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Abstract. 3D point clouds are rich in geometric structure information,
while 2D images contain important and continuous texture information.
Combining 2D information to achieve better 3D semantic segmentation
has become a mainstream in 3D scene understanding. Albeit the success,
it still remains elusive how to fuse and process the cross-dimensional fea-
tures from these two distinct spaces. Existing state-of-the-art usually
exploit bidirectional projection methods to align the cross-dimensional
features and realize both 2D & 3D semantic segmentation tasks. How-
ever, to enable bidirectional mapping, this framework often requires a
symmetrical 2D-3D network structure, thus limiting the network’s flexi-
bility. Meanwhile, such dual-task settings may distract the network easily
and lead to over-fitting in the 3D segmentation task. As limited by the
network’s inflexibility, fused features can only pass through a decoder
network, which affects model performance due to insufficient depth. To
alleviate these drawbacks, in this paper, we argue that despite its sim-
plicity, projecting unidirectionally multi-view 2D deep semantic features
into the 3D space aligned with 3D deep semantic features could lead to
better feature fusion. On the one hand, the unidirectional projection en-
forces our model focused more on the core task, i.e., 3D segmentation; on
the other hand, unlocking the bidirectional to unidirectional projection
enables a deeper cross-domain semantic alignment and enjoys the flexi-
bility to fuse better and complicated features from very different spaces.
In joint 2D-3D approaches, our proposed method achieves superior per-
formance on the ScanNetv2 benchmark for 3D semantic segmentation.

Keywords: Point cloud · Semantic segmentation · Multi-view fusion.

1 Introduction

Semantic understanding of scenes is essential in numerous fields, including robot
navigation, automatic driving systems, and medical diagnosis. While early re-
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searchers focused on 2D images to achieve scene understanding, fixed-view 2D
images lack spatial structure information and suffer from object occlusion, lim-
iting their use in spatially location-sensitive downstream tasks. In contrast, 3D
point clouds offer a complete spatial structure without object occlusion. How-
ever, traditional 2D neural network-based methodologies cannot be used directly
to deal with 3D data. To address this issue, point-based [21,22,29] and voxel-
based [7,4,33] neural networks have been explored for 3D point cloud recognition
and understanding. Nonetheless, 3D point clouds have low resolution and lack
rich texture information. Thus, a promising solution to jointly understand com-
plex scenes is to combine 2D images with detailed texture information and 3D
point clouds with rich knowledge of geometric structures.

2D-3D fusion schemes for 3D semantic segmentation tasks can be catego-
rized as bidirectional and unidirectional projection. A comparison of network
frameworks between these two schemes is depicted in Fig. 1.

Fig. 1. Comparison of bidirectional & unidirectional projection

The pioneering BPNet [11] utilizes bidirectional projection to allow 2D and
3D features to flow between networks. Nevertheless, in order to mutually fuse
information from 2D to 3D and 3D to 2D, it usually has to exploit a sym-
metrical decoder network. This makes its framework less flexible and could not
take advantage of network depth, thus limiting its performance. Additionally,
in complicated scenes, the 2D semantic component may distract from the core
3D task. To illustrate, we implement the idea of bidirectional projection on our
proposed unidirectional projection framework. Namely, 3D features are also pro-
jected into 2D space combined with 2D features and then input to a complete 2D
encoder-decoder network. On a large-scale complex indoor scene ScanNetv2 [5],
we compare in Fig. 2 the 3D semantic loss on the validation set for unidirectional
and bidirectional projection ideas during model training. Clearly, on the compli-
cated scene of ScanNetv2, the bidirectional projection scheme causes distraction
in the 3D task, where the loss goes up as the training continues. In comparison,
the uni-projection implementation would lead to more stable performance with
the focus mainly on the 3D task. Motivated by these findings, we argue that
projecting unidirectionally multi-view 2D deep semantic features into the 3D
space aligned with 3D deep semantic features can result in better feature fusion
and more potential for downstream tasks like scene understanding.

Previous unidirectional projection methods [3,13] have been proposed in the
literature to fuse 2D deep semantics and 3D shallow information (XYZ & RGB)



Towards Deeper and Better Multi-view Feature Fusion for 3D S.S. 3

Fig. 2. Validation loss for unidirectional & bidirectional projection on validation set of
the benchmark ScanNetv2 data

for 3D semantic segmentation tasks (see the middle graph in Fig. 1). Direct
connection of deep and shallow semantics from different data domains could
however result in the misalignment of the semantic space. To this end, we design
a novel unidirectional projection framework, called the Deep Multi-view Fusion
Network (DMF-Net), to more effectively fuse 2D & 3D features (see the right
graph in Fig. 1). On the implementation front, we evaluate our model on the 3D
semantic segmentation datasets: ScanNetv2 [5] and NYUv2 [25]. DMF-Net not
only achieves top performance for joint 2D-3D methods on the ScanNetv2 bench-
mark, but also achieves state-of-the-art performance on the NYUv2 dataset. Our
contributions can be summarized as follows.

– We argue that the unidirectional projection mechanism is not only more
focused on 3D semantic understanding tasks than bidirectional projection
but also facilitates deeper feature fusion. To this end, we design a method
for uni-directional cross-domain semantic feature fusion to extract 2D & 3D
deep features for alignment simultaneously.

– We propose a novel framework named Deep Multi-view Fusion Network
(DMF-Net) for 3D scene semantic understanding. For the joint 2D-3D ap-
proaches, DMF-Net obtains top mIOU performance on the 3D Semantic
Label Benchmark of ScanNetv2 [5], while it reaches the state-of-the-art on
NYUv2 [25] datasets.

– We demonstrate the flexibility of DMF-Net, where all backbone modules in
the network framework can be replaced. Specifically, 3D semantic segmenta-
tion performance will be stronger with a powerful backbone. Compared with
common U-Net34 [23], the advanced Swin-UNet [2] shows a relative 4.4%
improvement on mIOU in our framework.

2 Related Work

2.1 2D Semantic Segmentation

Image semantic segmentation has been significantly improved by the develop-
ment of deep-learning [12] models. In the field of 2D semantic segmentation, Fully
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Convolution Network (FCN) [18] is a landmark work although it has some limita-
tions. Several Encoder-Decoder-based [23,30,26] structures combined multi-level
information to fine segmentation. Besides, attention-based [2] models capable
of extracting long-range contextual information were introduced into the image
segmentation task. However, the lack of 3D spatial geometry information in 2D
images hinders semantic comprehension of scenes.

2.2 3D Semantic Segmentation

To cope with the structuring problem of point cloud data, one popular research
is to apply projection-based techniques [16,1,27]. However, multi-viewpoint pro-
jections are quite sensitive to the viewpoints chosen. Voxelized point clouds can
be processed by 3D convolution in the same way as pixels in 2D neural networks.
But, high-resolution voxels result in high memory and computational costs, while
lower resolutions cause loss of detail. Consequently, 3D sparse convolutional net-
works [7,4] are designed to overcome these computational inefficiencies. Direct
processing of point clouds [21,22] to achieve semantic segmentation has become
a popular research topic in recent years. However, sparse 3D point clouds lack
continuous texture information, resulting in limited recognition performance of
3D scenes.

2.3 3D Semantic Segmentation Based on Joint 2D-3D data

There has been some research in recent years on 2D and 3D data fusion, which
can be broken down into unidirectional projection networks [6,3,13,15] and bidi-
rectional projection networks [11]. The bidirectional projection network, typified
by BPNet [11], focuses on both 2D and 3D semantic segmentation tasks. Due
to the mutual flow of its 2D and 3D information, its network framework has to
rely on a symmetrical decoding network. In addition to the inflexibility of its
framework, the 2D task introduced by the bi-projection idea will distract the
network from the 3D segmentation task. This is our motivation for choosing a
framework based on the uni-projection idea.

In terms of view selection, 3DMV [6] and MVPNet [13] adopted a scheme
with a fixed number of views, which means the views may not cover the entire
3D scene. In contrast, VMFusion [15] solves narrow viewing angle and occlusion
issues by creating virtual viewpoints, but this approach has high computational
costs that increase with the number of views. With an excellent balance, our
work employs a dynamic view scheme that selects views based on the greedy
algorithm of MVPNet until the view covers more than 90% of the 3D scene
while keeping the scene uncut.

3 Methodology

3.1 Overview

An overview of our DMF-Net pipeline is illustrated in Fig. 3. Each scene data
consist of a sequence of video frames and one point cloud scene. The input
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point cloud is called the original point cloud, while the point cloud formed by
back-projecting all 2D feature maps into 3D space is called a back-projected
point cloud with 2D features. DMF-Net consists of three U-shaped sub-networks,
where the 2D feature extractor is 2D U-Net [23], and the 3D feature extractor
is 3D MinkowskiUNet [4] (M.UNet). Moreover, the encoder-decoder for joint
features is also the 3D M.UNet. Although we set a specific network backbone
in our implementation, different network backbones can also be utilised in our
DMF-Net. The view selection and back-projection modules will be elaborated
in Sec. 3.2 and Sec. 3.3, respectively. As for the feature integration module,
similar to MVPNet [13], it finds k nearest neighbour 2D features for each point
of the original point cloud. Subsequently, it directly concatenates with the deep
3D semantic features of the original point cloud and input to 3D M.UNet for
further learning to predict the semantic results of the entire scene.

Fig. 3. Overview of the proposed DMF-Net

3.2 Dynamic View Selection

Previous work fixed the number of views, which would however cause insufficient
overlaps between all the back-projected RGB-D frames and the scene point cloud.
To make all the back-projected images cover as much of the scene point cloud
as possible, many methods, e.g. MVPNet [13], generally choose to cut the point
cloud scene. This will affect the recognition accuracy of cutting-edge objects. To
this end, we propose a method for dynamic view selection, which sets a threshold
for overlaps to ensure that the scene coverage is greater than 90% so that the
number of views selected for each scene is different. The entire dynamic view
selection algorithm is divided into two stages. The first stage is to construct the
overlapping matrix. In the second stage, the view with the highest degree of
overlap is dynamically selected according to the overlapping matrix cycle.

First, we define an overlapping matrix between the point cloud and video
frames, as shown in Equation (1). This overlapping matrix indicates the rela-
tionship between each point and video frame. The first column lists the indices
of the points, while the first row provides the indices of the frames. The entries
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in the matrix are either 0 or 1, representing non-overlapping and overlapping be-
tween points and frames respectively. Specifically, if a point of the original point
cloud can find the back-projection point of the video frame within a certain range
(1cm), it is determined that the point is an overlapping point. Considering that
each point cloud contains hundreds of thousands of points, we randomly sample
the original point cloud to reduce the computation.



Frame 1 Frame 2 · · · Frame V

Point 1 1 0 · · · 1
Point 2 0 1 · · · 1
Point 3 1 0 · · · 0
...

...
... · · ·

...
Point N 1 0 · · · 1

 (1)

Second, we introduce the concept of scene overlap rate, which is the ratio
between the number of overlap points corresponding to all selected video frames
and the number of points in the down-sampled original point cloud. For each
scene, the scene overlap rate is dynamically calculated after each video frame is
selected. The overlapping matrix will be updated once one view is selected. If
the scene overlap rate exceeds 90%, the selection of video frames is stopped to
ensure excellent coverage of the scene while considering the number of views.

3.3 Unidirectional Projection Module

The video frames in the benchmark ScanNetv2 [5] dataset used in our experi-
ments are captured by a fixed camera and reconstructed into a 3D scene point
cloud. Therefore, we establish a mapping relationship between multi-view im-
ages and 3D point clouds based on depth maps, camera intrinsics, and poses. The
world coordinate system is located where the point cloud scene is located, while
the multi-view pictures belong to the pixel coordinate system. (xw, yw, zw)

T de-
notes a point in the world coordinate system and (u, v)T denotes a pixel point
in the pixel coordinate system. Thus, the formula for converting the pixel coor-
dinate system to the world coordinate system is shown as follows [32].

xw

yw
zw
1

 = ZcK
−1

[
R t
0T 1

]−1
u
v
1

 , (2)

where Zc is the depth value of the image, K is the camera internal parameter
matrix, R is the orthogonal rotation matrix, and t is the translation vector.

To verify our unidirectional projection module, we back-project all the dy-
namically selected multi-view images into 3D space and put them together with
the original point cloud. The visualization results are shown in Fig. 4. Each
color in the back-projected point cloud represents the projected point set for
each view. It is clear to see that all views dynamically selected basically cover
the indoor objects in the whole point cloud scene.
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Fig. 4. Back-projection result Fig. 5. Feature integration method

3.4 Feature Integration

The multi-view images are mapped to the space of the original point cloud using
the unidirectional projection module in Sec. 3.3 to obtain the back-projected
point cloud, each point of which contains 64-dimensional 2D deep semantic fea-
ture, denoted as fj . Here, we define each point of the original point cloud as
pi(x, y, z), as shown in Fig. 5. Specifically, each pi utilizes the K-Nearest Neigh-
bors (KNN) algorithm to find k back-projected points pj(j ∈ K) in the 3D Eu-
clidean distance space. fj is summed to obtain f2d representing the 2D features
of the pi, while pi has obtained the 64-dimensional 3D deep semantic feature f3d
through the 3D feature extractor. Finally, f2d and f3d are directly concatenated
to become a 128-dimensional fusion feature Fi, which is calculated as follows.

Fi = Concat [f2d, f3d] , f2d =
∑

j∈Nk(i)

fj (3)

4 Experiments

4.1 Datasets and Implementation Details

ScanNetv2 [5] is an indoor dataset including 706 different scenes, officially di-
vided into 1201 training and 312 validation scans. Besides, the test set of 100
scans with hidden ground truth is used for benchmark. NYUv2 [25] contains
1449 densely labeled pairs of aligned RGB and depth images. We follow the of-
ficial split of the dataset, using 795 for training and 654 for testing. Since this
dataset has no 3D data, we need to use depth and camera intrinsics to generate
3D point clouds with 2D labels.

The training process can be divided into two stages. In the first stage, 2D im-
ages of ScanNetv2 were utilized to train a 2D feature extractor with 2D semantic
labels. Noted that the original image resolution was downsampled to 320× 240
for model acceleration and memory savings. In the second stage, a 3D network
was trained with the frozen 2D feature extractor. The loss function used in the
experiment is cross-entropy loss. As for the hyperparameter k in the feature
integration module, we followed the previous practice, e.g. MVPNet and set it
to 3. In the ablation study, the network structure of the proposed 3D feature
extractor was set to M.UNet18A and the voxel size was set to 5 cm, which is
consistent with the BPNet setup for a fair comparison. DMF-Net was trained
for 500 epochs using the Adam [14] optimizer. The initial learning rate was set
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to 0.001, which decays with the cosine anneal schedule [19] at the 150th epochs.
Besides, we conduct training on two RTX8000 cards with a mini-batch size 16.

4.2 Comparison with SoTAs on ScanNetv2 Benchmark

Quantitative results We compare our method with mainstream methods on
the test set of ScanNetv2 to evaluate the 3D semantic segmentation performance
of DMF-Net. The majority of these methods can be divided into point-based
methods [22,10,28], convolution-based methods [31,17,29,4]), and 2D-3D fusion-
based methods [6,13,11]. The results are reported in Table 1.

Table 1. Comparison with typical approaches on ScanNetv2 benchmark, including
point-based, convolution-based and 2D-3D fusion-based (marked with *) methods
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P.Net++ [22] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
3DMV* [6] 48.4 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9
FAConv [31] 63.0 60.4 74.1 76.6 59.0 74.7 50.1 73.4 50.3 52.7 91.9 45.4 32.3 55.0 42.0 67.8 68.8 54.4 89.6 79.5 62.7
MCCNN [10] 63.3 86.6 73.1 77.1 57.6 80.9 41.0 68.4 49.7 49.1 94.9 46.6 10.5 58.1 64.6 62.0 68.0 54.2 81.7 79.5 61.8
FPConv [17] 63.9 78.5 76.0 71.3 60.3 79.8 39.2 53.4 60.3 52.4 94.8 45.7 25.0 53.8 72.3 59.8 69.6 61.4 87.2 79.9 56.7
MVPNet* [13] 64.1 83.1 71.5 67.1 59.0 78.1 39.4 67.9 64.2 55.3 93.7 46.2 25.6 64.9 40.6 62.6 69.1 66.6 87.7 79.2 60.8
DCM-Net [24] 65.8 77.8 70.2 80.6 61.9 81.3 46.8 69.3 49.4 52.4 94.1 44.9 29.8 51.0 82.1 67.5 72.7 56.8 82.6 80.3 63.7
KP-FCNN [28] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
M.UNet [4] 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
BPNet* [11] 74.9 90.981.8 81.1 75.2 83.9 48.5 84.2 67.3 64.4 95.7 52.8 30.5 77.3 85.9 78.881.8 69.3 91.6 85.6 72.3
Ours* 75.2 90.6 79.3 80.2 68.9 82.5 55.686.768.1 60.2 96.055.536.577.9 85.9 74.7 79.5 71.791.785.676.4

DMF-Net achieves a significant mIOU performance improvement compared
with point-based methods which are limited by their receptive field range and
inefficient local information extraction. For convolution-based methods, such as
stronger sparse convolution, M.UNet can expand the range of receptive fields.
Our method outperforms M.UNet by a relative 2.2% on mIOU because 2D tex-
ture information was utilized. DMF-Net shows a relative improvement of 17.3%
on mIOU compared to MVPNet, a baseline unidirectional projection scheme.
Such improvement can be attributed to the fact that the feature alignment prob-
lem of MVPNet is alleviated. Especially, our unidirectional projection scheme
DMF-Net is significantly better than the bidirectional projection method BP-
Net, one state-of-the-art in 2D-3D information fusion. The inflexibility of the
BPNet framework limits its performance, while the high flexibility of our net-
work framework enables further improvements.

Qualitative Results We compare the pure 3D sparse convolution M.UNet, the
joint 2D-3D approach BPNet, and our method DMF-Net to conduct inference on
the validation set of ScanNetv2. The visualization results are shown in Figure 6.

As indicated by the red boxes, the 3D-only method M.UNet does not discrim-
inate well between smooth planes or objects with insignificant shape differences,
such as windows, doors, pictures, and refrigerators. This may due to the low
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Fig. 6. Qualitative results of 3D semantic segmentation

resolution of the 3D point cloud and the lack of texture information for smooth
planes. Despite the joint 2D-3D approach used by BPNet, the segmented objects
are usually incomplete, owing that the bidirectional projection network distracts
the core task, i.e. the 3D semantic segmentation.

4.3 Ablation Study and Analysis

Ablation for 2D-3D Fusion Effectiveness We first fuse 2D deep semantic
features with 3D shallow semantic features (i.e. each point contains XYZ and
RGB), followed by 3D sparse convolution. As shown in Table 2, the 3D semantic
segmentation performance mIOU is improved from 66.4 to 70.8, indicating that
2D semantic features can benefit the 3D semantic segmentation task. The direct
fusion of 2D deep semantic features with 3D shallow geometric features will cause
misalignment in the semantic depth space affecting the network’s performance.
For this reason, our DMF-Net adds a 3D feature extractor based on the above
framework so that 2D & 3D features are fused and aligned in semantic depth. As
shown in Table 2, the feature-aligned model (V2) has a relative improvement of
1.3% on mIOU performance compared to the unaligned model (V1). In addition,
we get a relative 4.4% on mIOU improvement with the stronger attention-based
2D backbone Swin-UNet [2] (V3) compared with the common U-Net34 model
(V2). It is worth mentioning that the voxel size is sensitive to the performance
of 3D sparse convolution. We adopt a deeper 3D sparse network, M.UNet34C,
and set the voxel size to 2cm to obtain better results, as V4 shown in Table 2.
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Table 2. 2D & 3D semantic segmentation on the vali-
dation set of ScanNetv2

Methods Voxel Size mIOU
2D 3D

U-Net34 [23] - 60.7 -
Swin-UNet [2] - 68.8 -
M.UNet18A [4] 5cm - 66.4
Ours V1 (U-Net34 + XYZ & RGB) 5cm - 69.9
Ours V2 (U-Net34 + M.UNet18A) 5cm - 70.8
Ours V3 (Swin-UNet + M.UNet18A) 5cm - 73.9
Ours V4 (Swin-UNet + M.UNet34C) 2cm - 75.6

Table 3. 3D Seman-
tic segmentation re-
sults on NYUv2 [25]

Methods Mean Acc
SceneNet [8] 52.5
D3SM [9] 54.3

S.Fusion [20] 59.2
Scannet [5] 60.7
3DMV [6] 71.2
BPNet [11] 73.5
DMF-Net 78.4

Ablation for Projection Methods We conduct further ablative experiments
to verify that the unidirectional projection scheme is more focused on the 3D
semantic segmentation task than the bidirectional projection. Using the same
framework in Figure 3, we project 3D features into the 2D deep semantic feature
space. Essentially, we apply a projection method similar to Sec. 3.3, which is an
opposite process. Meanwhile, the 2D-3D feature fusion is the same as in Sec. 3.4.
After 3D features are fused with multi-view features, semantic labels are output
through a U-Net34 Network. Hence 2D cross-entropy loss is introduced on the
total loss of the model. To avoid focusing too much on the optimization of 2D
tasks, we multiply the 2D loss by a weight of 0.1, the same with BPNet. At
this time, the new 2D model parameters for training no longer freeze, and the
learning rate of all 2D models is 10 times lower than that of the 3D model.

Our experiments show that the bidirectional projection model overfits when
it is trained to the 200th epoch, as seen from the 3D validation loss in Figure 2.
Meanwhile, the 3D mIOU of bidirectional projection only reaches 70.6, which is
lower than the performance of the simple unidirectional projection (70.8). As the
2D task is also introduced, the increased learning parameters and the difficulty
in adjusting the hyperparameters made it difficult for the model to focus more on
3D tasks. In this sense, unidirectional projection can focus more on 3D semantic
segmentation tasks than bidirectional projection, leading to better flexibility.

4.4 DMF-Net on NYUv2

To verify the generalization ability, we conduct experiments on another popu-
lar RGB-D dataset, NYUv2 [25]. We report a dense pixel classification mean
accuracy for DMF-Net, obtaining a significant performance improvement com-
pared to other typical methods, especially joint 2D-3D methods, e.g. 3DMV [6]
and BPNet [11]. As seen in Table 3, our DMF-Net gains a relative 6.6% per-
formance improvement compared to the state-of-the-art BPNet [11]. This result
demonstrates the strong generalization capability of the DMF-Net.
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5 Conclusions and Future work

In our work, we propose a Deep Multi-view Fusion Network (DMF-Net) based on
a unidirectional projection method to perform 3D semantic segmentation utiliz-
ing 2D continuous texture information and 3D geometry information. Compared
with the previous 2D-3D fusion methods, DMF-Net enjoys a deeper and more
flexible network. Thus DMF-Net enables improved segmentation accuracy for ob-
jects with little variation in shape, effectively compensating for the limitations
of pure 3D methods. In addition, DMF-Net achieves the superior performance
of the joint 2D-3D method in the ScanNetv2 benchmark. Moreover, we obtain
significant performance gains over previous approaches on the NYUv2 dataset.
Currently, the number of dynamically selected multi-view images in DMF-Net is
relatively large in order to cover the full 3D scene. In the future, we will explore
efficient view selection algorithms so that even a few image inputs could achieve
the full coverage of the 3D scene.
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