On the Tractability of Un/Satisfiability

Latif Salum

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

On the Tractability of Un/Satisfiability

Latif Salum (c)
Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
latif.salum@deu.edu.tr \& latif.salum@gmail.com

Abstract

This paper shows $\mathbf{P}=\mathbf{N P}$ via exactly-1 3SAT (X3SAT). Let $\phi=\bigwedge C_{k}$ be some X3SAT formula. $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is a clause denoting an exactly- 1 disjunction \odot of literals $r_{i}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\} . C_{k}$ is satisfied iff $\left(r_{i} \wedge \bar{r}_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge r_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge \bar{r}_{j} \wedge r_{u}\right)$ is satisfied, because any C_{k} contains exactly one true literal by the definition of X3SAT. Let $\phi\left(r_{j}\right):=r_{j} \wedge \phi$. Then, r_{j} leads to reductions due to \odot of some $C_{k}=\left(\bar{x}_{i} \odot r_{j} \odot x_{u}\right)$ into $c_{k}=x_{i} \wedge r_{j} \wedge \bar{x}_{u}$, and some $C_{k}=\left(\bar{r}_{j} \odot r_{u} \odot r_{v}\right)$ into $C_{k^{\prime}}=\left(r_{u} \odot r_{v}\right)$. As a result, r_{j} transforms ϕ into $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$, unless $\not \models \psi\left(r_{j}\right)$, that is, unless $\psi\left(r_{j}\right)$ involves a contradiction $x_{i} \wedge \bar{x}_{i}$. Also, $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ become disjoint, where $\psi\left(r_{j}\right)=\bigwedge\left(c_{k} \wedge C_{k^{\prime}}\right)$ for $\left|C_{k^{\prime}}\right|=1$, and $\phi^{\prime}\left(r_{j}\right)=\bigwedge\left(C_{k} \wedge C_{k^{\prime}}\right)$. It is trivial to verify $\not \models \psi\left(r_{j}\right)$ and redundant to verify $\not \models \phi^{\prime}\left(r_{j}\right)$, thus easy to verify $\not \models \phi\left(r_{j}\right)$. A proof is sketched as follows. ϕ transforms into $\psi \wedge \phi^{\prime}$ such that whenever $\not \models \psi\left(r_{j}\right), \bar{r}_{j}$ is placed in ψ, and leads to reductions of some C_{k} in ϕ^{\prime}. If ψ involves $x_{j} \wedge \bar{x}_{j}$, then ϕ is unsatisfiable. Otherwise, ϕ is satisfiable, because ϕ is composed of $\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$, and all $\psi($. are disjoint and satisfied. Note that $r_{i} \vDash \psi\left(r_{i}\right)$ and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid\right.$.) for any r_{i} in ϕ^{\prime}. Thus, $\phi^{\prime}\left(r_{i}\right)$ is satisfiable, because $\phi \equiv \psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$, where $\psi\left(r_{i}\right)$ and $\phi^{\prime}\left(r_{i}\right)$ are disjoint. Therefore, it is redundant to check if $\not \models \phi^{\prime}\left(r_{i}\right)$ to verify $\not \models \phi\left(r_{i}\right)$, QED. The time complexity is $O\left(m n^{3}\right)$. Therefore, $\mathbf{P}=\mathbf{N P}$.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity theory and logic
Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT
Digital Object Identifier 10.4230/LIPIcs...
Acknowledgements I would like to thank Javier Esparza, Anuj Dawar, Avi Wigderson, Paul Spirakis, and Éva Tardos, as well as anonymous reviewers for their comments and contributions throughout the development of the paper since 2008. I would like to thank Csongor Csehi from the Building Bridges II Conference. I would like to thank the faculty of the Department of Mathematics of Dokuz Eylül University, as well as my colleagues at the Industrial Engineering Department.

1 Introduction: Effectiveness of X3SAT in proving $\mathbf{P}=\mathrm{NP}$

As is well known, $\mathbf{P}=\mathbf{N P}$, if there exists an efficient algorithm for any one of NP-complete problems. That is, their algorithmic efficiency is equivalent. Nevertheless, some NP-complete problem features algorithmic effectiveness, if it incorporates an effective tool to develop an efficient algorithm. That is, a particular problem can be more effective to prove $\mathbf{P}=\mathbf{N P}$. This issue might also be related to "complexity reductions" (Lipton and Regan [1]). They state these reductions are needed to understand what the $\mathbf{P}=\mathbf{N P}$ problem is really about.

The paper shows that one-in-three SAT, which is NP-complete [3], features algorithmic effectiveness to prove $\mathbf{P}=\mathbf{N P}$. This problem is also known as exactly-1 3SAT (X3SAT). It incorporates "exactly-1 disjunction", denoted by \odot, the tool used to develop an efficient (or a polynomial time) algorithm, which "scans" an X3SAT formula ϕ, thus is called the ϕ scan.

If $\not \models \phi\left(r_{j}\right)$, that is, $\phi\left(r_{j}\right)$ is unsatisfiable, then r_{j} is incompatible, where $\phi\left(r_{j}\right):=r_{j} \wedge \phi$ and $r_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$. The ϕ scan removes each incompatible r_{j} from ϕ, thus verifies compatibility of any r_{i} for satisfying ϕ. When each r_{j} incompatible is removed, ϕ is unsatisfiable, or satisfiable. If ϕ is satisfiable, then any r_{i} becomes compatible to participate in a satisfying assignment.

Let $\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be an X3SAT formula, in which a clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is an exactly-1 disjunction of literals. C_{k} is satisfied by definition iff exactly one of r_{i}, r_{j}, or r_{u} is true. Note that $\left(r_{i} \vee r_{j} \vee r_{u}\right)$ in a 3SAT formula is satisfied iff at least one of them is true.

© Latif Salum
licensed under Creative Commons License CC-BY
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Incompatibility of r_{i} is checked by a deterministic chain of reductions of some C_{k} in $\phi\left(r_{i}\right)$. Consider $\phi\left(x_{j}\right):=x_{j} \wedge \phi$. Then, the reductions are initiated by x_{j}, and followed by $\neg \bar{x}_{j}$, since $x_{j} \Rightarrow \neg \bar{x}_{j}$. That is, each $\left(x_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ collapses to $\left(x_{j} \wedge x_{i} \wedge \bar{x}_{u}\right)$ due to $x_{j} \Rightarrow x_{j} \wedge \neg \bar{x}_{i} \wedge \neg x_{u}$, since there is exactly one (negated) variable that is true in any C_{k} by the definition of X3SAT. Also, each $\left(\bar{x}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ shrinks to $\left(\bar{x}_{u} \odot x_{v}\right)$ due to $\neg \bar{x}_{j}$. As a result, x_{j} transforms ϕ into $\phi\left(x_{j}\right)=x_{j} \wedge x_{i} \wedge \bar{x}_{u} \wedge \phi^{*}$, and $x_{i} \wedge \bar{x}_{u}$ proceeds the reductions in ϕ^{*}, which involves ($\bar{x}_{u} \odot x_{v}$).

The reductions over $\phi_{s}\left(x_{j}\right)$ terminate iff x_{j} transforms ϕ_{s} into $\psi_{s}\left(x_{j}\right) \wedge \phi_{s}^{\prime}\left(x_{j}\right)$, in which $\psi_{s}\left(x_{j}\right)$ and $\phi_{s}^{\prime}\left(x_{j}\right)$ are disjoint, where s denotes the current scan, and $\psi_{s}\left(x_{j}\right)$ is a conjunction of (negated) variables that are true. They are interrupted iff $\psi_{s}\left(x_{j}\right)$ involves $x_{i} \wedge \bar{x}_{i}$, hence $\not \models \phi_{s}\left(x_{j}\right)$, thus x_{j} is incompatible. Note that $\not \models \phi_{s}($.$) is verified only by \not \models \psi_{s}($.$) (see Figure 1).$

The reductions over ϕ terminate iff ϕ transforms into $\psi \wedge \phi^{\prime}$, in which ψ and ϕ^{\prime} are disjoint, where $\psi=\bar{x}_{5} \wedge x_{n} \wedge \cdots \wedge \bar{x}_{2}$ (Figure 1). Then, ϕ is updated, that is, $\phi \leftarrow \phi^{\prime}$. The ϕ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some s and i, thus $\not \models \phi$, that is, ϕ is unsatisfiable.

Figure 1 The ϕ_{s} scan: $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely by $\not \models \psi_{s}\left(r_{j}\right)$ —whether or not $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ is ignored
\triangleright Claim 1. $\not \models \phi\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s. That is, it is redundant to check whether or not $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$. Thus, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right)$ due to $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Then, $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$. Therefore, ϕ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for any r_{i}, that is, iff the ϕ_{s} scan terminates.

Sketch of proof. $\psi\left(r_{i}\right) / \psi\left(r_{i} \mid r_{j}\right)$ is constructed over $\phi / \phi^{\prime}\left(r_{j}\right)$, thus $\psi\left(r_{i}\right)$ covers $\psi\left(r_{i} \mid r_{j}\right)$, hence $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ holds. Because $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ are disjoint, $\psi\left(r_{j}\right)$ and $\psi\left(r_{i} \mid r_{j}\right)$ are disjoint (see Figure 2). Therefore, $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ form disjoint minterms $\psi()=.\bigwedge r_{i}$ over ϕ such that $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ hold, since $\psi\left(r_{i}\right)$ is true for any r_{i} (the ϕ_{s} scan terminates), and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid\right.$.) holds. Thus, ϕ is composed of $\psi($.$) that are disjoint and satisfied (see Figure 3), hence \phi$ is satisfied. \triangleleft

Figure $2 \psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$, and $\psi\left(r_{j}\right)$ and $\psi\left(r_{i} \mid r_{j}\right)$ are disjoint, thus $\psi\left(r_{j}\right) \wedge \psi\left(r_{i} \mid r_{j}\right)$ is true
A satisfying assignment α is constructed by composing $\psi($.$) that are disjoint and satisfied.$ For example, $\alpha=\left\{\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right), \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)\right\}$ (see Figure 3).

Figure $3 \psi\left(r_{i_{1}}\right) \vDash \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}}\right) \vDash \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}}\right) \vDash \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$

2 Basic Definitions

This section gives basic definitions, which are based on exactly-1 disjunction, denoted by \odot.

- Definition 2. A literal r_{i} is a variable x_{i} assigned true, or a negated variable \bar{x}_{i} assigned true. That is, $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$, in which $x_{i}=\mathbf{T}$ and $\bar{x}_{i}=\mathbf{T}$.
- Definition 3. A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ denotes an exactly-1 disjunction of literals.
- Definition 4. $c_{k}=\bigwedge r_{i}$ denotes a minterm, a conjunction of r_{i}, where r_{i} is called a conjunct.
- Definition 5. $\varphi=\psi \wedge \phi$ denotes an X3SAT formula such that $\psi=\bigwedge c_{k}$ and $\phi=\bigwedge C_{k}$.

Where appropriate, C_{k}, as well as ψ, is denoted by a set. Thus, $\varphi=\psi \wedge \phi$ the formula, that is, $\varphi=\psi \wedge C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, is denoted by $\varphi=\left\{\psi, C_{1}, C_{2}, \ldots, C_{m}\right\}$ the family of sets.

- Definition 6. $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is satisfied iff $\left(r_{i} \wedge \bar{r}_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge r_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge \bar{r}_{j} \wedge r_{u}\right)$ is satisfied, since any clause C_{k} contains exactly one true literal by the definition of X3SAT.
- Definition 7 (Incompatibility). r_{i} in some C_{k} is incompatible, denoted by $\neg r_{i}$, iff r_{i} leads to a contradiction $x_{j} \wedge \bar{x}_{j}$, that is, $r_{i} \wedge \varphi$ is unsatisfiable, hence r_{i} is removed from every C_{k} in ϕ.
- Remark. Each x_{i} and \bar{x}_{i} in ϕ is assumed to be compatible, thus no C_{k} contains $\neg x_{i}$, or $\neg \bar{x}_{i}$, while any r_{i} in ψ is necessarily true by Definition $4 / 5$, thus denotes a conjunct, to satisfy φ. \checkmark Note 8. If $r_{i} \in \psi$, then $r_{i} \Rightarrow \neg \bar{r}_{i}$, that is, \bar{r}_{i} becomes incompatible, and is removed from ϕ. If $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, hence $\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}$, then $\neg r_{i} \Rightarrow \bar{r}_{i}$, that is, \bar{r}_{i} becomes a conjunct ($\bar{r}_{i} \in \psi$). - Definition 9. $\mathfrak{L}=\{1,2, \ldots, n\}$ denotes the index set of the literals $r_{i}, \mathfrak{C}=\{1,2, \ldots, m\}$ denotes the index set of the clauses C_{k}, and $\mathfrak{C}^{r_{i}}=\left\{k \in \mathfrak{C} \mid r_{i} \in C_{k}\right\}$ denotes C_{k} containing r_{i}.
- Example 10. $\varphi=\bar{x}_{4} \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(\bar{x}_{3} \odot \bar{x}_{4}\right)$, in which \bar{x}_{4} is necessary for satisfying φ, thus $\psi=\left\{\bar{x}_{4}\right\}, \mathfrak{C}^{\bar{x}_{4}}=\{2\}$, and $C_{1}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}$ denotes either $x_{1}=\mathbf{T}$ or $\bar{x}_{2}=\mathbf{T}$ or $x_{3}=\mathbf{T}$.
- Definition 11 (Collapse). A clause $C_{k}=\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$ is said to collapse to the minterm $c_{k}=\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$, if r_{i} is necessary, denoted by $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$.
- Definition 12 (Shrinkage). A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is said to shrink to another clause $C_{k^{\prime}}=\left(r_{j} \odot r_{u}\right)$, if $\neg r_{i}\left(r_{i}\right.$ the incompatible is removed), denoted by $\left(r_{i} \odot r_{j} \odot r_{u}\right) \mapsto\left(r_{j} \odot r_{u}\right)$.
- Definition 13 (Compatibility of $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$ over ϕ). $\phi\left(r_{i}\right)=r_{i} \wedge \phi$ for any $r_{i} \in C_{k}$ in ϕ.
- Note 14 (Reduction). The collapse or shrinkage denotes a reduction. If $r_{i} \in \psi$, then r_{i} leads to reductions over ϕ, thus $\varphi \rightarrow \varphi^{\prime}$. That is, $\varphi \rightarrow \varphi^{\prime}$ iff $C_{k} \searrow c_{k}$ or $C_{k} \mapsto C_{k^{\prime}}$ for C_{k} in ϕ. Since r_{i} is necessary for $\phi\left(r_{i}\right)$, it leads to reductions over $\phi\left(r_{i}\right)$. Then, $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \mapsto\left(r_{v} \odot r_{y}\right)$ and $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, because $r_{i} \Rightarrow \neg \bar{r}_{i}$ such that $r_{i} \Rightarrow r_{i} \wedge \bar{x}_{j} \wedge x_{u}$ holds over some $C_{k}=\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$, since $r_{i} \Rightarrow \neg x_{j} \wedge \neg \bar{x}_{u}$, thus $\neg x_{j} \Rightarrow \bar{x}_{j}$ and $\neg \bar{x}_{u} \Rightarrow x_{u}$ (see Definition 6/7).
- Definition 15. ϕ denotes a general formula if $\left\{x_{i}, \bar{x}_{i}\right\} \nsubseteq C_{k}$ for any $i \in \mathfrak{L}$ and $k \in \mathfrak{C}$, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset . \phi$ denotes a special formula if $\left\{x_{i}, \bar{x}_{i}\right\} \subseteq C_{k}$ for some k, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\{k\}$.
- Lemma 16 (Conversion of a special formula). Each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$ for any $i \in \mathfrak{L}$, if $\phi=\bigwedge C_{k}$ is a special formula.
Proof. ϕ is unsatisfiable due to $r_{j} \Rightarrow \bar{x}_{i} \wedge x_{i}$. Then, $x_{i} \vee \bar{x}_{i} \Rightarrow \bar{r}_{j}$. That is, \bar{r}_{j} is necessary for satisfying $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$, which is sufficient also, thus \bar{r}_{j} is equivalent to C_{k}. Therefore, each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$.

Example 17. $\varphi=\left(x_{2} \odot \bar{x}_{1}\right) \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{2}\right)$ is a special formula due to $C_{3}=\left\{x_{1}, \bar{x}_{2}, x_{2}\right\}$. Note that $\mathfrak{C}^{\bar{x}_{2}} \cap \mathfrak{C}^{x_{2}}=\{3\}$. Then, φ is converted by replacing the clause C_{3} with the conjunct \bar{x}_{1}. As a result, $\varphi \leftarrow \bar{x}_{1} \wedge\left(x_{2} \odot \bar{x}_{1}\right) \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right)$. Likewise, if $\varphi=$ $\left(x_{3} \odot \bar{x}_{4} \odot x_{4}\right) \wedge\left(\bar{x}_{3} \odot x_{2} \odot \bar{x}_{2}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$, then $\varphi \leftarrow \bar{x}_{3} \wedge x_{3} \wedge\left(x_{2} \odot \bar{x}_{1}\right)$, which is unsatisfiable.

3 The φ Scan

The φ scan asserts that φ is satisfiable iff x_{i} or \bar{x}_{i} is compatible (Definition 13) for all $i \in \mathfrak{L}$. Hence, we need to show that $\phi\left(x_{1}\right)$ or $\phi\left(\bar{x}_{1}\right)$, and $\phi\left(x_{2}\right)$ or $\phi\left(\bar{x}_{2}\right)$, and \cdots and $\phi\left(x_{n}\right)$ or $\phi\left(\bar{x}_{n}\right)$ are satisfied. If φ is satisfiable, then a satisfying assignment is determined (see Section 3.4).
$\not \models \varphi$ denotes φ is unsatisfiable, and $\vDash_{\alpha} \varphi$ denotes that $\alpha=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is a satisfying assignment for $\varphi . \psi \vDash \psi^{\prime}$ denotes that ψ entails ψ^{\prime}, and $\psi \vdash \psi^{\prime}$ denotes that ψ proves ψ^{\prime}.
φ_{s} for $s \geqslant 2$ denotes the current formula at the $s^{\text {th }}$ scan/step such that $\varphi:=\varphi_{1}$, after $\neg r_{j}$ holds in ϕ_{s-1} (see Definition 7). Then, $\phi_{s}^{r_{i}}=\left(r_{i k_{1}} \odot r_{u_{1} k_{1}} \odot r_{u_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{i k_{r}} \odot r_{v_{1} k_{r}} \odot r_{v_{2} k_{r}}\right)$ denotes the formula over clauses $C_{k} \ni r_{i}$ in ϕ_{s}, where $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Hence, $\mathfrak{C}_{s}^{r_{i}}=\left\{k_{1}, \ldots, k_{r}\right\}$.
$\tilde{\psi}_{s}\left(r_{i}\right)$ is called the local effect of r_{i}, and $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is the effect of $\neg r_{i}$. $\tilde{\varphi}_{s}\left(r_{i}\right)$ denotes its overall effect such that $\tilde{\varphi}_{s}\left(r_{i}\right)=\tilde{\psi}_{s}\left(r_{i}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{i}\right)$, specified below. Also, $\tilde{\psi}_{s}\left(r_{i}\right)=\Lambda\left(c_{k} \wedge C_{k}\right)$ such that $\left|C_{k}\right|=1$. Moreover, $\tilde{\phi}_{s}\left(\neg r_{i}\right)=\bigwedge C_{k}$ such that $\left|C_{k}\right|>1$, or $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is empty.

3.1 Introduction: Incompatibility and Reductions

Example 18 (19) introduces incompatibility (reductions over ϕ), which drive the φ scan.

- Example 18. Consider $\phi\left(x_{1}\right)$ over $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Thus, x_{1} is necessary for $\phi\left(x_{1}\right)$, hence $x_{1} \vDash \tilde{\psi}\left(x_{1}\right)$ such that $\tilde{\psi}\left(x_{1}\right)=\left(x_{1} \wedge x_{3}\right) \wedge\left(x_{1} \wedge x_{2} \wedge \bar{x}_{3}\right)$. That is, $x_{1} \Rightarrow \neg \bar{x}_{3}$ holds over $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, hence $\neg \bar{x}_{3} \Rightarrow x_{3}$. Likewise, $x_{1} \Rightarrow \neg \bar{x}_{2} \wedge \neg x_{3}$ holds over $\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$, hence $\neg \bar{x}_{2} \Rightarrow x_{2}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$ (see Note 14). Thus, $\tilde{\varphi}\left(x_{1}\right)=\tilde{\psi}\left(x_{1}\right) \wedge \tilde{\phi}\left(\neg \bar{x}_{1}\right)$ becomes the overall effect, where $\tilde{\phi}\left(\neg \bar{x}_{1}\right)$ is empty. Then, the reductions initiated by x_{1} over $\phi\left(x_{1}\right)$ are to proceed due to x_{2}. Nevertheless, they are interrupted by $x_{3} \wedge \bar{x}_{3}$ due to $\tilde{\psi}\left(x_{1}\right)$. Hence, $\phi\left(x_{1}\right)=\tilde{\varphi}\left(x_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$ is unsatisfiable, thus x_{1} is incompatible for φ, i.e, $\neg x_{1} \Rightarrow \bar{x}_{1}$.
- Example 19. \bar{x}_{1} initiates reductions over ϕ (Note 14). Then, $\tilde{\psi}\left(\bar{x}_{1}\right)=\bar{x}_{1} \wedge \bar{x}_{3}, \tilde{\phi}\left(\neg x_{1}\right)=$ $\left(\bar{x}_{2} \odot x_{3}\right)$, and $\tilde{\varphi}\left(\bar{x}_{1}\right)=\tilde{\psi}\left(\bar{x}_{1}\right) \wedge \tilde{\phi}\left(\neg x_{1}\right)$ to define $\varphi_{2}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $\left(x_{2} \odot \bar{x}_{3}\right)$ is beyond $\tilde{\varphi}\left(\bar{x}_{1}\right)$ the overall effect. Note also that $\left\{\bar{x}_{3}\right\} \notin \tilde{\phi}\left(\neg x_{1}\right)$, while $\bar{x}_{3} \in \tilde{\psi}\left(\bar{x}_{1}\right)$, because $C_{1} \longmapsto c_{1}$, since $\tilde{\phi}\left(\neg x_{1}\right)$ contains no singleton. Then, φ_{2} is the current formula due to the first reduction by \bar{x}_{1} over ϕ. Thus, $\varphi \rightarrow \varphi_{2}$ due to $\left(x_{1} \odot \bar{x}_{3}\right) \mapsto\left(\bar{x}_{3}\right)$ and $\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\varphi_{2}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, in which $\psi_{2}=\left\{\bar{x}_{1}, \bar{x}_{3}\right\}$ denotes the conjuncts, and $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$ denote the clauses. Note that $\mathfrak{C}_{2}^{x_{3}}=\{1\}$ and $\mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$. Likewise, \bar{x}_{3} leads to the next reduction over $\phi_{2}: \tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left(\bar{x}_{2} \wedge \bar{x}_{3}\right), \tilde{\phi}_{2}\left(\neg x_{3}\right)$ is empty, and $\tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\tilde{\psi}_{2}\left(\bar{x}_{3}\right) \wedge \tilde{\phi}_{2}\left(\neg x_{3}\right)$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ due to $\left(x_{2} \odot \bar{x}_{3}\right) \searrow\left(\bar{x}_{2} \wedge \bar{x}_{3}\right)$ and $\left(\bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2}\right)$. Then, $\varphi_{3}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge \tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}$, which denotes the cumulative effects of \bar{x}_{1} and \bar{x}_{3}.

3.2 The Core Algorithms: Scope and Scan

Let $\phi_{s}^{r_{j}}=\left(r_{j k_{1}} \odot r_{i_{1} k_{1}} \odot r_{i_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{j k_{r}} \odot r_{u_{1} k_{r}} \odot r_{u_{2} k_{r}}\right)$ for Lemma 20 and 21 below.

- Lemma 20. $r_{j} \vDash \tilde{\psi}_{s}\left(r_{j}\right)$ such that $\tilde{\psi}_{s}\left(r_{j}\right)=r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$, unless $\not \models \tilde{\psi}_{s}\left(r_{j}\right)$.

Proof. Follows from Definition 11. That is, $r_{j} \Rightarrow\left(r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}}\right) \wedge \cdots \wedge\left(r_{j} \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}\right)$. Hence, $r_{j} \Rightarrow r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$.

- Lemma 21. If $\neg r_{j}$, then $\tilde{\phi}_{s}\left(\neg r_{j}\right)$ holds such that $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\left(r_{i_{1}} \odot r_{i_{2}}\right) \wedge \cdots \wedge\left(r_{u_{1}} \odot r_{u_{2}}\right)$.

Proof. Follows from Definition 12. $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\{\{ \}\}$, or $\left|C_{k}\right|>1$ for any C_{k} in $\tilde{\phi}_{s}\left(\neg r_{j}\right)$.

- Lemma 22 (Overall effect of r_{j} over $\left.\phi_{s}\right) . \tilde{\varphi}_{s}\left(r_{j}\right)=\tilde{\psi}_{s}\left(r_{j}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{j}\right)$.

Proof. Follows from Lemma 20, and from 21 via $\phi_{s}^{\bar{r}_{j}}$, since $r_{j} \Rightarrow \neg \bar{r}_{j}$, thus $r_{j} \vDash r_{j} \wedge \neg \bar{r}_{j}$.

The algorithm OvrlEft $\left(r_{j}, \phi_{*}\right)$ below constructs the overall effect $\tilde{\varphi}_{*}\left(r_{j}\right)$ by means of the local effect $\tilde{\psi}_{*}\left(r_{j}\right)$ (see Lines 1-6, or L:1-6), as well as of the local effect $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ (L:7-10).

```
Algorithm 1 OvrlEft \(\left(r_{j}, \phi_{*}\right) \quad \triangleright\) Construction of the overall effect \(\tilde{\varphi}_{*}\left(r_{j}\right)\) due to Lemma 22
    for all \(k \in \mathfrak{C}_{*}^{r_{j}}\) over \(\phi_{*}\) do \(\triangleright\) Construction of the local effect \(\tilde{\psi}_{*}\left(r_{j}\right)\) due to \(r_{j}\) (Lemma 20)
        for all \(r_{i} \in\left(C_{k}-\left\{r_{j}\right\}\right)\) do \(\triangleright \tilde{\psi}_{*}\left(r_{j}\right)\) gets \(r_{j}\) via \(r_{e}\) (see Scope L:4), or via \(\bar{r}_{j}\) (Remove L:2)
            \(c_{k} \leftarrow c_{k} \cup\left\{\bar{r}_{i}\right\} ; \triangleright\left(r_{j k} \odot r_{i_{1} k} \odot r_{i_{2} k}\right) \searrow\left(\bar{r}_{i_{1} k} \wedge \bar{r}_{i_{2} k}\right)\). That is, \(C_{k} \searrow c_{k}\) (see Definition 4/11)
        end for
        \(\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup c_{k} ; \quad \triangleright c_{k}\) consists in \(\psi_{s}\left(r_{j}\right)\) (see Scope L:4), or in \(\psi_{s}\) (see Remove L:2)
    end for \(\triangleright\) L:1-6 are independent from L:7-10, since \(\mathfrak{C}_{*}^{r_{j}} \cap \mathfrak{C}_{*}^{\bar{r}_{j}}=\emptyset\), i.e., \(\mathfrak{C}_{*}^{x_{j}} \cap \mathfrak{C}_{*}^{\bar{x}_{j}}=\emptyset\) (Lemma 16)
    for all \(k \in \mathfrak{C}_{*}^{\bar{r}_{j}}\) over \(\phi_{*}\) do \(\triangleright\) Construction of the local effect \(\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)\) due to \(\neg \bar{r}_{j}\) (Lemma 21)
        \(C_{k} \leftarrow C_{k}-\left\{\bar{r}_{j}\right\} ; \triangleright\left(\bar{r}_{j k} \odot r_{u_{1} k} \odot r_{u_{2} k}\right) \longmapsto\left(r_{u_{1} k} \odot r_{u_{2} k}\right)\) or \(\left(\bar{r}_{j k} \odot r_{u k}\right) \mapsto\left(r_{u k}\right)\) (Definition 12)
        if \(\left|C_{k}\right|=1\) then \(\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup C_{k} ; C_{k} \leftarrow \emptyset ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)\) contains no singleton, \(C_{k} \mapsto c_{k}\)
    end for \(\triangleright 3 \backslash 2\)-literal \(C_{k}\) in \(\phi_{*}^{\bar{r}_{j}}\) shrinks due to \(\neg \bar{r}_{j}\) to 2-literal \(C_{k}\) in \(\phi_{*}^{\bar{r}_{j}} \backslash\) to conjunct \(r_{u}\) in \(\tilde{\psi}_{*}\left(r_{j}\right)\)
    return \(\tilde{\psi}_{*}\left(r_{j}\right) \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right) \leftarrow \phi_{*}^{\bar{T}_{j}} ; \triangleright \tilde{\psi}_{*}\left(r_{j}\right)=\bigwedge\left(c_{k} \wedge C_{k}\right),\left|C_{k}\right|=1 \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\bigwedge C_{k},\left|C_{k}\right|>1\)
```

$\psi_{s}\left(r_{j}\right)$ is called the scope of r_{j}, and $\phi_{s}^{\prime}\left(r_{j}\right)$ is called beyond the scope, defined over ϕ_{s}.

- Lemma 23 (Scope of r_{j}). r_{j} transforms ϕ_{s} into $\phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$, unless $\not \models \psi_{s}\left(r_{j}\right)$, where $\psi_{s}\left(r_{j}\right)=r_{j} \wedge r_{i} \wedge \cdots \wedge r_{u}$ and $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$. Thus, $r_{j} \vDash \psi_{s}\left(r_{j}\right)$, hence $r_{j} \vdash \psi_{s}\left(r_{j}\right)$.

Proof. $\phi_{s}\left(r_{j}\right)=r_{j} \wedge \phi_{s}$ by Definition 13. Then, r_{j} initiates a deterministic chain of reductions (see Note 14). As a result, $r_{j} \Rightarrow r_{j} \wedge x_{i} \wedge \bar{x}_{u}$ holds over each $C_{k}=\left(r_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ containing r_{j}, and $\neg \bar{r}_{j} \Rightarrow\left(\bar{x}_{u} \odot x_{v}\right)$ holds over each $C_{k}=\left(\bar{r}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ containing \bar{r}_{j}. These reductions thus proceed, as long as new conjuncts r_{e} emerge in $\phi_{s}\left(r_{j}\right)$ (see Scope L:2-4). If the reductions are interrupted, then r_{j} is incompatible (L:5). If they terminate, then $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$ are constructed (L:9). Thus, $r_{j} \vDash \psi_{s}\left(r_{j}\right)$. It is obvious that if $r_{j} \vDash \psi_{s}\left(r_{j}\right)$, then $r_{j} \vdash \psi_{s}\left(r_{j}\right)$.

```
Algorithm \(2 \operatorname{Scope}\left(r_{j}, \phi_{s}\right) \triangleright\) Construction of \(\psi_{s}\left(r_{j}\right)\) and \(\phi_{s}^{\prime}\left(r_{j}\right)\) due to \(r_{j}\) over \(\phi_{s} ; \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\psi_{s}\left(r_{j}\right) \leftarrow\left\{r_{j}\right\} ; \phi_{*} \leftarrow \phi_{s} ; \quad \triangleright \phi_{s}\left(r_{j}\right):=r_{j} \wedge \phi_{s} . \psi_{s}\) and \(\phi_{s}\) are disjoint due to Scan L:1-3
    for all \(r_{e} \in\left(\psi_{s}\left(r_{j}\right)-R\right)\) do \(\triangleright\) Reductions of \(C_{k}\) initiated by \(r_{j}\) over \(\phi_{s}\) start off
        OvrlEft \(\left(r_{e}, \phi_{*}\right)\); \(\quad\) It returns \(\tilde{\psi}_{*}\left(r_{e}\right)\) for L:4 \& \(\tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right)\) for L:6
        \(\psi_{s}\left(r_{j}\right) \leftarrow \psi_{s}\left(r_{j}\right) \cup\left\{r_{e}\right\} \cup \tilde{\psi}_{*}\left(r_{e}\right) ; \triangleright \tilde{\psi}_{*}\left(r_{e}\right)\) due to OvrlEft L:5,9 consists in the scope \(\psi_{s}\left(r_{j}\right)\)
        if \(\psi_{s}\left(r_{j}\right) \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) then return NULL; \(\triangleright r_{j} \Rightarrow x_{i} \wedge \bar{x}_{i}, i \in \mathfrak{L}^{\phi}\). \(\not \models \psi_{s}\left(r_{j}\right)\), thus \(\not \models \phi_{s}\left(r_{j}\right)\)
        \(\tilde{\phi}_{*}(\neg r) \leftarrow \tilde{\phi}_{*}(\neg r) \cup \tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right) ; \triangleright \tilde{\phi}_{*}(\neg r)=\{\{ \}\}\) or \(\tilde{\phi}_{*}(\neg r)=\bigcup C_{k},\left|C_{k}\right|>1\) (OvrlEft L:8-11)
        \(\phi_{*} \leftarrow \tilde{\phi}_{*}(\neg r) \wedge \phi_{*}^{\prime} ; R \leftarrow R \cup\left\{r_{e}\right\} ; \quad \triangleright \tilde{\phi}_{*}(\neg r)\) and \(\phi_{*}^{\prime}\) consist in beyond the scope \(\phi_{s}^{\prime}\left(r_{j}\right)\)
        \(\triangleright \phi_{*}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{*}^{\prime}\), where \(\mathfrak{C}_{*}^{\prime}=\mathfrak{C}_{*}-\left(\mathfrak{C}_{*}^{x_{e}} \cup \mathfrak{C}_{*}^{\bar{x}_{e}}\right)\), and \(\mathfrak{C}_{*}^{x_{e}} \cap \mathfrak{C}_{*}^{\bar{x}_{e}}=\emptyset\) due to Lemma 16
    end for \(\triangleright\) The reductions terminate if \(\psi_{s}\left(r_{j}\right)=R\), which denotes conjuncts already reduced \(C_{k}\)
    return \(\psi_{s}\left(r_{j}\right) \& \phi_{s}^{\prime}\left(r_{j}\right) \leftarrow \phi_{*} ; \quad \triangleright \phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right) . \psi_{s}\left(r_{j}\right)=\bigwedge r_{j}\) and \(\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}\)
```

- Note 24. $\mathfrak{L}_{s}\left(r_{j}\right)$ being an index set of $\psi_{s}\left(r_{j}\right), \mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\emptyset$ and $\mathfrak{L}_{s}\left(r_{j}\right) \cup \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\mathfrak{L}^{\phi}$, if Scope $\left(r_{j}, \phi_{s}\right)$ terminates. Thus, $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$ are disjoint, where $\phi_{s}^{\prime}\left(r_{j}\right)$ can be empty.
- Example 25. Consider $\psi\left(x_{1}\right)$, $\operatorname{Scope}\left(x_{1}, \phi\right)$, for $\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. $\psi\left(x_{1}\right) \leftarrow\left\{x_{1}\right\}$ and $\phi_{*} \leftarrow \phi(\mathrm{~L}: 1)$. Then, $\phi_{*}^{\bar{x}_{1}}$ is empty, and $\phi_{*}^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to $\operatorname{OvrlEft}\left(x_{1}, \phi_{*}\right)$. Also, $\mathfrak{C}_{*}^{x_{1}}=\{1,2\}$, thus $c_{1} \leftarrow\left\{x_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{1}$, as well as $c_{2} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{2}$ (see OvrlEft L:1-6). Then, $\tilde{\psi}_{*}\left(x_{1}\right)=\left\{x_{3}, x_{2}, \bar{x}_{3}\right\}$ $\& \tilde{\phi}_{*}\left(\neg \bar{x}_{1}\right) \leftarrow \phi_{*}^{\bar{x}_{1}}\left(\right.$ OvrlEft L:11). As a result, $\psi\left(x_{1}\right) \leftarrow \psi\left(x_{1}\right) \cup\left\{x_{1}\right\} \cup \tilde{\psi}_{*}\left(x_{1}\right)$ (Scope L:4), and $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}$ (L:5), that is, $x_{1} \Rightarrow x_{3} \wedge \bar{x}_{3}$, hence x_{1} is incompatible in the first scan.
- Definition 26. $\mathfrak{L}^{\psi}=\left\{i \in \mathfrak{L} \mid r_{i} \in \psi_{s}\right\}$ and $\mathfrak{L}^{\phi}=\left\{i \in \mathfrak{L} \mid r_{i} \in C_{k}\right.$ in $\left.\phi_{s}\right\}$ due to $\varphi_{s}=\psi_{s} \wedge \phi_{s}$.
$\operatorname{Scan}\left(\varphi_{s}\right)$ decomposes ϕ_{s} into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(x_{n}\right), \psi_{s}\left(\bar{x}_{n}\right)$, whenever $\mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi}=\emptyset$. If $\not \models \psi_{s-1}\left(r_{i}\right)$, then \bar{r}_{i} is placed in ψ_{s}, and leads to reductions of some C_{k} in ϕ_{s}. In Figure 4, $\not \models \psi_{s-2}\left(\bar{x}_{1}\right)$ and $\not \models \psi_{s-1}\left(x_{3}\right)$ hold, thus $\psi_{s}=x_{1} \wedge \bar{x}_{3}$ and $\phi_{s}=\left(x_{4} \odot \bar{x}_{2} \odot x_{n}\right) \wedge \cdots \wedge\left(x_{2} \odot \bar{x}_{n}\right)$.

Figure $4 \operatorname{Scan}\left(\varphi_{s}\right)$ decomposes ϕ_{s} into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(x_{n}\right), \psi_{s}\left(\bar{x}_{n}\right)$, unless $\psi_{s}(.) \nsupseteq\left\{x_{i}, \bar{x}_{i}\right\}$
If $\bar{r}_{i} \in \psi_{s}$, then \bar{r}_{i} is necessary, thus r_{i} is incompatible trivially for each $C_{k} \ni r_{i}$ in ϕ_{s} (see Scan L:1-2). For example, if $x_{1} \wedge\left(x_{1} \odot x_{2} \odot \bar{x}_{3}\right)$ holds, then \bar{x}_{1} becomes incompatible trivially. Note that $1 \in \mathfrak{L}^{\phi}$ and $x_{1} \in \psi_{s}$, and that $\bar{x}_{1} \Rightarrow \bar{x}_{1} \wedge x_{1}$. If $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, then r_{i} is incompatible nontrivially (L:6). See also Note 8/27. If $\operatorname{Scan}\left(\varphi_{s}\right)$ is interrupted by Remove L:3, then φ is unsatisfiable. If it terminates (L:9), then a satisfying assignment is determined (Section 3.4). - Note 27. It is obvious that $\not \models \varphi_{s}\left(r_{j}\right)$ if $\not \models\left(\psi_{s} \wedge r_{j}\right)$ or $\not \models\left(r_{j} \wedge \phi_{s}\right)$ by Definition $5 / 13$, because $\varphi_{s}\left(r_{j}\right)=\psi_{s} \wedge r_{j} \wedge \phi_{s}$, and $r_{j} \wedge \phi_{s}=\phi_{s}\left(r_{j}\right)$, and that $\not \models \varphi_{s}\left(r_{j}\right)$ iff $\neg r_{j}$ holds (see Definition 7).

```
Algorithm \(3 \operatorname{Scan}\left(\varphi_{s}\right) \triangleright \varphi_{s}=\psi_{s} \wedge \phi_{s}, \psi_{s}=\bigwedge r_{i}\) and \(\phi_{s}=\bigwedge C_{k}\). Checks if \(\not \models \varphi_{s}\left(r_{i}\right)\) for all \(i \in \mathfrak{Z} \phi\)
    for all \(i \in \mathfrak{L}^{\phi}\) and \(\bar{r}_{i} \in \psi_{s}\) do \(\triangleright\) Because \(\bar{r}_{i} \in \psi_{s}, \not \models\left(\psi_{s} \wedge r_{i}\right)\), that is, \(r_{i} \Rightarrow x_{i} \wedge \bar{x}_{i}\)
        Remove \(\left(r_{i}, \phi_{s}\right) ; \quad \triangleright \bar{r}_{i}\) is necessary, thus \(r_{i}\) is incompatible trivially, hence \(\bar{r}_{i} \Rightarrow \neg r_{i}\)
    end for \(\triangleright\) If \(i \in \mathfrak{L}^{\psi}, r_{i}\) has been already removed, hence \(\bar{r}_{i} \in \psi_{s}\) and \(\bar{r}_{i} \notin C_{k} \forall k \in \mathfrak{C}_{s}\), i.e., \(i \notin \mathfrak{L}^{\phi}\)
    for all \(i \in \mathfrak{L}^{\phi}\) do \(\triangleright \mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi}=\emptyset\) due to L:1-3. Hence, \(i \in \mathfrak{L}^{\psi}\) iff \(r_{i}=x_{i}\) is fixed or \(r_{i}=\bar{x}_{i}\) is fixed
        for all \(r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}\) do \(\triangleright\) Each and every \(x_{i}\) and \(\bar{x}_{i}\) assumed compatible is to be verified
            if Scope \(\left(r_{i}, \phi_{s}\right)\) is NULL then Remove \(\left(r_{i}, \phi_{s}\right) ; \triangleright \not \models \phi_{s}\left(r_{i}\right)\), incompatible nontrivially
        end for \(\triangleright\) If \(r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}\), hence \(\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}\), then \(\neg r_{i} \Rightarrow \bar{r}_{i}\), where \(i \neq j\) due to L:1-3
    end for \(\triangleright \neg r_{i}\) iff \(\bar{r}_{i}\), since \(\neg r_{i} \Rightarrow \bar{r}_{i}\) due to nontrivial, and \(\neg r_{i} \Leftarrow \bar{r}_{i}\) due to trivial incompatibility
    return \(\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}\), and \(\psi\left(r_{i}\right) \& \phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L} \hat{\phi} ; \triangleright \hat{\psi} \leftarrow \psi_{\hat{s}}\) and \(\hat{\phi} \leftarrow \phi_{\hat{s}}\). See also Note 29
```

- Note 28. \mathfrak{L}^{ψ} and \mathfrak{L}^{ϕ} form a partition of \mathfrak{L} due to Definition 26 and Scan L:1-3.
- Note 29. When Scan terminates, $\hat{\psi}$ and $\hat{\phi}$ become disjoint, and $\hat{\phi} \equiv \bigwedge_{i \in \mathfrak{L}}\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$, where $\mathfrak{L L} \leftarrow \mathfrak{L} \hat{\phi}$. Also, $\hat{\psi}=\bigwedge r_{i}$ and $\hat{\phi}=\bigwedge C_{k}$ such that $\left|C_{k}\right|>1$, because each $C_{k}=\left\{r_{i}\right\}$ in ϕ_{s} for any s transforms into r_{i} in $\hat{\psi}$. That is, $C_{k}=\left(r_{i} \odot r_{j}\right)$ or $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ in $\hat{\phi}$.

Remove (r_{j}, ϕ_{s}) leads to reductions of any $C_{k} \ni \bar{r}_{j}$ due to \bar{r}_{j}, which consists in ψ_{s+1} (see L:1-2), as well as of any $C_{k} \ni r_{j}$ due to $\neg r_{j}$, which consists in ϕ_{s+1} (see L:1,5).

```
Algorithm 4 Remove \(\left(r_{j}, \phi_{s}\right) \quad \triangleright r_{j}\) is incompatible/removed iff \(\bar{r}_{j}\) is necessary, i.e., \(\neg r_{j}\) iff \(\bar{r}_{j}\)
    OvrlEft \(\left(\bar{r}_{j}, \phi_{s}\right) ; \triangleright\) OvrlEft is defined over \(\phi_{s}=\bigwedge C_{k},\left|C_{k}\right|>1\), and returns \(\tilde{\psi}_{s}\left(\bar{r}_{j}\right) \& \tilde{\phi}_{s}\left(\neg r_{j}\right)\)
    \(\psi_{s+1} \leftarrow \psi_{s} \cup\left\{\bar{r}_{j}\right\} \cup \tilde{\psi}_{s}\left(\bar{r}_{j}\right) ; \quad \triangleright \psi_{s+1}=\bigwedge r_{i}\) is true by definition, unless \(\psi_{s+1}\) involves \(x_{i} \wedge \bar{x}_{i}\)
    if \(\psi_{s+1} \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) for some \(i\) then return \(\varphi\) is unsatisfiable; \(\quad \triangleright \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{j\} ; \mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{j\} ;\)
    \(\phi_{s+1} \leftarrow \tilde{\phi}_{s}\left(\neg r_{j}\right) \wedge \phi_{s}^{\prime}\); Update \(\left\{C_{k}\right\}\) over \(\phi_{s+1} ; \triangleright \phi_{s}^{\prime}\) denotes clauses beyond the entire \(\psi_{s}\) effect
        \(\triangleright \phi_{s}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{s}^{\prime}\), where \(\mathfrak{C}_{s}^{\prime}=\mathfrak{C}_{s}-\left(\mathfrak{C}_{s}^{\bar{x}_{j}} \cup \mathfrak{C}_{s}^{x_{j}}\right)\), and \(\mathfrak{C}_{s}^{\bar{x}_{j}} \cap \mathfrak{C}_{s}^{x_{j}}=\emptyset\) due to Lemma 16
    Scan \(\left(\varphi_{s+1}\right) ; \triangleright r_{i}\) verified compatible for \(\check{s} \leqslant s\) can be incompatible for \(\tilde{s}>s\) due to \(\neg r_{j}\) in \(\phi_{s}\)
```


3.3 Satisfiability of the Formula φ vs Satisfiability of the Scope $\psi\left(r_{i}\right)$

This section shows that φ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for all $i \in \mathfrak{L}$, and any $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.

- Proposition 30 (Nontrivial incompatibility). $\not \models \phi_{s}\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ or $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ for any s.

Proof. Proof is obvious due to $\phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$ by Lemma 23.

- Note 31 (Assumption). $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely via $\not \models \psi_{s}\left(r_{j}\right)$ for some s, whether or not $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ is ignored, which is sufficient for incompatibility, and easy to check (see Scope L:5).

The following introduces the tools to justify this assumption, which facilitates the φ scan. Assume that Scan terminates (L:9), that is, $\psi \wedge \phi$ transforms into $\hat{\psi} \wedge \hat{\phi}$. Let $\phi \leftarrow \hat{\phi}$, thus $\mathfrak{L} \leftarrow \mathfrak{L} \hat{\phi}$. Therefore, $r_{i} \vDash \psi\left(r_{i}\right)$ for all $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. That is, as $r_{i}=\mathbf{T}, \psi\left(r_{i}\right)=\mathbf{T}$.

- Definition 32. $\mathfrak{L}()=.\mathfrak{L}(\psi()$.$) and \mathfrak{L}^{\prime}()=.\mathfrak{L}\left(\phi^{\prime}().\right)$, which denote respective index sets.
- Lemma 33 (No conjunct exists in beyond the scope). $\mathfrak{L}\left(r_{j}\right) \cap \mathfrak{L}^{\prime}\left(r_{j}\right)=\emptyset$ for any $j \in \mathfrak{L}$.

Proof. $\phi^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$ due to Lemma 23. Let r_{i} the conjunct be in C_{k}, i.e., $i \in\left(\mathfrak{L}\left(r_{j}\right) \cap \mathfrak{L}^{\prime}\left(r_{j}\right)\right)$. Then, for any $C_{k} \ni r_{i},\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$. Moreover, for any $C_{k} \ni \bar{r}_{i}$, $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \longmapsto\left(r_{v} \odot r_{y}\right)$, thus $\bar{r}_{i} \notin C_{k}$. See Definition 11/12. Hence, $i \notin\left(\mathfrak{L}\left(r_{j}\right) \cap \mathfrak{L}^{\prime}\left(r_{j}\right)\right)$.
$\psi\left(r_{i} \mid r_{j}\right)$ is called the conditional scope, and $\phi^{\prime}\left(r_{i} \mid r_{j}\right)$ is called conditional beyond the scope, which are defined over $\phi^{\prime}\left(r_{j}\right)$ for $j \neq i$, that is, constructed by $\operatorname{Scope}\left(r_{i}, \phi^{\prime}\left(r_{j}\right)\right)$.

- Lemma 34. \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{j}\right), \mathfrak{L}\left(r_{j_{1}} \mid r_{j}\right), \mathfrak{L}\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \mathfrak{L}\left(r_{j_{n}} \mid r_{j_{m}}\right)$, thus $\phi\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j}\right), \psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Scope $\left(r_{j}, \phi\right)$ partitions \mathfrak{L} into $\mathfrak{L}\left(r_{j}\right)$ and $\mathfrak{L}^{\prime}\left(r_{j}\right)$ for any $j \in \mathfrak{L}$ (see also Lemma 33). Thus, $\phi\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$. Then, Scope $\left(r_{j_{1}}, \phi^{\prime}\left(r_{j}\right)\right)$ partitions $\mathfrak{L}^{\prime}\left(r_{j}\right)$ into $\mathfrak{L}\left(r_{j_{1}} \mid r_{j}\right)$ and $\mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$ for any $j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right)$. Thus, $\phi^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$. Finally, $\phi^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ is decomposed into disjoint $\psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ and $\phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ for any $j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\emptyset$ (see also Note 24).

- Lemma 35. $\phi^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Follows directly from Lemma 34, and from Lemma 23, $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$.

- Lemma 36. $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$, when it terminates.

Proof. Follows directly from Lemma 34. Then, some C_{k} in ϕ collapse to some c_{k} in $\psi\left(r_{j}\right)$. Thus, the number of C_{k} in ϕ is greater than or equal to that of C_{k} in $\phi^{\prime}\left(r_{j}\right)$, hence $|\mathfrak{C}| \geqslant\left|\mathfrak{C}^{\prime}\right|$, where \mathfrak{C} is an index set of C_{k} in ϕ. Also, some C_{k} in ϕ shrink to some $C_{k^{\prime}}$ in $\phi^{\prime}\left(r_{j}\right)$, hence $\forall k^{\prime} \in \mathfrak{C}^{\prime} \exists k \in \mathfrak{C}\left[C_{k} \supseteq C_{k^{\prime}}\right]$. Thus, $\phi \supseteq \phi^{\prime}\left(r_{j}\right)$. Likewise, $\phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$, because $\phi^{\prime}\left(r_{j}\right)$ is decomposed into $\psi\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$. Therefore, $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq$ $\cdots \supseteq \phi^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$, where $\phi^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)=\phi^{\prime}\left(r_{j_{m}} \mid r_{j}, \ldots, r_{j_{l}}\right)$. Note that $\phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\{\{ \}\}$.

- Lemma 37. $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$, thus $\psi\left(r_{i}\right) \vdash \psi\left(r_{i} \mid r_{j}\right)$, when the scan terminates.

Proof. Scope $\left(r_{i}, \phi\right)$ constructs $\psi\left(r_{i}\right)$ and Scope $\left(r_{i}, \phi^{\prime}\left(r_{j}\right)\right)$ constructs $\psi\left(r_{i} \mid r_{j}\right) . \phi \supseteq \phi^{\prime}\left(r_{j}\right)$ by Lemma 36. Therefore, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right)$, and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ (see also Figure 2), where $\psi\left(r_{i}\right)=r_{i} \wedge r_{j} \wedge \cdots \wedge r_{v}$ and $\psi\left(r_{i} \mid r_{j}\right)=r_{i} \wedge \cdots \wedge r_{v}$. Then, $r_{j} \notin \psi\left(r_{i} \mid r_{j}\right)$, since $r_{j} \notin C_{k}$ for any $C_{k} \in \phi^{\prime}\left(r_{j}\right)$ by Lemma 33. It is obvious that if $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$, then $\psi\left(r_{i}\right) \vdash \psi\left(r_{i} \mid r_{j}\right)$.

Lemma 37 leads to Lemma 38, because $r_{i} \vDash \psi\left(r_{i}\right)$ and $r_{i} \vdash \psi\left(r_{i}\right)$ by Lemma 23. That is, each and every conditional scope $\psi\left(r_{i} \mid.\right)$ is entailed and proved, when the scan terminates.

- Lemma 38. $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ holds for every $j \in \mathfrak{L}$, and for every $i \in \mathfrak{L}^{\prime}\left(r_{j}\right), i \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, i \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{l}}\right)$, when the scan terminates.

Proof. $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ by Lemma 36. Hence, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right)$, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, \ldots, r_{j_{m}}\right)$, and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right)$, $\ldots, \psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$. Note that if $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid.\right)$, then $\psi\left(r_{i}\right) \vdash \psi\left(r_{i} \mid.\right)$. Therefore, $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ hold, which generalizes Lemma 37.

- Theorem 39 (Unsatisfiability). r_{j} is incompatible due to $\not \models \phi\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s.
- Corollary 40 (Satisfiability). $\vDash_{\alpha} \phi$ iff the scope $\psi\left(r_{i}\right)$ holds for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.

Proof. $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ defined over $\phi^{\prime}\left(r_{j}\right)$ are disjoint due to Lemma 35 such that $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ hold by Lemma 38 for any $j \in \mathfrak{L}, j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right)$, $j_{2} \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$, thus $\phi^{\prime}\left(r_{j}\right)$ is composed of $\psi($.$) both disjoint and satisfied.$ Therefore, $\phi^{\prime}\left(r_{j}\right)$ is satisfiable, and unsatisfiability of $\phi_{s}^{\prime}\left(r_{j}\right)$ is ignored to verify $\not \models \phi_{s}\left(r_{j}\right)$. Hence, Theorem 39 holds (see Proposition 30 and Note 31). Then, $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$, since $\phi^{\prime}\left(r_{i}\right)$ is satisfiable, and $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Thus, Corollary 40 holds (see also Appendix A).

Theorem 41 shows that any r_{j} incompatible remains incompatible, even if r_{i} is removed.

- Theorem 41. If $\not \models \varphi_{\tilde{s}}\left(r_{j}\right)$ for some \tilde{s}, then $\not \models \varphi_{s}\left(r_{j}\right)$ for all $s>\tilde{s}$, even if $\neg r_{i}$ holds, $i \neq j$.

Proof. See Note 27/28. $\not \models \varphi_{s}\left(r_{j}\right)$ iff $\not \models\left(\psi_{s} \wedge r_{j}\right)$ or $\not \models \phi_{s}\left(r_{j}\right)$. Let $\not \models\left(\psi_{\tilde{s}} \wedge r_{j}\right)$ for some \tilde{s}. Then, $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$, since $\psi_{\tilde{s}} \subseteq \psi_{s}$ due to Remove L:2. Let $\not \models \phi_{\tilde{s}}\left(r_{j}\right)$ due to solely $x_{i} \wedge \bar{x}_{i}$. Then, $\bar{x}_{i} \vee x_{i} \Rightarrow \bar{r}_{j}$, thus $\bar{r}_{j} \in \psi_{s}$ for $s>\tilde{s}$. Hence, $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$. Assume that r_{i} is removed before r_{j}, that is, $\neg r_{i}$ holds by $\not \models \varphi_{\check{s}}\left(r_{i}\right)$ for $\check{s} \leqslant \tilde{s}$. Then, $\neg r_{i} \Rightarrow \bar{r}_{i}$ and $\bar{r}_{i} \Rightarrow \bar{r}_{j}$, thus $\left\{\bar{r}_{i}, \bar{r}_{j}\right\} \subseteq \psi_{s}$ for $s>\tilde{s}$. Note that $\psi_{\check{s}} \subseteq \psi_{\tilde{s}} \subseteq \psi_{s}$. Hence, $\not \models\left(\psi_{s} \wedge r_{i} \wedge r_{j}\right)$ for all $s>\tilde{s}$. If r_{i} is removed after r_{j}, i.e., $\neg r_{i}$ holds by $\not \models \varphi_{s}\left(r_{i}\right)$ for $s>\tilde{s}$, then $\not \models\left(\psi_{s} \wedge r_{j} \wedge r_{i}\right)$ for all $s>\tilde{s}$.

- Proposition 42. The time complexity of Scan is $O\left(m n^{3}\right)$.

Proof. OvrlEft, and Remove, takes $4 m$ steps by $\left(\left|\mathfrak{C}_{*}^{r_{j}}\right| \times\left|C_{k}\right|\right)+\left|\mathfrak{C}_{*}^{\bar{r}_{j}}\right|=3 m+m$. Scope takes $n 4 m$ steps by $\left|\psi_{s}\left(r_{j}\right)\right| \times 4 m$. Then, Scan takes $n^{2} 4 m$ steps due to L:1-3 by $\left|\mathfrak{L}^{\phi}\right| \times\left|\psi_{s}\right| \times 4 m$, as well as $8 n^{2} m+8 n m$ steps due to L:4-8 by $2\left|\mathfrak{L}^{\phi}\right| \times(4 n m+4 m)$. Also, the number of the scans is $\hat{s} \leqslant\left|\mathfrak{L}^{\phi}\right|$ due to Remove L:6. Therefore, the time complexity of Scan is $O\left(n^{3} m\right)$.

- Example 43. $\varphi=\left\{\{ \},\left\{x_{3}, x_{4}, \bar{x}_{5}\right\},\left\{x_{3}, x_{6}, \bar{x}_{7}\right\},\left\{x_{4}, x_{6}, \bar{x}_{7}\right\}\right\}$, i.e., $\psi=\emptyset$. Let $\operatorname{Scope}\left(x_{3}, \phi\right)$ execute first in the first scan, which leads to the reductions below over ϕ due to x_{3}.

$$
\begin{aligned}
\phi\left(x_{3}\right) & =\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \\
x_{3} & \Rightarrow\left(x_{3} \wedge \bar{x}_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{5}\right) \wedge\left(x_{3} \odot \bar{x}_{7}\right) \wedge x_{3} \\
\bar{x}_{4} & \left.\Rightarrow\left(x_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\begin{array}{rl}
\left.x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
\bar{x}_{6} & \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right)
\end{array} \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\begin{array}{l}
\left.\bar{x}_{7}\right)
\end{array}\right) \wedge x_{3}\right.
\end{aligned}
$$

Since $\not \models\left(\psi\left(x_{3}\right)=x_{3} \wedge \bar{x}_{4} \wedge x_{5} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{7}\right), x_{3}$ is incompatible, hence $\neg x_{3} \Rightarrow \bar{x}_{3}$, that is, \bar{x}_{3} is necessary. Thus, $\varphi \rightarrow \varphi_{2}$ by $\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \mapsto\left(x_{4} \odot \bar{x}_{5}\right)$ and $\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \mapsto\left(x_{6} \odot \bar{x}_{7}\right)$. As a result, $\varphi_{2}=\bar{x}_{3} \wedge\left(x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$. Let Scope $\left(x_{5}, \phi_{2}\right)$ execute next.

$$
\begin{aligned}
& \phi_{2}\left(x_{5}\right)=\left(\quad x_{4} \odot \bar{x}_{5}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{5} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{4} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5} \\
& \bar{x}_{6} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5}
\end{aligned}
$$

Since $\not \models\left(\psi_{2}\left(x_{5}\right)=x_{4} \wedge \bar{x}_{7} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{3} \wedge x_{5}\right), x_{5}$ is incompatible, hence $\neg x_{5} \Rightarrow \bar{x}_{5}$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ by $\left(x_{4} \odot \bar{x}_{5}\right) \searrow\left(\bar{x}_{4} \wedge \bar{x}_{5}\right)$, where $\varphi_{3}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5} \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$. Then, \bar{x}_{4} leads to the next reduction by $\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \longmapsto\left(x_{6} \odot \bar{x}_{7}\right)$, and $\operatorname{Scan}\left(\varphi_{4}\right)$ terminates. That is, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, where $\hat{\psi}=\left\{\bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}\right\}$ and $\hat{\phi}=\left\{\left\{x_{6}, \bar{x}_{7}\right\}\right\}$, since $\varphi_{4}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5} \wedge\left(x_{6} \odot \bar{x}_{7}\right)$.

In Example 43, if Scope $\left(x_{5}, \phi\right)$ executes first, then $\psi\left(x_{5}\right)=x_{5}$ becomes the scope, and $\phi^{\prime}\left(x_{5}\right)=\left(x_{3} \odot x_{4}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$ becomes beyond the scope of x_{5} over ϕ. Then, x_{5} is compatible (in ϕ) due to Theorem 39, since $\psi\left(x_{5}\right)$ holds, while it is incompatible due to Proposition 30, since $\not \models \phi^{\prime}\left(x_{5}\right)$ holds. On the other hand, the fact that $\not \models \phi^{\prime}\left(x_{5}\right)$ holds is verified indirectly. That is, incompatibility of x_{5} is checked by means of $\psi_{s}\left(x_{5}\right)$ for some s. Then, x_{5} becomes incompatible (in ϕ_{2}), because $\not \models \psi_{2}\left(x_{5}\right)$ holds, after $\varphi \rightarrow \varphi_{2}$ by removing x_{3} from ϕ due to $\not \models \psi\left(x_{3}\right)$. As a result, $\not \models \phi^{\prime}\left(x_{5}\right)$ holds due to $\neg x_{3}$. Thus, there exists no r_{j} such that $\not \models \phi^{\prime}\left(r_{j}\right)$, when the scan terminates, because $\psi\left(r_{i}\right)$ holds for all r_{i} in ϕ, hence $\psi\left(r_{i} \mid r_{j}\right)$ holds for all r_{i} in $\phi^{\prime}\left(r_{j}\right)$, after each r_{j} is removed if $\not \models \psi_{s}\left(r_{j}\right)$ (see also Figures 1-4).

3.4 Construction of a satisfying assignment by composing scopes

$\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, when $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates. Let $\psi:=\hat{\psi}$ and $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{L}$. Then, $\vDash_{\alpha} \phi$ holds by Corollary 40, where α is a satisfying assignment, and constructed by Algorithm 5 through any $\left(i_{0}, i_{1}, i_{2}, \ldots, i_{m}, i_{n}\right)$ over \mathfrak{L} such that $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$. Thus, φ is decomposed into disjoint scopes $\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ (see Note 28, and Lemma 34). Recall that any scope $\psi($.$) denotes a minterm by Definition 4 / 5$, and that Scope $\left(r_{i}, \phi\right)$ constructs $\psi\left(r_{i}\right)$ and $\phi^{\prime}\left(r_{i}\right)$ to determine a satisfying assignment, unless φ collapses to a unique assignment, that is, unless $\hat{\varphi}=\alpha=\hat{\psi}$. See also Appendix A to determine a satisfying assignment without constructing $\psi\left(r_{i} \mid.\right)$ by Scope $\left(r_{i}, \phi^{\prime}().\right)$.

```
Algorithm 5 \(\quad \triangleright\) Construction of a satisfying assignment \(\alpha\) over \(\phi, \mathfrak{L}:=\mathfrak{L}^{\hat{\phi}}\) and \(\phi:=\hat{\phi}\)
    Pick \(j \in \mathfrak{L} ; \quad \triangleright\) The scope \(\psi\left(r_{i}\right)\) and beyond the scope \(\phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L}\) are available initially
    \(\alpha \leftarrow \psi\left(r_{j}\right) ; \mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{j}\right) ; \phi \leftarrow \phi^{\prime}\left(r_{j}\right) ;\)
    repeat
        Pick \(i \in \mathfrak{L}\); Scope \(\left(r_{i}, \phi\right) ; \quad \triangleright\) It constructs \(\psi\left(r_{i} \mid r_{j}\right)\) and \(\phi^{\prime}\left(r_{i} \mid r_{j}\right)\) with respect to \(\phi^{\prime}\left(r_{j}\right)\)
        \(\alpha \leftarrow \alpha \cup \psi\left(r_{i}\right) ; \triangleright \psi\left(r_{i}\right):=\psi\left(r_{i} \mid r_{j}\right)\), because \(\psi\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
        \(\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i}\right) ; \quad \triangleright \mathfrak{L} \leftarrow \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\) due to the partition \(\left\{\mathfrak{L}\left(r_{j}\right), \mathfrak{L}\left(r_{i} \mid r_{j}\right), \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\right\}\) over \(\mathfrak{L}\)
        \(\phi \leftarrow \phi^{\prime}\left(r_{i}\right) ; \triangleright \phi^{\prime}\left(r_{i}\right):=\phi^{\prime}\left(r_{i} \mid r_{j}\right)\), because \(\phi^{\prime}\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
    until \(\mathfrak{L}=\emptyset\)
    return \(\alpha ; \quad \triangleright \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)=\psi\left(r_{i_{n}} \mid r_{j}, r_{i_{1}}, \ldots, r_{i_{m}}\right)\) (see also Appendix A)
```

- Definition 44. Let $\phi={ }^{1} \phi \wedge^{2} \phi \wedge \cdots \wedge^{l} \phi$ such that ${ }^{1} \phi,{ }^{2} \phi, \ldots,{ }^{l} \phi$ are disjoint, or independent formulas. That is, ${ }^{1} \mathfrak{L} \cap^{2} \mathfrak{L} \cap \cdots \cap^{\mathfrak{l}} \mathfrak{L}=\emptyset$.
- Example 45. Let ${ }^{1} \phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$, ${ }^{2} \phi=\left(x_{8} \odot x_{9} \odot \bar{x}_{10}\right)$, and ${ }^{3} \phi=\left(x_{11} \odot \bar{x}_{12} \odot x_{13}\right)$ to form $\varphi={ }^{1} \phi \wedge{ }^{2} \phi \wedge^{3} \phi$ by Definition 44 . Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ terminates, that is, φ is satisfiable. Thus, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, where $\hat{\psi}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5}$ and $\hat{\phi}=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi$ (see Example 43). Let $\psi:=\hat{\psi}$ and $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$. Hence, $\mathfrak{L} \psi=\{3,4,5\}$, and $\mathfrak{L}=\{1,2, \ldots, 13\}-\mathfrak{L} \psi$. Then, a satisfying assignment α is determined by composing $\psi\left(r_{i} \mid r_{j}\right)$ constructed over $\phi^{\prime}\left(r_{j}\right)$. The following shows some of the scopes $\psi\left(r_{i}\right)$ and beyond the scopes $\phi^{\prime}\left(r_{i}\right)$, constructed over ϕ when the scan terminates.

$$
\begin{aligned}
\psi\left(x_{1}\right) & =x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(x_{1}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{2}\right) & =x_{2} & \& & \phi^{\prime}\left(x_{2}\right) & =\left(x_{1} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{2}\right) & =\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{2}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{6}\right)=\psi\left(x_{7}\right) & =\bar{x}_{1} \wedge x_{2} \wedge x_{6} \wedge x_{7} & \& & \phi^{\prime}\left(x_{6}\right)=\phi^{\prime}\left(x_{7}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{6}\right)=\psi\left(\bar{x}_{7}\right) & =\bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{6}\right)=\phi^{\prime}\left(\bar{x}_{7}\right) & =\left(x_{1} \odot \bar{x}_{2}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{8}\right) & =x_{8} \wedge \bar{x}_{9} \wedge x_{10} & \& & \phi^{\prime}\left(x_{8}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{3} \phi \\
\psi\left(x_{11}\right) & =x_{11} \wedge x_{12} \wedge \bar{x}_{13} & \& & \phi^{\prime}\left(x_{11}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi
\end{aligned}
$$

- Example 46. A satisfying assignment α is constructed by an order of indices over $\mathfrak{L}, \mathfrak{L}=$ $\{1, \ldots, 13\}-\mathfrak{L}^{\psi}$ (Example 45), such that $r_{i}:=x_{i}$ for any $\psi\left(r_{i}\right)$ throughout the construction. First, pick $6 \in \mathfrak{L}$. As a result, $\alpha \leftarrow \psi\left(x_{6}\right)$ and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{6}\right)$, where $\psi\left(x_{6}\right)=\left\{\bar{x}_{1}, x_{2}, x_{6}, x_{7}\right\}$, $\mathfrak{L}\left(x_{6}\right)=\{1,2,6,7\}$, and $\mathfrak{L} \leftarrow\{8,9,10,11,12,13\}$. Then, pick 8, hence $\alpha \leftarrow \alpha \cup \psi\left(x_{8} \mid x_{6}\right)$, where $\psi\left(x_{8} \mid x_{6}\right)=\left\{x_{8}, \bar{x}_{9}, x_{10}\right\}$. Also, $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{8} \mid x_{6}\right)$, where $\mathfrak{L}\left(x_{8} \mid x_{6}\right)=\{8,9,10\}$, hence $\mathfrak{L} \leftarrow\{11,12,13\}$. Finally, pick 11. Therefore, $\alpha \leftarrow \alpha \cup \psi\left(x_{11} \mid x_{6}, x_{8}\right)$ such that $\mathfrak{L} \leftarrow \emptyset$, which indicates its termination. Note that Scope $\left(x_{11}, \phi^{\prime}\left(x_{8} \mid x_{6}\right)\right)$ constructs $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, in which $\phi^{\prime}\left(x_{8} \mid x_{6}\right)={ }^{3} \phi$, and that $\mathfrak{L}^{\prime}\left(x_{11} \mid x_{6}, x_{8}\right)=\emptyset$ iff $\mathfrak{L} \leftarrow \emptyset$. Note also that $\psi\left(x_{8} \mid x_{6}\right)=\psi\left(x_{8}\right)$ and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)=\psi\left(x_{11}\right)$, since ${ }^{1} \phi,{ }^{2} \phi$ and ${ }^{3} \phi$ are disjoint by Definition 44. Consequently, Algorithm 5 constructs $\alpha=\left\{\psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right), \psi\left(x_{11} \mid x_{6}, x_{8}\right)\right\}$. Note that φ is decomposed into $\psi, \psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right)$, and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, which are disjoint (see also Note 29 and Lemma 34).
- Example 47. Let $(2,1,8,11)$ be another order of indices in Example 45. This order leads to the assignment $\left\{\psi, \psi\left(x_{2}\right), \psi\left(x_{1} \mid x_{2}\right), \psi\left(x_{8} \mid x_{2}, x_{1}\right), \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)\right\}$ for φ. This assignment corresponds to the partition $\left\{\mathfrak{L}^{\psi},\{2\},\{1,6,7\},\{8,9,10\},\{11,12,13\}\right\}$, where $\mathfrak{L}^{\psi}=\{3,4,5\}$ (see also Note 28 and Lemma 34). Note that the scope $\psi\left(x_{1}\right)$ is constructed over ϕ, and the conditional scope $\psi\left(x_{1} \mid x_{2}\right)$ is constructed over $\phi^{\prime}\left(x_{2}\right)$, where $\phi \supseteq \phi^{\prime}\left(x_{2}\right)$. Recall that $\phi:=\hat{\phi}$. Hence, $\psi\left(x_{1}\right) \vDash \psi\left(x_{1} \mid x_{2}\right)$, in which $\psi\left(x_{1}\right)=x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$, while $\psi\left(x_{1} \mid x_{2}\right)=x_{1} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$. Moreover, $\psi\left(x_{8}\right) \vDash \psi\left(x_{8} \mid x_{2}, x_{1}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{1} \mid x_{2}\right)$, and $\psi\left(x_{11}\right) \vDash \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)$, where $\phi^{\prime}\left(x_{1} \mid x_{2}\right)={ }^{2} \phi \wedge{ }^{3} \phi$ and $\phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)={ }^{3} \phi$ (see Lemmas 36-38).

3.5 An Illustrative Example

This section illustrates $\operatorname{Scan}\left(\varphi_{s}\right)$. Let $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, which is adapted from Esparza [2], and denotes a general formula by Definition 15. Note that $C_{1}=$ $\left\{x_{1}, \bar{x}_{3}\right\}, C_{2}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}$, and $C_{3}=\left\{x_{2}, \bar{x}_{3}\right\}$. Hence, $\mathfrak{C}=\{1,2,3\}$, and $\mathfrak{L}=\mathfrak{L}^{\phi}=\{1,2,3\}$.
$\operatorname{Scan}(\varphi)$: There exists no conjunct in (the initial formula) φ. That is, ψ is empty (L:1). Recall that $\varphi:=\varphi_{1}$, and that $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Recall also that nontrivial incompatibility of r_{i} is checked (L:4-8) via Scope $\left(r_{i}, \phi\right)$. Moreover, the order of incompatibility check is arbitrary (incompatibility is monotonic) by Theorem 41. Let Scope $\left(x_{1}, \phi\right)$ execute due to Scan L:6.

Scope $\left(x_{1}, \phi\right)$: Since $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}, x_{1}$ is incompatible nontrivially (see Example 25). Thus, \bar{x}_{1} becomes necessary (a conjunct). Then, Remove (x_{1}, ϕ) executes due to Scan L:6.

Remove $\left(x_{1}, \phi\right): \mathfrak{C}^{\bar{x}_{1}}=\emptyset$ by OvrlEft L:1. $\mathfrak{C}^{x_{1}}=\{1,2\}$, thus $\phi^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ by OvrlEft L:7. As a result, $\tilde{\psi}\left(\bar{x}_{1}\right)=\left\{\bar{x}_{3}\right\} \& \tilde{\phi}\left(\neg x_{1}\right)=\left\{\{ \},\left\{\bar{x}_{2}, x_{3}\right\}\right\}$, the effects of \bar{x}_{1} and $\neg x_{1}$. Note that $C_{1} \leftarrow \emptyset$. Then, $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{1}\right\} \cup \tilde{\psi}\left(\bar{x}_{1}\right)$ (Remove L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{1\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{1\}$ (L:4). Also, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{1}\right) \wedge \phi^{\prime}$, where $\tilde{\phi}\left(\neg x_{1}\right)=\left(\bar{x}_{2} \odot x_{3}\right)$ and $\phi^{\prime}=\left(x_{2} \odot \bar{x}_{3}\right)$ (L:5). As a result, $\psi_{2}=\bar{x}_{1} \wedge \bar{x}_{3}$, and $\phi_{2}=\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$. Consequently, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$, and $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove L:6.
$\operatorname{Scan}\left(\varphi_{2}\right): \mathfrak{C}_{2}=\{1,2\}$ and $\mathfrak{L}^{\phi}=\{2,3\}$ hold in ϕ_{2}. Then, $\left\{x_{2}, \bar{x}_{2}\right\} \cap \psi_{2}=\emptyset$ for $2 \in \mathfrak{L}^{\phi}$, while $\bar{x}_{3} \in \psi_{2}$ for $3 \in \mathfrak{L}^{\phi}$ (L:1). As a result, \bar{x}_{3} is necessary for satisfying φ_{2}, hence $\bar{x}_{3} \Rightarrow \neg x_{3}$, that is, x_{3} is incompatible trivially. Then, Remove $\left(x_{3}, \phi_{2}\right)$ executes due to Scan L:2.

Remove $\left(x_{3}, \phi_{2}\right): \mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$, thus $\phi_{2}^{\bar{x}_{3}}=\left(x_{2} \odot \bar{x}_{3}\right)$, and $\mathfrak{C}_{2}^{x_{3}}=\{1\}$, thus $\phi_{2}^{x_{3}}=\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{2}\right\} \cup\left\{\bar{x}_{2}\right\} \& \tilde{\phi}_{2}\left(\neg x_{3}\right)=\{\{ \}\}$, because $C_{1}=\left\{\bar{x}_{2}\right\}$ consists in $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, rather than in $\tilde{\phi}_{2}\left(\neg x_{3}\right)$ (see OvrlEft L:9). Hence, $\psi_{3} \leftarrow \psi_{2} \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$, and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$, i.e., $\mathfrak{L}^{\phi}=\{2\}$. Therefore, $\phi_{3}=\{\{ \}\}$, thus $\mathfrak{C}_{3}=\emptyset$, and $\psi_{3}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$.
$\operatorname{Scan}\left(\varphi_{3}\right): \bar{x}_{2} \in \psi_{3}$ for $2 \in \mathfrak{L}^{\phi}$ over ϕ_{3}. Then, Remove $\left(x_{2}, \phi_{3}\right)$ executes due to Scan L:2.
Remove $\left(x_{2}, \phi_{3}\right): \tilde{\psi}_{3}\left(\bar{x}_{2}\right)=\emptyset \& \tilde{\phi}_{3}\left(\neg x_{2}\right)=\{\{ \}\}$ due to $\operatorname{OvrlEft}\left(\bar{x}_{2}, \phi_{3}\right)$, because $\mathfrak{C}_{3}^{\bar{x}_{2}}=\emptyset$ and $\mathfrak{C}_{3}^{x_{2}}=\emptyset$, since $\mathfrak{C}_{3}=\emptyset$. Hence, $\mathfrak{L}^{\phi} \leftarrow\{2\}-\{2\}$ and $\phi_{4} \leftarrow \phi_{3}$. Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ executes.

Scan $\left(\varphi_{4}\right)$ terminates: $\hat{\varphi}=\hat{\psi}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$ (L:9), and φ collapses to a unique assignment.

Let Scope $\left(x_{3}, \phi\right)$ execute before Scope $\left(x_{1}, \phi\right)$ due to Scan L:6 (see Theorem 41).
Scope $\left(x_{3}, \phi\right): \psi\left(x_{3}\right) \leftarrow\left\{x_{3}\right\}$ and $\phi_{*} \leftarrow \phi\left(\right.$ L:1). Then, $\mathfrak{C}_{*}^{x_{3}}=\{2\}$ due to $\operatorname{OvrlEft}\left(x_{3}, \phi_{*}\right)$ $\mathrm{L}: 1$, hence $\phi_{*}^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$. As a result, $c_{2} \leftarrow\left\{\bar{x}_{1}, x_{2}\right\}$ and $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup c_{2}$ (L:3,5). Moreover, $\mathfrak{C}_{\tilde{\psi}_{*}^{x_{3}}}^{\bar{\psi}_{*}}=\{1,3\}(\mathrm{L}: 7)$, hence $\phi_{*}^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Then, $C_{1} \leftarrow\left\{x_{1}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}$, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{1}$, and $C_{1} \leftarrow \emptyset$. Likewise, $C_{3} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}, \tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{3}$, and $C_{3} \leftarrow \emptyset\left(\right.$ OvrlEft L:8-9). Consequently, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow\left\{\bar{x}_{1}, x_{2}, x_{1}\right\} \& \tilde{\phi}_{*}\left(\neg \bar{x}_{3}\right) \leftarrow \phi_{*}^{\bar{x}_{3}}$ (L:11). Note that $\phi_{*}^{\bar{x}_{3}}=\{\{ \},\{ \}\}$, since $C_{1}=C_{3}=\emptyset$. Then, $\psi\left(x_{3}\right) \leftarrow \psi\left(x_{3}\right) \cup\left\{x_{3}\right\} \cup \tilde{\psi}_{*}\left(x_{3}\right)$ due to Scope L:4, hence $\psi\left(x_{3}\right)=\left\{x_{3}, \bar{x}_{1}, x_{2}, x_{1}\right\}$. Since $\psi\left(x_{3}\right) \supseteq\left\{\bar{x}_{1}, x_{1}\right\}$ (L:5), x_{3} is incompatible nontrivially, i.e., $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$. Then, Remove (x_{3}, ϕ) executes due to Scan L:6.

Remove $\left(x_{3}, \phi\right): \phi^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$ due to $\mathfrak{C}^{\bar{x}_{3}}=\{1,3\}$, and $\phi^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to $\mathfrak{C}^{x_{3}}=\{2\}$. Then, OvrlEft $\left(\bar{x}_{3}, \phi\right)$ returns $\tilde{\psi}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{1}, \bar{x}_{2}\right\} \& \tilde{\phi}\left(\neg x_{3}\right)=\left\{\left\{x_{1}, \bar{x}_{2}\right\}\right\}$ (Remove L:1), $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}\left(\bar{x}_{3}\right)(\mathrm{L}: 2)$, and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$ (L:4). As a result, $\psi_{2}=\bar{x}_{3} \wedge \bar{x}_{1} \wedge \bar{x}_{2}$. Moreover, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{3}\right) \wedge \phi^{\prime}\left(\right.$ L:5), in which $\tilde{\phi}\left(\neg x_{3}\right)=\left(x_{1} \odot \bar{x}_{2}\right)$ and ϕ^{\prime} is empty. Therefore, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$. Note that $C_{1}=\left\{x_{1}, \bar{x}_{2}\right\}$, hence $\mathfrak{C}_{2}=\{1\}$. Recall that $\mathfrak{L}^{\phi}=\{1,2\}$, and that $\mathfrak{L}^{\psi}=\{3\}$. Then, $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove $\left(x_{3}, \phi\right)$ L: 6 .

Scan $\left(\varphi_{2}\right): \mathfrak{L}^{\phi}=\{1,2\}$ such that $\bar{x}_{2} \in \psi_{2}$ and $\bar{x}_{1} \in \psi_{2}$. Thus, \bar{x}_{2} and \bar{x}_{1} are necessary, hence x_{2} and x_{1} are incompatible trivially. Then, $\operatorname{Remove}\left(x_{1}, \phi_{2}\right)$ and $\operatorname{Remove}\left(x_{2}, \phi_{2}\right)$ execute.

The fact that the order of incompatibility check is arbitrary (Theorem 41) is illustrated as follows. Scope $\left(x_{3}, \phi\right)$ returns x_{3} is incompatible nontrivially, since $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$. Therefore, $\neg \bar{x}_{1} \vee \neg x_{1} \Rightarrow \neg x_{3}$, hence $x_{1} \vee \bar{x}_{1} \Rightarrow \bar{x}_{3}$. Then, $\bar{x}_{3} \Rightarrow \bar{x}_{1}$ due to $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, and $\bar{x}_{1} \Rightarrow \neg x_{1}$. Thus, x_{1} is still incompatible, but trivially (cf. Scope $\left(x_{1}, \phi\right)$), even if $\neg x_{3}$ holds. That is, x_{1} the nontrivial incompatible in ϕ due to $x_{1} \Rightarrow \bar{x}_{3} \wedge x_{3}$, i.e., $\neg \bar{x}_{3} \vee \neg x_{3} \Rightarrow \neg x_{1}$, is incompatible trivially in ψ_{2} due to $\bar{x}_{1} \Rightarrow \neg x_{1}$. See Scan $\left(\varphi_{2}\right)$ above. Also, since $x_{3} \notin C_{k}$ and $\bar{x}_{3} \notin C_{k}$ in ϕ_{s} for any $s \geqslant 2$, $\not \models \varphi_{s}\left(x_{3}\right)$ for all $s \geqslant 2$, even if any r_{i} is removed from some C_{k} in $\phi_{s}, s \geqslant 2$.

4 Conclusion

X3SAT has proved to be effective to show $\mathbf{P}=\mathbf{N P}$. A polynomial time algorithm checks unsatisfiability of $\phi\left(r_{i}\right)$ such that $\not \models \phi\left(r_{i}\right)$ iff $\psi_{s}\left(r_{i}\right)$ involves $x_{j} \wedge \bar{x}_{j}$ for some s. Thus, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right)$. $\psi\left(r_{i}\right)$ denotes a conjunction of literals that are true, since each r_{j} such that $\not \models \psi_{s}\left(r_{j}\right)$ is removed from ϕ. Hence, ϕ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for any $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Thus, it is easy to verify satisfiability of ϕ via satisfiability of $\psi\left(x_{1}\right), \psi\left(\bar{x}_{1}\right), \ldots, \psi\left(x_{n}\right), \psi\left(\bar{x}_{n}\right)$.

[^0]
A Proof of Theorem 39/40

This section gives a rigorous proof of Theorem 39/40. Recall that the φ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some i and s, that is, φ is unsatisfiable, which is trivial to verify. Recall also that the $\varphi_{\hat{s}}$ scan terminates iff $\psi_{\hat{s}}\left(r_{i}\right)=\mathbf{T}$ for any $i \in \mathfrak{L} \hat{\phi}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Moreover, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$ such that $\hat{\psi}=\mathbf{T}$ (see Scan L:9 and Note 29). Therefore, when the scan terminates, satisfiability of $\hat{\phi}$ is to be proved, which is addressed in this section. Let $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$.

- Theorem 48 (cf. 39-40/Claim 1). These statements are equivalent for any $i \in \mathfrak{L}: a) \nvdash \phi\left(r_{i}\right)$ $i f f \not \models \psi_{s}\left(r_{i}\right)$ for some s. b) $r_{i} \vDash \psi\left(r_{i}\right)$. c) $\models_{\alpha} \phi$ by $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$.

Proof. We will show $a \Rightarrow b, b \Rightarrow c$, and $c \Rightarrow a$ (see Kenneth H. Rosen, Discrete Mathematics and its Applications, 7E, pg. 88). Firstly, $a \Rightarrow b$ holds, because a holds by assumption (see Note 31), and b holds by Lemma 23. Next, we will show $b \Rightarrow c$. We do this by showing that satisfiability of ϕ is preserved throughout the assignment α construction, where $\alpha=$ $\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$, because any partial assignment $\psi\left(r_{i} \mid r_{j}\right)$ is constructed arbitrarily through consecutive steps having the Markov property. Thus, construction of $\psi\left(r_{i} \mid r_{j}\right)$ in the next step is independent from the preceding steps, and depends only upon $\psi\left(r_{j} \mid r_{k}\right)$ in the present step (see also Lemma 34). The construction process is specified below.

Step 0: Pick any $r_{i_{0}}$ in ϕ. Then, $r_{i_{0}} \vDash \psi\left(r_{i_{0}}\right)$ by Lemma 23. Also, $r_{i_{0}}$ partitions \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$. Note that $i_{0} \in \mathfrak{L}$ and $i_{0} \in \mathfrak{L}\left(r_{i_{0}}\right)$. Hence, $i_{0} \notin \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ by Lemma 33. Therefore, $\phi\left(r_{i_{0}}\right)=\psi\left(r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{0}}\right)$ in Step 0 . Then, pick an arbitrary $r_{i_{1}}$ in $\phi^{\prime}\left(r_{i_{0}}\right)$ for Step 1.

Step 1: $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)=\emptyset$ due to Step 0. Then, $r_{i_{1}} \vDash \psi\left(r_{i_{1}}\right)$ by Lemma 23, as well as $\psi\left(r_{i_{1}}\right) \vDash \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ by Lemma 37. Also, $r_{i_{1}}$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. Thus, $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)=\emptyset$, since $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. As a result, \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ by $r_{i_{0}}$ and $r_{i_{1}}$. Thus, $\psi\left(r_{i_{0}}\right)$ and $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ are disjoint, as well as true. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\mathbf{T}$, and $\phi\left(r_{i_{0}}, r_{i_{1}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$.

Step 2: The preceding steps have partitioned \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. Then, $r_{i_{2}} \vDash \psi\left(r_{i_{2}}\right)$ by Lemma 23, as well as $\psi\left(r_{i_{2}}\right) \vDash \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)$ by Lemma 37/38. Also, $r_{i_{2}}$ in $\phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, i.e., $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$. Then, $\left(\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)\right) \cap \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)=\emptyset$, thus $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\psi\left(r_{i_{2}} \mid r_{i_{1}}\right)$ are disjoint, as well as true. Therefore, $\phi\left(r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right) \wedge \phi^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, in which $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)=\mathbf{T}$. Note that $\alpha \supseteq\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)\right\}$, and that \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right) \neq \emptyset$.

Step n : $r_{i_{n}}$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ into $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)=\emptyset$. $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right) \cup \cdots \cup \mathfrak{L}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, hence $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$, form a partition of \mathfrak{L}. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ are disjoint, as well as true. That is, $\phi\left(r_{i_{0}}, r_{i_{1}}, \ldots, r_{i_{m}}, r_{i_{n}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right) \wedge \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ is satisfied.

Thus, ϕ is composed of $\psi($.$) disjoint and satisfied, hence \phi$ is satisfiable, and $b \Rightarrow c$ holds. Finally, we show $c \Rightarrow a$. r_{i} transforms ϕ into $\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Then, $\phi \equiv \psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$, where ϕ and $\psi\left(r_{i}\right)$ are satisfiable, and $\psi\left(r_{i}\right)$ and $\phi^{\prime}\left(r_{i}\right)$ are disjoint. Thus, $\phi^{\prime}\left(r_{i}\right)$ is satisfiable. Hence, unsatisfiability of $\psi_{s}\left(r_{i}\right)$ for some s is necessary and sufficient for $\not \models \phi_{s}\left(r_{i}\right)$ for any s.

- Note. The assignment α construction is driven by partitioning the set \mathfrak{L}^{\prime} (.) such that $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{0}}\right)$ in Step 1 , and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ for $i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ in Step $n \geqslant 2$.
- Note. $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$ by Theorem 48. Thus, the formula $\phi=\bigwedge_{k \in \mathfrak{C}} C_{k}$ transforms into the formula $\phi^{\prime}=\bigwedge_{i \in \mathfrak{L}} \mathcal{C}_{i}$, where $C_{k}=\left(r_{i} \odot r_{j} \odot r_{v}\right)$ and $\mathcal{C}_{i}=\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$. See also Note 29 .
- Note (Construction of α). In order to form a partition over the set ϕ, α is constructed such that $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\psi\left(r_{i_{1}}\right)-\psi\left(r_{i_{0}}\right)$, and $\psi\left(r_{i_{n}} \mid r_{i_{n-1}}\right)=\psi\left(r_{n}\right)-\left(\psi\left(r_{i_{0}}\right) \cup \cdots \cup \psi\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)\right)$ for $n \geqslant 2$. On the other hand, if the construction involves no set partition, then $\alpha=\bigcup \psi\left(r_{i}\right)$ for $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$, where $i_{0} \in \mathfrak{L}, i_{1} \in \mathfrak{L}^{\prime}\left(r_{i_{0}}\right), \ldots, i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, thus $r_{i_{0}} \prec r_{i_{1}} \prec \cdots \prec r_{i_{n}}$. Note that there is no need to construct $\phi^{\prime}\left(r_{i}\right)$ in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 45 involves no set partition, then $\alpha=\left\{\psi\left(\bar{x}_{7}\right), \psi\left(x_{2}\right), \psi\left(x_{1}\right)\right\}$, in which $\psi\left(\bar{x}_{7}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\}, \psi\left(x_{2}\right)=\left\{x_{2}\right\}$, and $\psi\left(x_{1}\right)=\left\{x_{1}, x_{2}, \bar{x}_{7}, \bar{x}_{6}\right\}$. Also, $\bar{x}_{7} \prec x_{2} \prec x_{1}$ due to $x_{2} \in \phi^{\prime}\left(\bar{x}_{7}\right)$ and $x_{1} \in \phi^{\prime}\left(x_{2} \mid \bar{x}_{7}\right)$. Moreover, $\psi\left(\bar{x}_{7}\right), \psi\left(x_{2} \mid \bar{x}_{7}\right)$, and $\psi\left(x_{1} \mid x_{2}\right)$ form a partition over the set ϕ, where $\psi\left(x_{2} \mid \bar{x}_{7}\right)=\psi\left(x_{2}\right)-\psi\left(\bar{x}_{7}\right)$ and $\psi\left(x_{1} \mid x_{2}\right)=\psi\left(x_{1}\right)-\left(\psi\left(x_{2} \mid \bar{x}_{7}\right) \cup \psi\left(\bar{x}_{7}\right)\right)$. As a result, $\alpha=\phi\left(\bar{x}_{7}, x_{2}, x_{1}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cup\left\{x_{2}\right\} \cup\left\{x_{1}\right\}$ such that $\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cap\left\{x_{2}\right\} \cap\left\{x_{1}\right\}=\emptyset$.

[^0]: References
 https://rjlipton.wordpress.com/2020/02/28/reductions-and-jokes.
 2 Javier Esparza. Decidability and complexity of Petri net problems - an introduction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of $L N C S$, pages 374-428. Springer Berlin Heidelberg, 1998.
 3 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 216-226, 1978.

