskings and 
fitting optimized DNNs are essential for the development 
of point cloud processing. Since traditional methods 
encounter various barriers in point cloud processing (e.g., 
rule-based and threshold-based models), deep learning-

based approaches, which have great potential in 3D 
taskings, become the mainstream in the field of remote 
sensing. 
In this study, we examine the feasibility and accuracy level 
of semantic segmentation using seven popular existing 
deep neural networks, including PointNet [2], PointNet++ 
[3], SPG [4], KPConv [5], FPConv [6], BAAF-Net [7], and 
Stratified Transformer [8]. 

Table 1. DNNs’ Semantic Segmentation Results on S3DIS, 
ModelNet40, and ScanNet (n: with Normal) 

DNNs 
OA (%) 

S3DIS ModelNet40 ScanNet 
PointNet [2] 78.6 89.2 78.6 

PointNet++ [3] 81.9 90.7/ 91.9n 81.0 
SPG [4] 85.5 73.0 85.5 

KPConv [5] - 79.1 68.0 
FPConv [6] 88.3 68.9 - 

BAAF-Net [7] 88.9 83.1 88.9 
Stratified 

Transformer [8] 91.5 78.1 - 

According to Table 1, the first six models are the 
traditional DNNs that were published before and around 
2021. The Stratified Transformer model [8] in the bottom 
is the only transformer-based DNN that has been used in 
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our comparison study, which is a newly emerging model 
proposed around mid-2022. Even though there are many 
existing research studies related to semantic segmentation, 
many barriers and challenges emerging from indoor point 
cloud processing are still unsolved. Moreover, few 
previous studies attempted to directly detect and segment 
3D objects in GNSS-denied indoor environments. Hence, 
inspiration is needed to be stimulated and elaborated to 
generate better solutions in this emerging field for digital 
twins and autonomous driving. Overall, the key 
contributions of this paper are fourfold: 
1. We performed semantic segmentation directly on 

point clouds collected from GNSS-denied 
environments using seven different state-of-the-art 
DNNs. 

2. We conducted a comparative study based on the 
results of these DNN models. By comparing the 
mean Intersection over Union (mIoUs) and Overall 
Accuracy (OA) from the segmentation results, the 
accuracy of each class has been classified and 
discussed. 

3. Labeling and label re-assembly will be incorporated 
into our work before conducting semantic 
segmentation on this GNSS-denied underground 
parking lot dataset. 

4. Our experiments are expected to inspire future work 
in exploring the feasibility of optimizing models’ 
segmentation performance within GNSS-denied 
environments. 

 

2. RELATED WORK 
Semantic segmentation of point clouds is one of the most 
essential 3D processing tasks for users to better understand 
the patterns and distinguish each class/feature’s global-
local relationships within a certain scene. Present methods 
of deep learning-based semantic segmentation usually 
achieve a global shape embedding based on some point-
wise pre-embedding operations along with an aggregation 
method. Previous works regarding deep learning-based 
semantic segmentation of point clouds have been reviewed 
and presented below. 

Point-based DNNs. The point-based method directly 
works on the irregular points, adopting the point features 
and position information as the inputs, thus keeping the 
extraction results more intact and cutting down the loss of 
information compared to projection-based methods. 
PointNet [2] was designed for effective learning and 
processing the point-wise dispersed information and 
global features, using shared MLPs and symmetrical 
pooling functions respectively. As a point-wise MLP 
method varied from PointNet, PointNet++ [3] captured 
local geometric patterns based on neighboring feature 
pooling. In particular, PointNet++ established a 
hierarchical structure to group the points and aggregate 
features progressively. Point convolution methods tend to 
propose effective convolution operations for the unordered 
and irregular point clouds. Operations of KPConv [5] 

convolution weights are located in Euclidean space by 
kernel points while BAAF-Net [7] accesses the local 
information of large-scale point clouds via a bilateral 
structure. Moreover, different choices of the number of 
kernel points have contributed more flexibility to KPConv 
than normal convolutions with fixed grids. Besides, Lin et 
al. [6] proposed a novel surface-style convolution operator 
namely FPConv to learn local flattening while omitting the 
intermediate representation transformation-like 
approaches based on 3D grids or graphs. FPConv [6] has 
made significant improvements compared to previous 
surface-style convolution-based methods. Graph-based 
semantic segmentation methods are also developed to 
extract the underlying shapes and geometric structures of 
3D point clouds. As an attributed directed graph, SPG [4] 
captured contextual structures of large-scale point clouds, 
implemented by a graph-based convolutional network.  

Transformer-Based DNNs. Transformer and attention-
based algorithms have inspired the development of 2D 
image recognition in recent years [9] and throw light on 
revolutions of 3D point cloud processing. Since point 
clouds are essential sets embedded irregularly in a 
continuous space, Point Transformer [10] attempted to 
build a transformer layer based on a vector self-attention 
to maximize local feature extraction. It used the 
subtraction relation to generate the attention weights and 
enhance position coding, but it also suffered from non-
stationary upon multiple perturbations and information 
redundancy because of the elaborate point-wise 
operations. Moreover, massive linear transformation 
layers may also lead to high computational and memory 
costs [10]. Point Cloud Transformer [11] adopted PointNet 
[2] architecture by replacing the shared MLP layers with 
standard transformer blocks based on the offset-attention 
mechanism. By enhancing input embedding with the 
farthest and neighbor point search, PCT [11] makes 
impressive progress in global feature aggregation in 
semantic segmentation. Although the transformer-based 
architectures [8] [10] [11] have achieved state-of-the-art 
performance in point cloud segmentation, the attempts at 
transformer-based point cloud processing remain limited, 
especially for GNSS-denied underground environments. 

 

3. DATASET 

 
Fig. 1. Overview of the Underground Parking Lot Dataset 
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The dataset used in the study is a GNSS-denied point cloud 
set collected from an underground parking lot using a 
Backpack Laser Scanning (BLS) system [12] by the GIM 
lab, University of Waterloo. For better visualization 
purposes, the entire dataset, which contains approximately 
154,122,306 points, has been sliced into 5 separate kits 
shown in Fig. 1. There are 6 manually categorized classes 
included in this underground parking lot dataset: 

▪ Ground (label 1): the ground surfaces with speed 
rubber bumps and manholes. 

▪ Ceiling (label 2): ceilings and beams on the top of 
parking lots, as well as pipes. 

▪ Column (label 3): all pillar and pole-like objects. 
▪ Vehicle (label 4): includes sedans, SUVs, and trucks. 
▪ Walls (label 5): walls at the boundary and dividing 

walls in the middle of the parking lot. 
▪ Unclassified (label 6): unrecognizable objects. 

Label Re-assembly. Since labels in the raw data are 1-
indexed, the existing labels will be pre-processed to 0-
indexed. Besides, there are some legibility and formatting 
issues in the labels listed in Table 2. All the class labels 
highlighted in bold indicate the need for label alteration. 

Table 2. GNSS-denied underground data and original 
manually label fields (* refers to empty label) 

Kit 00, 01,02,04 Kit 03 Fixed 
Ground - 0 Ceiling - 1 Ground - 0 
Ceiling - 1 Ground - 2 Ceiling -1 

Column - 3 Column - 3 Column - 2 
Vehicle - 4 Vehicle - 4 Vehicle - 3 

Wall - 5 Wall - 5 Wall - 4 
Unclassified - 6 [                ]* Unclassified - 5 

 

 

4. EXPERIMENTS 

Accuracy Assessment.  The metrics that we evaluated in 
the comparative study are overall accuracy (OA), mean 
accuracy (mAcc), mean intersection over union (mIoU), 
and IoU for each class respectively. All experiments were 
carried out on one desktop, the info for the machine is 
listed in Table 3. 

Table 3. Machine Configuration 
 Machine A 

Processor Intel (R) Xeon(R) Silver 4210 
GPU NVIDIA GeForce GTX 1080 Ti 
RAM 6 GB 

To better compare and analyze the semantic segmentation 
results, visualization outputs have been generated along 
with these accuracy factors. In Fig. 2, subsamples of the 
outputs for different DNNs have been demonstrated. The 
first column refers to the raw data presented in the RGB 
format while the second column includes the GT, which is 
the ground truth for training and testing the accuracy of 
each DNN’s performance. Subsamples of semantic 
segmentation outputs for different models were presented 
in the following columns. From the visualization outputs 
in Fig. 2, the result for the SPG model is not ideal as the 
classification for labels “vehicle”, “ground”, and “column” 
are not clear. These have also been reflected in the 
accuracy measure metric in Fig. 2, as mIoU for the SPG is 
only about 42.82%. Besides, mIoUs for the PointNet, 
75.74%, is relatively higher and the visualization is also 
more closely related to the representation in the GT. The 
mIoU for the KPConv is the highest among the three 
models shown in Fig. 2, which is about 77.35%. 

A detailed comparison of the subsample’s visualization in 
PointNet vs. KPConv has been demonstrated in Fig. 3, and 
segmentation differences have been highlighted in green 
boxes. According to the comparison, the PointNet 

RGB GT SPG PointNet KPConv  

     

 

     

     
 mIoU 42.85% 75.74% 77.35%  

Fig. 2. Visualization of Sub-sample of Semantic Segmentation of the Parking Lot Dataset 
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subsample’s errors are mainly in the “column”, where the 
upper column has been segmented as part of the “ceiling”. 
As for the KPConv model, it segmented part of the “wall” 
into the “ceiling” label. Combined with the quantitative 
result shown in Table 4, the performance accuracy for each 
DNN has been illustrated. In PointNet, the mIOU is 
75.74%. The lowest class IoU is “Column” at 72.2% while 
the highest class IoU is “Ground” at 97.8%. Compared to 
PointNet, the IoU in PointNet++ has increased by 8%, to 
83.79% in total. SPG has the lowest mIoU at 42.85%. 
Specifically, it was not effective in segmenting “ceiling” 
(42.16%) and “vehicle” (33.61%), which is the main factor 
that brought down the mIoU in the model. Both KPConv 
and FPConv models performed well in the segmentation 
of the underground parking lot as their mIoUs are 77.35% 
and 76.38% respectively with balanced class IoU for 
segmentation in each individual class. Besides, the BAAF- 
Net model has the highest mIoU (83.61%) while the 
Stratified Transformer (ST) has the highest OA (98.00%) 
among all the DNNs. The mIoU for ST is only 62.07% 
caused by the imbalanced classes. 

Overall, except for the SPG model, all of the other DNNs 
performed well in a GNSS-denied environment. Among 
all the class accuracy in Table 4, the “column” is the class 
that has the lowest mIoU. Performance for this class can 
be optimized by exploring the feasibility of combining 
different DNNs. For instance, combine PointNet++ with 
ST to enhance the class IoU in “column” since ST has an 
excellent performance in segmenting “column” at around 
82.22% in accuracy. Alternatively, since the OA in ST is  

 

the highest, future contributions can be elaborated on 
exploring the feasibility of transformer-based models in 
GNSS-denied environments by combining algorithms in 
different DNNs to optimize the accuracy in the “wall” 
class as it is the only imbalanced class (0%) in ST that 
result a low mIoU. 

5. CONCLUSION 
To sum up, we did the first comparative study in 
investigating the semantic segmentation performances of 
state-of-art DNNs within GNSS-denied environments. 
Based on the output, the mIoUs were mostly negatively 
affected by the accuracy in segmentation of “column” 
label. The BAAF-Net has the highest mIoU (83.61%) with 
high and average IoUs for each class while the ST model 
gets the highest OA (98.00%) with great output in all class 
expect for “wall”.  
Based on the quantitative result, future works can 
contribute to proposing practice measures in refining the 
3D taskings in GNSS-denied environments with optimized 
DNNs. Besides, future contributions should focus on low-
level taskings to generate better-quality underground 
datasets (e.g., through point cloud correction and 
completion). With an optimized and standardized model 
specifically designed for GNSS-denied scenes, better 
solutions for the development of digital twins and 
autonomous driving can be applied in future. After that, we 
shall move to the next stage for exploring, popularizing, 
and commercializing 3D tasks in the industry for 

DNNs OA mAcc mIoU ground ceiling column vehicle wall unclassified 
PointNet [2] 96.35 82.47 75.74 97.8 95.8 72.2 94.3 82.7 11.7 

PointNet++ [3] 96.78 92.15 83.79 97.5 95.0 75.5 96.4 90.3 48.0 
SPG [4] 86.97 50.90 42.85 93.27 42.16 87.05 33.61 1.00 0.00 

KPConv [5] - - 77.35 97.50 95.73 79.33 97.20 93.31 1.03 
FPConv [6] 96.62 - 76.38 97.23 94.65 76.48 96.04 89.87 4.03 

BAAF-Net [7] - - 83.61 97.43 94.30 74.57 96.79 91.39 47.16 
Stratified 

Transformer [8] 98.00 64.22 62.07 97.02 98.01 82.22 95.02 0.00 0.15 

Table 4. Quantitative Result of Segmentation Performance over 7 different DNNs in OA, mAcc, mIoU, and class IoUs 

GT PointNet mIoU 

  

75.74% 

GT KPConv mIoU 

  

77.35 % 

Fig. 3. Ground Truth vs. Visualization of PointNet & KPConv Subsample 
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application in GNSS-denied environments such as 
underground parking lots.  
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