
EasyChair Preprint
№ 1734

On the Tractability of Un/Satisfiability

Latif Salum

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 7, 2020

On the Tractability of Un/Satisfiability
Latif Salum
Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
latif.salum@deu.edu.tr & latif.salum@gmail.com

Abstract
This paper shows P = NP via exactly-1 3SAT (X3SAT). Let φ =

∧
Ck be some X3SAT formula.

Ck = (ri� rj � ru) is a clause denoting an exactly-1 disjunction � of literals ri, ri ∈ {xi, xi}. Ck is
satisfied iff (ri∧ rj∧ ru)∨ (ri∧ rj∧ ru)∨ (ri∧ rj∧ ru) is satisfied, because any Ck contains exactly one
true literal by the definition of X3SAT. Let φ(rj) := rj∧ φ. Then, rj leads to reductions due to � of
some Ck = (xi� rj� xu) into ck = xi∧ rj∧ xu, and some Ck = (rj� ru� rv) into Ck′ = (ru� rv). As
a result, rj transforms φ into φ(rj) = ψ(rj) ∧ φ′(rj), unless 2 ψ(rj), that is, unless ψ(rj) involves a
contradiction xi∧xi. Also, ψ(rj) and φ′(rj) become disjoint, where ψ(rj) =

∧
(ck∧Ck′) for |Ck′ | = 1,

and φ′(rj) =
∧

(Ck∧Ck′). It is trivial to verify 2 ψ(rj) and redundant to verify 2 φ′(rj), thus easy to
verify 2 φ(rj). A proof is sketched as follows. φ transforms into ψ∧φ′ such that whenever 2 ψ(rj), rj

is placed in ψ, and leads to reductions of some Ck in φ′. If ψ involves xj∧ xj, then φ is unsatisfiable.
Otherwise, φ is satisfiable, because φ is composed of ψ,ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim), and all ψ(.)
are disjoint and satisfied. Note that ri � ψ(ri) and ψ(ri) � ψ(ri|.) for any ri in φ′. Thus, φ′(ri) is
satisfiable, because φ ≡ ψ(ri) ∧ φ′(ri), where ψ(ri) and φ′(ri) are disjoint. Therefore, it is redundant
to check if 2 φ′(ri) to verify 2 φ(ri), QED. The time complexity is O(mn3). Therefore, P = NP.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT

Digital Object Identifier 10.4230/LIPIcs...

Acknowledgements I would like to thank Javier Esparza, Anuj Dawar, Avi Wigderson, Paul Spirakis,
and Éva Tardos, as well as anonymous reviewers for their comments and contributions throughout
the development of the paper since 2008. I would like to thank Csongor Csehi from the Building
Bridges II Conference. I would like to thank the faculty of the Department of Mathematics of Dokuz
Eylül University, as well as my colleagues at the Industrial Engineering Department.

1 Introduction: Effectiveness of X3SAT in proving P = NP

As is well known, P = NP, if there exists an efficient algorithm for any one of NP-complete
problems. That is, their algorithmic efficiency is equivalent. Nevertheless, some NP-complete
problem features algorithmic effectiveness, if it incorporates an effective tool to develop an
efficient algorithm. That is, a particular problem can be more effective to prove P = NP.
This issue might also be related to “complexity reductions” (Lipton and Regan [1]). They
state these reductions are needed to understand what the P = NP problem is really about.

The paper shows that one-in-three SAT, which is NP-complete [3], features algorithmic
effectiveness to prove P = NP. This problem is also known as exactly-1 3SAT (X3SAT). It
incorporates “exactly-1 disjunction”, denoted by �, the tool used to develop an efficient (or
a polynomial time) algorithm, which “scans” an X3SAT formula φ, thus is called the φ scan.

If 2 φ(rj), that is, φ(rj) is unsatisfiable, then rj is incompatible, where φ(rj) := rj∧φ and
rj ∈ {xj , xj}. The φ scan removes each incompatible rj from φ, thus verifies compatibility of
any ri for satisfying φ. When each rj incompatible is removed, φ is unsatisfiable, or satisfiable.
If φ is satisfiable, then any ri becomes compatible to participate in a satisfying assignment.

Let φ = C1∧C2∧ · · · ∧Cm be an X3SAT formula, in which a clause Ck = (ri� rj� ru) is
an exactly-1 disjunction of literals. Ck is satisfied by definition iff exactly one of ri, rj, or ru
is true. Note that (ri∨rj ∨ru) in a 3SAT formula is satisfied iff at least one of them is true.

© Latif Salum;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5660-1938
mailto:latif.salum@deu.edu.tr & latif.salum@gmail.com
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 On the Tractability of Un/Satisfiability

Incompatibility of ri is checked by a deterministic chain of reductions of some Ck in φ(ri).
Consider φ(xj) := xj∧φ. Then, the reductions are initiated by xj, and followed by ¬xj, since
xj⇒ ¬xj. That is, each (xj� xi� xu) collapses to (xj∧ xi∧ xu) due to xj⇒ xj∧¬xi∧¬xu,
since there is exactly one (negated) variable that is true in any Ck by the definition of X3SAT.
Also, each (xj� xu� xv) shrinks to (xu� xv) due to ¬xj. As a result, xj transforms φ into
φ(xj) = xj∧ xi∧ xu∧ φ∗, and xi∧ xu proceeds the reductions in φ∗, which involves (xu� xv).

The reductions over φs(xj) terminate iff xj transforms φs into ψs(xj) ∧ φ′s(xj), in which
ψs(xj) and φ′s(xj) are disjoint, where s denotes the current scan, and ψs(xj) is a conjunction
of (negated) variables that are true. They are interrupted iff ψs(xj) involves xi ∧ xi, hence
2 φs(xj), thus xj is incompatible. Note that 2 φs(.) is verified only by 2 ψs(.) (see Figure 1).

The reductions over φ terminate iff φ transforms into ψ∧φ′, in which ψ and φ′ are disjoint,
where ψ = x5 ∧ xn∧ · · · ∧ x2 (Figure 1). Then, φ is updated, that is, φ← φ′. The φs scan is
interrupted iff ψs involves xi∧ xi for some s and i, thus 2 φ, that is, φ is unsatisfiable.

φ φ2 := φ(x5)
¬x5⇒ x5 for φ, if 2 ψ(x5)

φ2 φ3 := φ2(xn)
¬xn⇒ xn for φ2, if 2 ψ2(xn)

...
...

φs−1 φs := φs−1(x2)
¬x2⇒ x2, if 2 ψs−1(x2)

Figure 1 The φs scan: 2 φs(rj) is verified solely by 2 ψs(rj)—whether or not 2 φ′s(rj) is ignored

B Claim 1. 2 φ(rj) iff 2 ψs(rj) for some s. That is, it is redundant to check whether or not
2 φ′s(rj). Thus, φ(ri) reduces to ψ(ri) due to φ(ri) = ψ(ri) ∧ φ′(ri). Then, ψ(ri) ≡ φ(ri).
Therefore, φ is satisfiable iff ψ(ri) is satisfied for any ri, that is, iff the φs scan terminates.

Sketch of proof. ψ(ri)/ψ(ri|rj) is constructed over φ/φ′(rj), thus ψ(ri) covers ψ(ri|rj), hence
ψ(ri) � ψ(ri|rj) holds. Because ψ(rj) and φ′(rj) are disjoint, ψ(rj) and ψ(ri|rj) are disjoint
(see Figure 2). Therefore, ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2) form disjoint
minterms ψ(.) =

∧
ri over φ such that ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2)

hold, since ψ(ri) is true for any ri (the φs scan terminates), and ψ(ri) � ψ(ri|.) holds. Thus,
φ is composed of ψ(.) that are disjoint and satisfied (see Figure 3), hence φ is satisfied. C

φ
ψ(ri) = ri∧ rj ∧ · · · ∧ rv

φ(rj)
ψ(rj) φ′(rj)

φ′(rj) 3 ri
ψ(ri|rj) = ri∧ · · · ∧ rv φ′(ri|rj)

Figure 2 ψ(ri) � ψ(ri|rj), and ψ(rj) and ψ(ri|rj) are disjoint, thus ψ(rj) ∧ ψ(ri|rj) is true

A satisfying assignment α is constructed by composing ψ(.) that are disjoint and satisfied.
For example, α = {ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), ψ(ri3 |ri0 , ri1, ri2)} (see Figure 3).

φ

ψ(ri1)
ψ(ri0) ψ(ri3)

ψ(ri2)

φ(ri0)
ψ(ri0) φ′(ri0)

φ′(ri0) 3 ri1
ψ(ri1|ri0) φ′(ri1|ri0)

φ′(ri1|ri0) 3 ri2
ψ(ri2 |ri0 , ri1) φ′(ri2 |ri0 , ri1)

φ′(ri2 |ri0 , ri1) 3 ri3
ψ(ri3 |ri0 , ri1, ri2)

Figure 3 ψ(ri1) � ψ(ri1|ri0), ψ(ri2) � ψ(ri2 |ri0 , ri1), and ψ(ri3) � ψ(ri3 |ri0 , ri1, ri2)

L. Salum XX:3

2 Basic Definitions

This section gives basic definitions, which are based on exactly-1 disjunction, denoted by �.
I Definition 2. A literal ri is a variable xi assigned true, or a negated variable xi assigned
true. That is, ri ∈ {xi, xi}, in which xi = T and xi = T.
I Definition 3. A clause Ck = (ri� rj � ru) denotes an exactly-1 disjunction of literals.
I Definition 4. ck =

∧
ri denotes a minterm, a conjunction of ri, where ri is called a conjunct.

I Definition 5. ϕ = ψ ∧ φ denotes an X3SAT formula such that ψ =
∧
ck and φ =

∧
Ck.

Where appropriate, Ck, as well as ψ, is denoted by a set. Thus, ϕ = ψ ∧ φ the formula,
that is, ϕ = ψ ∧C1∧C2∧ · · · ∧Cm, is denoted by ϕ = {ψ,C1, C2, . . . , Cm} the family of sets.
I Definition 6. Ck = (ri� rj� ru) is satisfied iff (ri∧ rj ∧ ru)∨ (ri∧ rj ∧ ru)∨ (ri∧ rj ∧ ru)
is satisfied, since any clause Ck contains exactly one true literal by the definition of X3SAT.
I Definition 7 (Incompatibility). ri in some Ck is incompatible, denoted by ¬ri, iff ri leads to
a contradiction xj∧xj, that is, ri∧ϕ is unsatisfiable, hence ri is removed from every Ck in φ.
I Remark. Each xi and xi in φ is assumed to be compatible, thus no Ck contains ¬xi, or ¬xi,
while any ri in ψ is necessarily true by Definition 4/5, thus denotes a conjunct, to satisfy ϕ.
I Note 8. If ri ∈ ψ, then ri⇒ ¬ri, that is, ri becomes incompatible, and is removed from φ.
If ri⇒ xj∧xj, hence ¬xj∨¬xj⇒ ¬ri, then ¬ri⇒ ri, that is, ri becomes a conjunct (ri ∈ ψ).
I Definition 9. L = {1, 2, . . . , n} denotes the index set of the literals ri, C = {1, 2, . . . ,m}
denotes the index set of the clauses Ck, and Cri = {k ∈ C | ri ∈ Ck} denotes Ck containing ri.
I Example 10. ϕ = x4 ∧ (x1� x2� x3)∧ (x3� x4), in which x4 is necessary for satisfying ϕ,
thus ψ = {x4}, Cx4 = {2}, and C1 = {x1, x2, x3} denotes either x1 = T or x2 = T or x3 = T.
I Definition 11 (Collapse). A clause Ck = (ri� xj� xu) is said to collapse to the minterm
ck = (ri ∧ xj ∧ xu), thus ri /∈ Ck, if ri is necessary, denoted by (ri� xj� xu)↘(ri ∧ xj ∧ xu).
I Definition 12 (Shrinkage). A clause Ck = (ri� rj� ru) is said to shrink to another clause
Ck′ = (rj� ru), if ¬ri (ri the incompatible is removed), denoted by (ri� rj� ru)� (rj� ru).
I Definition 13 (Compatibility of ri ∈ {xi, xi} over φ). φ(ri) = ri ∧ φ for any ri ∈ Ck in φ.
I Note 14 (Reduction). The collapse or shrinkage denotes a reduction. If ri ∈ ψ, then ri leads
to reductions over φ, thus ϕ→ϕ′. That is, ϕ→ϕ′ iff Ck↘ ck or Ck�Ck′ for Ck in φ. Since
ri is necessary for φ(ri), it leads to reductions over φ(ri). Then, (ri� rv� ry)� (rv� ry) and
(ri� xj� xu)↘(ri ∧ xj ∧ xu), because ri⇒¬ri such that ri⇒ ri ∧ xj ∧ xu holds over some
Ck = (ri� xj� xu), since ri⇒ ¬xj∧¬xu, thus ¬xj⇒ xj and ¬xu⇒ xu (see Definition 6/7).
I Definition 15. φ denotes a general formula if {xi, xi} * Ck for any i ∈ L and k ∈ C, hence
Cxi∩Cxi = ∅. φ denotes a special formula if {xi, xi} ⊆ Ck for some k, hence Cxi∩Cxi = {k}.
I Lemma 16 (Conversion of a special formula). Each clause Ck = (rj� xi� xi) is replaced
by the conjunct rj so that Cxi ∩ Cxi = ∅ for any i ∈ L, if φ =

∧
Ck is a special formula.

Proof. φ is unsatisfiable due to rj⇒ xi∧ xi. Then, xi∨ xi⇒ rj. That is, rj is necessary for
satisfying Ck = (rj� xi� xi), which is sufficient also, thus rj is equivalent to Ck. Therefore,
each clause Ck = (rj� xi� xi) is replaced by the conjunct rj so that Cxi ∩ Cxi = ∅. J

I Example 17. ϕ = (x2� x1) ∧ (x1� x3� x4) ∧ (x1� x2� x2) is a special formula due to
C3 = {x1, x2, x2}. Note that Cx2 ∩ Cx2 = {3}. Then, ϕ is converted by replacing the clause
C3 with the conjunct x1. As a result, ϕ← x1∧ (x2� x1) ∧ (x1� x3 � x4). Likewise, if ϕ =
(x3�x4�x4)∧ (x3�x2�x2)∧ (x2�x1), then ϕ← x3∧x3∧ (x2�x1), which is unsatisfiable.

XX:4 On the Tractability of Un/Satisfiability

3 The ϕ Scan

The ϕ scan asserts that ϕ is satisfiable iff xi or xi is compatible (Definition 13) for all i ∈ L.
Hence, we need to show that φ(x1) or φ(x1), and φ(x2) or φ(x2), and · · · and φ(xn) or φ(xn)
are satisfied. If ϕ is satisfiable, then a satisfying assignment is determined (see Section 3.4).

2 ϕ denotes ϕ is unsatisfiable, and �αϕ denotes that α = {r1, r2, . . . , rn} is a satisfying
assignment for ϕ. ψ � ψ′ denotes that ψ entails ψ′, and ψ ` ψ′ denotes that ψ proves ψ′.

ϕs for s > 2 denotes the current formula at the sth scan/step such that ϕ := ϕ1, after ¬rj
holds in φs−1 (see Definition 7). Then, φris = (rik1� ru1k1� ru2k1)∧ · · · ∧ (rikr� rv1kr� rv2kr)
denotes the formula over clauses Ck 3 ri in φs, where ri ∈ {xi, xi}. Hence, Cris = {k1, . . . , kr}.

ψ̃s(ri) is called the local effect of ri, and φ̃s(¬ri) is the effect of ¬ri. ϕ̃s(ri) denotes its
overall effect such that ϕ̃s(ri) = ψ̃s(ri) ∧ φ̃s(¬ri), specified below. Also, ψ̃s(ri) =

∧
(ck ∧ Ck)

such that |Ck| = 1. Moreover, φ̃s(¬ri) =
∧
Ck such that |Ck| > 1, or φ̃s(¬ri) is empty.

3.1 Introduction: Incompatibility and Reductions
Example 18 (19) introduces incompatibility (reductions over φ), which drive the ϕ scan.

I Example 18. Consider φ(x1) over ϕ = φ = (x1�x3)∧ (x1�x2�x3)∧ (x2�x3). Thus, x1
is necessary for φ(x1), hence x1 � ψ̃(x1) such that ψ̃(x1) = (x1∧ x3)∧ (x1∧ x2∧ x3). That is,
x1⇒ ¬x3 holds over C1 = (x1� x3), hence ¬x3⇒ x3. Likewise, x1⇒ ¬x2 ∧ ¬x3 holds over
(x1� x2� x3), hence ¬x2⇒ x2 and ¬x3⇒ x3 (see Note 14). Thus, ϕ̃(x1) = ψ̃(x1) ∧ φ̃(¬x1)
becomes the overall effect, where φ̃(¬x1) is empty. Then, the reductions initiated by x1 over
φ(x1) are to proceed due to x2. Nevertheless, they are interrupted by x3 ∧ x3 due to ψ̃(x1).
Hence, φ(x1) = ϕ̃(x1)∧ (x2� x3) is unsatisfiable, thus x1 is incompatible for ϕ, i.e, ¬x1⇒ x1.

I Example 19. x1 initiates reductions over φ (Note 14). Then, ψ̃(x1) = x1∧ x3, φ̃(¬x1) =
(x2� x3), and ϕ̃(x1) = ψ̃(x1) ∧ φ̃(¬x1) to define ϕ2 = ϕ̃(x1) ∧ (x2� x3). Note that (x2� x3)
is beyond ϕ̃(x1) the overall effect. Note also that {x3} /∈ φ̃(¬x1), while x3 ∈ ψ̃(x1), because
C1� c1, since φ̃(¬x1) contains no singleton. Then, ϕ2 is the current formula due to the first
reduction by x1 over φ. Thus, ϕ→ϕ2 due to (x1�x3)� (x3) and (x1�x2�x3)� (x2�x3).
As a result, ϕ2 = x1∧x3∧ (x2�x3)∧ (x2�x3), in which ψ2 = {x1, x3} denotes the conjuncts,
and C1 = {x2, x3} and C2 = {x2, x3} denote the clauses. Note that Cx3

2 = {1} and Cx3
2 = {2}.

Likewise, x3 leads to the next reduction over φ2: ψ̃2(x3) = (x2 ∧ x3), φ̃2(¬x3) is empty, and
ϕ̃2(x3) = ψ̃2(x3)∧ φ̃2(¬x3). Thus, ϕ2→ϕ3 due to (x2� x3)↘(x2∧ x3) and (x2� x3)� (x2).
Then, ϕ3 = ϕ̃(x1)∧ ϕ̃2(x3) = x1∧ x2 ∧ x3, which denotes the cumulative effects of x1 and x3.

3.2 The Core Algorithms: Scope and Scan

Let φrjs = (rjk1� ri1k1� ri2k1) ∧ · · · ∧ (rjkr� ru1kr� ru2kr) for Lemma 20 and 21 below.

I Lemma 20. rj � ψ̃s(rj) such that ψ̃s(rj) = rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2, unless 2 ψ̃s(rj).

Proof. Follows from Definition 11. That is, rj⇒ (rj∧ ri1∧ ri2)∧ · · · ∧ (rj∧ ru1∧ ru2). Hence,
rj⇒ rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2. J

I Lemma 21. If ¬rj, then φ̃s(¬rj) holds such that φ̃s(¬rj) = (ri1� ri2) ∧ · · · ∧ (ru1� ru2).

Proof. Follows from Definition 12. φ̃s(¬rj) =
{
{}
}
, or |Ck| > 1 for any Ck in φ̃s(¬rj). J

I Lemma 22 (Overall effect of rj over φs). ϕ̃s(rj) = ψ̃s(rj) ∧ φ̃s(¬rj).

Proof. Follows from Lemma 20, and from 21 via φrjs , since rj⇒ ¬rj, thus rj � rj ∧ ¬rj. J

L. Salum XX:5

The algorithm OvrlEft (rj , φ∗) below constructs the overall effect ϕ̃∗(rj) by means of
the local effect ψ̃∗(rj) (see Lines 1-6, or L:1-6), as well as of the local effect φ̃∗(¬rj) (L:7-10).

Algorithm 1 OvrlEft (rj , φ∗) . Construction of the overall effect ϕ̃∗(rj) due to Lemma 22

1: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect ψ̃∗(rj) due to rj (Lemma 20)

2: for all ri ∈
(
Ck − {rj}

)
do. ψ̃∗(rj) gets rj via re (see Scope L:4), or via rj (Remove L:2)

3: ck← ck∪{ri}; . (rjk� ri1k� ri2k)↘(ri1k∧ ri2k). That is, Ck↘ ck (see Definition 4/11)
4: end for
5: ψ̃∗(rj)← ψ̃∗(rj) ∪ ck; . ck consists in ψs(rj) (see Scope L:4), or in ψs (see Remove L:2)
6: end for. L:1-6 are independent from L:7-10, since C

rj
∗ ∩ C

rj
∗ = ∅, i.e., Cxj

∗ ∩ C
xj
∗ = ∅ (Lemma 16)

7: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect φ̃∗(¬rj) due to ¬rj (Lemma 21)

8: Ck ← Ck−{rj}; . (rjk� ru1k� ru2k)� (ru1k� ru2k) or (rjk� ruk)� (ruk) (Definition 12)
9: if |Ck| = 1 then ψ̃∗(rj)← ψ̃∗(rj)∪Ck; Ck← ∅; . φ̃∗(¬rj) contains no singleton, Ck� ck

10: end for. 3\2-literal Ck in φrj
∗ shrinks due to ¬rj to 2-literal Ck in φrj

∗ \to conjunct ru in ψ̃∗(rj)
11: return ψ̃∗(rj) & φ̃∗(¬rj)← φ

rj
∗ ; . ψ̃∗(rj) =

∧
(ck∧Ck), |Ck| = 1 & φ̃∗(¬rj) =

∧
Ck, |Ck| > 1

ψs(rj) is called the scope of rj, and φ′s(rj) is called beyond the scope, defined over φs.

I Lemma 23 (Scope of rj). rj transforms φs into φs(rj) = ψs(rj) ∧ φ′s(rj), unless 2 ψs(rj),
where ψs(rj) = rj ∧ ri∧ · · · ∧ ru and φ′s(rj) =

∧
Ck. Thus, rj � ψs(rj), hence rj ` ψs(rj).

Proof. φs(rj) = rj∧φs by Definition 13. Then, rj initiates a deterministic chain of reductions
(see Note 14). As a result, rj⇒ rj∧ xi∧ xu holds over each Ck = (rj� xi� xu) containing rj,
and ¬rj⇒ (xu�xv) holds over each Ck = (rj�xu�xv) containing rj. These reductions thus
proceed, as long as new conjuncts re emerge in φs(rj) (see Scope L:2-4). If the reductions
are interrupted, then rj is incompatible (L:5). If they terminate, then ψs(rj) and φ′s(rj) are
constructed (L:9). Thus, rj � ψs(rj). It is obvious that if rj � ψs(rj), then rj ` ψs(rj). J

Algorithm 2 Scope (rj , φs) . Construction of ψs(rj) and φ′s(rj) due to rj over φs; ϕs = ψs ∧ φs

1: ψs(rj)← {rj}; φ∗ ← φs; . φs(rj) := rj ∧ φs. ψs and φs are disjoint due to Scan L:1-3
2: for all re ∈

(
ψs(rj)−R

)
do . Reductions of Ck initiated by rj over φs start off

3: OvrlEft (re, φ∗); . It returns ψ̃∗(re) for L:4 & φ̃∗(¬re) for L:6
4: ψs(rj)← ψs(rj)∪{re}∪ ψ̃∗(re);. ψ̃∗(re) due to OvrlEft L:5,9 consists in the scope ψs(rj)
5: if ψs(rj) ⊇ {xi, xi} then return NULL; . rj⇒ xi∧ xi, i ∈ Lφ. 2 ψs(rj), thus 2 φs(rj)
6: φ̃∗(¬r)← φ̃∗(¬r)∪ φ̃∗(¬re); . φ̃∗(¬r) =

{
{}
}
or φ̃∗(¬r) =

⋃
Ck, |Ck|> 1 (OvrlEft L:8-11)

7: φ∗ ← φ̃∗(¬r) ∧ φ′∗; R← R ∪ {re}; . φ̃∗(¬r) and φ′∗ consist in beyond the scope φ′s(rj)
. φ′∗ =

∧
Ck for k ∈ C′∗, where C′∗= C∗ − (Cxe

∗ ∪ Cxe
∗), and Cxe

∗ ∩ Cxe
∗ = ∅ due to Lemma 16

8: end for. The reductions terminate if ψs(rj) = R, which denotes conjuncts already reduced Ck

9: return ψs(rj) & φ′s(rj)← φ∗; . φs(rj) = ψs(rj) ∧ φ′s(rj). ψs(rj) =
∧
rj and φ′s(rj) =

∧
Ck

I Note 24. Ls(rj) being an index set of ψs(rj), Ls(rj)∩L′s(rj) = ∅ and Ls(rj)∪L′s(rj) = Lφ,
if Scope (rj , φs) terminates. Thus, ψs(rj) and φ′s(rj) are disjoint, where φ′s(rj) can be empty.

I Example 25. Consider ψ(x1), Scope (x1, φ), for φ = (x1� x3)∧ (x1� x2 � x3)∧ (x2 � x3).
ψ(x1)← {x1} and φ∗← φ (L:1). Then, φx1

∗ is empty, and φx1
∗ = (x1�x3)∧ (x1�x2�x3) due

to OvrlEft (x1, φ∗). Also, Cx1
∗ = {1, 2}, thus c1← {x3} and ψ̃∗(x1)← ψ̃∗(x1) ∪ c1, as well as

c2 ← {x2, x3} and ψ̃∗(x1) ← ψ̃∗(x1) ∪ c2 (see OvrlEft L:1-6). Then, ψ̃∗(x1) = {x3, x2, x3}
& φ̃∗(¬x1)← φx1

∗ (OvrlEft L:11). As a result, ψ(x1)← ψ(x1) ∪ {x1} ∪ ψ̃∗(x1) (Scope L:4),
and ψ(x1) ⊇ {x3, x3} (L:5), that is, x1⇒ x3 ∧ x3, hence x1 is incompatible in the first scan.

XX:6 On the Tractability of Un/Satisfiability

I Definition 26. Lψ = {i ∈ L | ri ∈ ψs} and Lφ = {i ∈ L | ri ∈ Ck in φs} due to ϕs = ψs∧ φs.

Scan (ϕs) decomposes φs into ψs(x1), ψs(x1), . . . , ψs(xn), ψs(xn), whenever Lψ∩ Lφ = ∅.
If 2 ψs−1(ri), then ri is placed in ψs, and leads to reductions of some Ck in φs. In Figure 4,
2 ψs−2(x1) and 2 ψs−1(x3) hold, thus ψs = x1∧ x3 and φs = (x4� x2� xn)∧ · · · ∧ (x2� xn).

ϕs = x1∧ x3︸ ︷︷ ︸
ψs

∧ (x4� x2� xn)︸ ︷︷ ︸
C1

∧ · · · ∧
ψs(x6) = x6 ∧ x8 ∧ x9 ∧ x4 ∧ x7

(x6� x8) ∧ (x6� x9� x4) ∧ (x7� x8) ∧ · · · ∧ (x2� xn)︸ ︷︷ ︸
Cm︸ ︷︷ ︸

φs

Figure 4 Scan(ϕs) decomposes φs into ψs(x1), ψs(x1), . . . , ψs(xn), ψs(xn), unless ψs(.) + {xi, xi}

If ri ∈ ψs, then ri is necessary, thus ri is incompatible trivially for each Ck 3 ri in φs (see
Scan L:1-2). For example, if x1∧ (x1� x2� x3) holds, then x1 becomes incompatible trivially.
Note that 1∈ Lφ and x1∈ ψs, and that x1⇒ x1∧ x1. If ri⇒ xj ∧ xj, then ri is incompatible
nontrivially (L:6). See also Note 8/27. If Scan (ϕs) is interrupted by Remove L:3, then ϕ is
unsatisfiable. If it terminates (L:9), then a satisfying assignment is determined (Section 3.4).
I Note 27. It is obvious that 2 ϕs(rj) if 2 (ψs∧ rj) or 2 (rj∧φs) by Definition 5/13, because
ϕs(rj) = ψs ∧ rj ∧ φs, and rj ∧ φs = φs(rj), and that 2 ϕs(rj) iff ¬rj holds (see Definition 7).

Algorithm 3 Scan (ϕs) . ϕs = ψs ∧ φs, ψs =
∧
ri and φs =

∧
Ck. Checks if 2 ϕs(ri) for all i ∈ Lφ

1: for all i ∈ Lφ and ri ∈ ψs do . Because ri ∈ ψs, 2 (ψs ∧ ri), that is, ri⇒ xi∧ xi

2: Remove (ri, φs); . ri is necessary, thus ri is incompatible trivially, hence ri⇒ ¬ri

3: end for. If i ∈ Lψ, ri has been already removed, hence ri ∈ ψs and ri /∈ Ck∀k ∈ Cs, i.e., i /∈ Lφ

4: for all i ∈ Lφ do . Lψ∩Lφ = ∅ due to L:1-3. Hence, i ∈ Lψ iff ri = xi is fixed or ri = xi is fixed
5: for all ri ∈ {xi, xi} do . Each and every xi and xi assumed compatible is to be verified
6: if Scope (ri, φs) is NULL then Remove (ri, φs); . 2 φs(ri), incompatible nontrivially
7: end for . If ri⇒ xj∧ xj, hence ¬xj∨ ¬xj⇒ ¬ri, then ¬ri⇒ ri, where i 6= j due to L:1-3
8: end for. ¬ri iff ri, since ¬ri⇒ ri due to nontrivial, and ¬ri⇐ ri due to trivial incompatibility
9: return ϕ̂= ψ̂ ∧ φ̂, and ψ(ri) &φ′(ri) for all i ∈ Lφ̂ ; . ψ̂ ← ψŝ and φ̂← φŝ. See also Note 29

I Note 28. Lψ and Lφ form a partition of L due to Definition 26 and Scan L:1-3.
I Note 29. When Scan terminates, ψ̂ and φ̂ become disjoint, and φ̂ ≡

∧
i∈L
(
ψ(xi)⊕ ψ(xi)

)
,

where L← Lφ̂. Also, ψ̂ =
∧
ri and φ̂ =

∧
Ck such that |Ck| > 1, because each Ck = {ri} in

φs for any s transforms into ri in ψ̂. That is, Ck = (ri� rj) or Ck = (ri� rj� ru) in φ̂.
Remove (rj , φs) leads to reductions of any Ck 3 rj due to rj, which consists in ψs+1 (see

L:1-2), as well as of any Ck 3 rj due to ¬rj, which consists in φs+1 (see L:1,5).

Algorithm 4 Remove (rj , φs) . rj is incompatible/removed iff rj is necessary, i.e., ¬rj iff rj

1: OvrlEft (rj , φs); . OvrlEft is defined over φs =
∧
Ck, |Ck| > 1, and returns ψ̃s(rj) & φ̃s(¬rj)

2: ψs+1← ψs ∪ {rj} ∪ ψ̃s(rj); . ψs+1 =
∧
ri is true by definition, unless ψs+1 involves xi∧ xi

3: if ψs+1 ⊇ {xi, xi} for some i then return ϕ is unsatisfiable; . ϕs = ψs ∧ φs

4: Lφ← Lφ− {j}; Lψ← Lψ ∪ {j};
5: φs+1← φ̃s(¬rj)∧φ′s; Update {Ck} over φs+1; . φ′s denotes clauses beyond the entire ψs effect

. φ′s =
∧
Ck for k ∈ C′s, where C′s = Cs − (Cxj

s ∪ C
xj
s), and C

xj
s ∩ C

xj
s = ∅ due to Lemma 16

6: Scan (ϕs+1); . ri verified compatible for š 6 s can be incompatible for s̃ > s due to ¬rj in φs

L. Salum XX:7

3.3 Satisfiability of the Formula ϕ vs Satisfiability of the Scope ψ(ri)
This section shows that ϕ is satisfiable iff ψ(ri) is satisfied for all i ∈ L, and any ri ∈ {xi, xi}.

I Proposition 30 (Nontrivial incompatibility). 2 φs(rj) iff 2 ψs(rj) or 2 φ′s(rj) for any s.

Proof. Proof is obvious due to φs(rj) = ψs(rj) ∧ φ′s(rj) by Lemma 23. J

I Note 31 (Assumption). 2 φs(rj) is verified solely via 2 ψs(rj) for some s, whether or not
2 φ′s(rj) is ignored, which is sufficient for incompatibility, and easy to check (see Scope L:5).

The following introduces the tools to justify this assumption, which facilitates the ϕ scan.
Assume that Scan terminates (L:9), that is, ψ ∧ φ transforms into ψ̂ ∧ φ̂. Let φ← φ̂, thus
L← Lφ̂. Therefore, ri � ψ(ri) for all i ∈ L and ri ∈ {xi, xi}. That is, as ri = T, ψ(ri) = T.

I Definition 32. L(.) = L(ψ(.)) and L′(.) = L(φ′(.)), which denote respective index sets.

I Lemma 33 (No conjunct exists in beyond the scope). L(rj) ∩ L′(rj) = ∅ for any j ∈ L.

Proof. φ′(rj) =
∧
Ck due to Lemma 23. Let ri the conjunct be in Ck, i.e., i ∈

(
L(rj)∩L′(rj)

)
.

Then, for any Ck 3 ri, (ri� xj� xu)↘(ri∧ xj∧ xu), thus ri /∈ Ck. Moreover, for any Ck 3 ri,
(ri� rv� ry)� (rv� ry), thus ri /∈ Ck. See Definition 11/12. Hence, i /∈

(
L(rj)∩L′(rj)

)
. J

ψ(ri|rj) is called the conditional scope, and φ′(ri|rj) is called conditional beyond the
scope, which are defined over φ′(rj) for j 6= i, that is, constructed by Scope

(
ri, φ

′(rj)
)
.

I Lemma 34. L is partitioned into L(rj), L(rj1|rj), L(rj2 |rj1), . . . ,L(rjn |rjm), thus φ(rj) is
decomposed into disjoint ψ(rj), ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm).

Proof. Scope (rj , φ) partitions L into L(rj) and L′(rj) for any j ∈ L (see also Lemma 33).
Thus, φ(rj) is decomposed into disjoint ψ(rj) and φ′(rj). Then, Scope

(
rj1, φ

′(rj)
)
partitions

L′(rj) into L(rj1|rj) and L′(rj1|rj) for any j1 ∈ L′(rj). Thus, φ′(rj) is decomposed into
disjoint ψ(rj1|rj) and φ′(rj1|rj). Finally, φ′(rjm |rjl) is decomposed into disjoint ψ(rjn |rjm)
and φ′(rjn |rjm) for any jn ∈ L′(rjm |rjl) such that L′(rjn |rjm) = ∅ (see also Note 24). J

I Lemma 35. φ′(rj) is decomposed into disjoint ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm).

Proof. Follows directly from Lemma 34, and from Lemma 23, φ(rj) = ψ(rj) ∧ φ′(rj). J

I Lemma 36. φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjm |rjl), when it terminates.

Proof. Follows directly from Lemma 34. Then, some Ck in φ collapse to some ck in ψ(rj).
Thus, the number of Ck in φ is greater than or equal to that of Ck in φ′(rj), hence |C| > |C′|,
where C is an index set of Ck in φ. Also, some Ck in φ shrink to some Ck′ in φ′(rj), hence
∀k′∈ C′∃k ∈ C [Ck⊇ Ck′]. Thus, φ ⊇ φ′(rj). Likewise, φ′(rj) ⊇ φ′(rj1|rj), because φ′(rj) is
decomposed into ψ(rj1|rj) and φ′(rj1|rj). Therefore, φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇
· · · ⊇ φ′(rjm |rjl), where φ′(rjm |rjl) = φ′(rjm |rj , . . . , rjl). Note that φ′(rjn |rjm) =

{
{}
}
. J

I Lemma 37. ψ(ri) � ψ(ri|rj), thus ψ(ri) ` ψ(ri|rj), when the scan terminates.

Proof. Scope (ri, φ) constructs ψ(ri) and Scope
(
ri, φ

′(rj)
)
constructs ψ(ri|rj). φ ⊇ φ′(rj)

by Lemma 36. Therefore, ψ(ri) ⊇ ψ(ri|rj), and ψ(ri) � ψ(ri|rj) (see also Figure 2), where
ψ(ri) = ri∧ rj∧ · · · ∧ rv and ψ(ri|rj) = ri∧ · · · ∧ rv. Then, rj /∈ ψ(ri|rj), since rj /∈ Ck for any
Ck ∈ φ′(rj) by Lemma 33. It is obvious that if ψ(ri) � ψ(ri|rj), then ψ(ri) ` ψ(ri|rj). J

Lemma 37 leads to Lemma 38, because ri � ψ(ri) and ri ` ψ(ri) by Lemma 23. That is,
each and every conditional scope ψ(ri|.) is entailed and proved, when the scan terminates.

XX:8 On the Tractability of Un/Satisfiability

I Lemma 38. ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) holds for every j ∈ L, and for
every i ∈ L′(rj), i ∈ L′(rj1|rj), . . . , i ∈ L′(rjm |rj , rj1, . . . , rjl), when the scan terminates.

Proof. φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ · · · ⊇ φ′(rjm |rjl) by Lemma 36. Hence, ψ(ri) ⊇ ψ(ri|rj),
ψ(ri) ⊇ ψ(ri|rj , rj1), . . . , ψ(ri) ⊇ ψ(ri|rj , . . . , rjm), and ψ(ri) � ψ(ri|rj), ψ(ri) � ψ(ri|rj , rj1),
. . . , ψ(ri) � ψ(ri|rj , rj1 , . . . , rjm). Note that if ψ(ri) � ψ(ri|.), then ψ(ri) ` ψ(ri|.). Therefore,
ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) hold, which generalizes Lemma 37. J

I Theorem 39 (Unsatisfiability). rj is incompatible due to 2 φ(rj) iff 2 ψs(rj) for some s.

I Corollary 40 (Satisfiability). �αφ iff the scope ψ(ri) holds for every i ∈ L and ri ∈ {xi, xi}.

Proof. ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) defined over φ′(rj) are disjoint due to Lemma 35
such that ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) hold by Lemma 38 for any j ∈ L, j1 ∈ L′(rj),
j2 ∈ L′(rj1|rj), . . . , jn ∈ L′(rjm |rjl), thus φ′(rj) is composed of ψ(.) both disjoint and satisfied.
Therefore, φ′(rj) is satisfiable, and unsatisfiability of φ′s(rj) is ignored to verify 2 φs(rj).
Hence, Theorem 39 holds (see Proposition 30 and Note 31). Then, ψ(ri) ≡ φ(ri), since φ′(ri)
is satisfiable, and φ(ri) = ψ(ri)∧φ′(ri). Thus, Corollary 40 holds (see also Appendix A). J

Theorem 41 shows that any rj incompatible remains incompatible, even if ri is removed.

I Theorem 41. If 2 ϕs̃(rj) for some s̃, then 2 ϕs(rj) for all s > s̃, even if ¬ri holds, i 6= j.

Proof. See Note 27/28. 2 ϕs(rj) iff 2 (ψs∧ rj) or 2 φs(rj). Let 2 (ψs̃∧ rj) for some s̃. Then,
2 (ψs ∧ rj) for all s > s̃, since ψs̃ ⊆ ψs due to Remove L:2. Let 2 φs̃(rj) due to solely xi ∧ xi.
Then, xi∨ xi⇒ rj, thus rj ∈ ψs for s > s̃. Hence, 2 (ψs ∧ rj) for all s > s̃. Assume that ri is
removed before rj, that is, ¬ri holds by 2 ϕš(ri) for š 6 s̃. Then, ¬ri⇒ ri and ri⇒ rj, thus
{ri, rj} ⊆ ψs for s > s̃. Note that ψš ⊆ ψs̃ ⊆ ψs. Hence, 2 (ψs ∧ ri ∧ rj) for all s > s̃. If ri is
removed after rj, i.e., ¬ri holds by 2 ϕs(ri) for s > s̃, then 2 (ψs ∧ rj ∧ ri) for all s > s̃. J

I Proposition 42. The time complexity of Scan is O(mn3).

Proof. OvrlEft, and Remove, takes 4m steps by
(
|Crj∗ |×|Ck|

)
+ |Crj∗ | = 3m+m. Scope takes

n4m steps by |ψs(rj)| × 4m. Then, Scan takes n24m steps due to L:1-3 by |Lφ | × |ψs| × 4m,
as well as 8n2m+ 8nm steps due to L:4-8 by 2|Lφ | × (4nm+ 4m). Also, the number of the
scans is ŝ 6 |Lφ | due to Remove L:6. Therefore, the time complexity of Scan is O(n3m). J

I Example 43. ϕ =
{
{}, {x3, x4, x5}, {x3, x6, x7}, {x4, x6, x7}

}
, i.e., ψ = ∅. Let Scope(x3, φ)

execute first in the first scan, which leads to the reductions below over φ due to x3.
φ(x3) = (x3 � x4 � x5)∧ (x3 � x6 � x7)∧ (x4 � x6 � x7) ∧ x3

x3 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x4 � x6 � x7) ∧ x3

x4 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x6 � x7) ∧ x3

x6 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x7) ∧ x3

Since 2
(
ψ(x3) = x3∧x4∧x5∧x6∧x7∧x7

)
, x3 is incompatible, hence ¬x3 ⇒ x3, that is,

x3 is necessary. Thus, ϕ→ϕ2 by (x3 � x4� x5)� (x4� x5) and (x3 � x6 � x7)� (x6 � x7).
As a result, ϕ2 = x3 ∧ (x4� x5)∧ (x6� x7)∧ (x4� x6� x7). Let Scope (x5, φ2) execute next.

φ2(x5) = (x4 � x5) ∧ (x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x5 ⇒ (x4)∧ (x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x4 ⇒ (x4)∧ (x6 � x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

x6 ⇒ (x4)∧ (x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

Since 2
(
ψ2(x5) = x4∧x7∧x6∧x7∧x3∧x5

)
, x5 is incompatible, hence ¬x5 ⇒ x5. Thus,

ϕ2→ϕ3 by (x4� x5)↘(x4∧ x5), where ϕ3 = x3 ∧ x4∧ x5 ∧ (x6� x7)∧ (x4� x6� x7). Then,
x4 leads to the next reduction by (x4�x6�x7)� (x6�x7), and Scan (ϕ4) terminates. That
is, ϕ̂ = ψ̂∧ φ̂, where ψ̂ = {x3, x4, x5} and φ̂ =

{
{x6, x7}

}
, since ϕ4 = x3 ∧x4 ∧x5 ∧ (x6�x7).

L. Salum XX:9

In Example 43, if Scope (x5, φ) executes first, then ψ(x5) = x5 becomes the scope, and
φ′(x5) = (x3 � x4) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7) becomes beyond the scope of x5 over φ.
Then, x5 is compatible (in φ) due to Theorem 39, since ψ(x5) holds, while it is incompatible
due to Proposition 30, since 2 φ′(x5) holds. On the other hand, the fact that 2 φ′(x5) holds
is verified indirectly. That is, incompatibility of x5 is checked by means of ψs(x5) for some s.
Then, x5 becomes incompatible (in φ2), because 2 ψ2(x5) holds, after ϕ→ϕ2 by removing
x3 from φ due to 2 ψ(x3). As a result, 2 φ′(x5) holds due to ¬x3. Thus, there exists no
rj such that 2 φ′(rj), when the scan terminates, because ψ(ri) holds for all ri in φ, hence
ψ(ri|rj) holds for all ri in φ′(rj), after each rj is removed if 2 ψs(rj) (see also Figures 1-4).

3.4 Construction of a satisfying assignment by composing scopes
ϕ̂= ψ̂∧ φ̂, when Scan (ϕŝ) terminates. Let ψ := ψ̂ and φ := φ̂, i.e., L := Lφ̂. Then, �αφ holds
by Corollary 40, where α is a satisfying assignment, and constructed by Algorithm 5 through
any (i0, i1, i2, . . . , im, in) over L such that α = {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim)}.
Thus, ϕ is decomposed into disjoint scopes ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim) (see
Note 28, and Lemma 34). Recall that any scope ψ(.) denotes a minterm by Definition 4/5,
and that Scope(ri, φ) constructs ψ(ri) and φ′(ri) to determine a satisfying assignment, unless
ϕ collapses to a unique assignment, that is, unless ϕ̂ = α = ψ̂. See also Appendix A to
determine a satisfying assignment without constructing ψ(ri|.) by Scope

(
ri, φ

′(.)
)
.

Algorithm 5 . Construction of a satisfying assignment α over φ, L := Lφ̂ and φ := φ̂

Pick j ∈ L; . The scope ψ(ri) and beyond the scope φ′(ri) for all i ∈ L are available initially
α← ψ(rj); L← L− L(rj); φ← φ′(rj);
repeat

Pick i ∈ L; Scope (ri, φ); . It constructs ψ(ri|rj) and φ′(ri|rj) with respect to φ′(rj)
α← α∪ψ(ri); . ψ(ri) := ψ(ri|rj), because ψ(ri) is unconditional with respect to φ updated
L← L− L(ri); . L← L′(ri|rj) due to the partition

{
L(rj),L(ri|rj),L′(ri|rj)

}
over L

φ← φ′(ri); . φ′(ri) := φ′(ri|rj), because φ′(ri) is unconditional with respect to φ updated
until L = ∅
return α; . ψ(rin |rim) = ψ(rin |rj , ri1, . . . , rim) (see also Appendix A)

I Definition 44. Let φ = 1φ∧ 2φ∧· · ·∧ lφ such that 1φ, 2φ, . . . , lφ are disjoint, or independent
formulas. That is, 1L ∩ 2L ∩ · · · ∩ lL = ∅.

I Example 45. Let 1φ = (x1� x2 � x6) ∧ (x3 � x4 � x5) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7),
2φ = (x8 � x9 � x10), and 3φ = (x11� x12 � x13) to form ϕ = 1φ ∧ 2φ ∧ 3φ by Definition 44.
Then, Scan (ϕ4) terminates, that is, ϕ is satisfiable. Thus, ϕ̂ = ψ̂∧ φ̂, where ψ̂ = x3 ∧x4 ∧x5
and φ̂ = (x1� x2 � x6) ∧ (x6 � x7) ∧ 2φ ∧ 3φ (see Example 43). Let ψ := ψ̂ and φ := φ̂, i.e.,
L := Lφ̂. Hence, Lψ = {3, 4, 5}, and L = {1, 2, . . . , 13} − Lψ. Then, a satisfying assignment α
is determined by composing ψ(ri|rj) constructed over φ′(rj). The following shows some of
the scopes ψ(ri) and beyond the scopes φ′(ri), constructed over φ when the scan terminates.

ψ(x1) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x1) = 2φ ∧ 3φ

ψ(x2) = x2 & φ′(x2) = (x1� x6) ∧ (x6 � x7) ∧ 2φ ∧ 3φ

ψ(x2) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x2) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x6) = φ′(x7) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x6 ∧ x7 & φ′(x6) = φ′(x7) = (x1� x2) ∧ 2φ ∧ 3φ

ψ(x8) = x8 ∧ x9 ∧ x10 & φ′(x8) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 3φ

ψ(x11) = x11∧ x12 ∧ x13 & φ′(x11) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 2φ

XX:10 On the Tractability of Un/Satisfiability

I Example 46. A satisfying assignment α is constructed by an order of indices over L, L =
{1, . . . , 13} − Lψ (Example 45), such that ri := xi for any ψ(ri) throughout the construction.
First, pick 6 ∈ L. As a result, α← ψ(x6) and L← L−L(x6), where ψ(x6) = {x1, x2, x6, x7},
L(x6) = {1, 2, 6, 7}, and L ← {8, 9, 10, 11, 12, 13}. Then, pick 8, hence α ← α ∪ ψ(x8|x6),
where ψ(x8|x6) = {x8, x9, x10}. Also, L← L− L(x8|x6), where L(x8|x6) = {8, 9, 10}, hence
L← {11, 12, 13}. Finally, pick 11. Therefore, α← α ∪ ψ(x11|x6, x8) such that L← ∅, which
indicates its termination. Note that Scope

(
x11, φ

′(x8|x6)
)
constructs ψ(x11|x6, x8), in which

φ′(x8|x6) = 3φ, and that L′(x11|x6, x8) = ∅ iff L ← ∅. Note also that ψ(x8|x6) = ψ(x8)
and ψ(x11|x6, x8) = ψ(x11), since 1φ, 2φ and 3φ are disjoint by Definition 44. Consequently,
Algorithm 5 constructs α = {ψ(x6), ψ(x8|x6), ψ(x11|x6, x8)}. Note that ϕ is decomposed into
ψ, ψ(x6), ψ(x8|x6), and ψ(x11|x6, x8), which are disjoint (see also Note 29 and Lemma 34).

I Example 47. Let (2, 1, 8, 11) be another order of indices in Example 45. This order leads
to the assignment {ψ,ψ(x2), ψ(x1|x2), ψ(x8|x2, x1), ψ(x11|x2, x1, x8)} for ϕ. This assignment
corresponds to the partition

{
Lψ, {2}, {1, 6, 7}, {8, 9, 10}, {11, 12, 13}

}
, where Lψ = {3, 4, 5}

(see also Note 28 and Lemma 34). Note that the scope ψ(x1) is constructed over φ, and the
conditional scope ψ(x1|x2) is constructed over φ′(x2), where φ ⊇ φ′(x2). Recall that φ := φ̂.
Hence, ψ(x1) � ψ(x1|x2), in which ψ(x1) = x1∧ x2 ∧ x6 ∧ x7, while ψ(x1|x2) = x1∧ x6 ∧ x7.
Moreover, ψ(x8) � ψ(x8|x2, x1) due to φ ⊇ φ′(x1|x2), and ψ(x11) � ψ(x11|x2, x1, x8) due to
φ ⊇ φ′(x8|x2, x1), where φ′(x1|x2) = 2φ ∧ 3φ and φ′(x8|x2, x1) = 3φ (see Lemmas 36-38).

3.5 An Illustrative Example
This section illustrates Scan (ϕs). Let ϕ = φ = (x1� x3) ∧ (x1� x2 � x3) ∧ (x2 � x3), which
is adapted from Esparza [2], and denotes a general formula by Definition 15. Note that C1 =
{x1, x3}, C2 = {x1, x2, x3}, and C3 = {x2, x3}. Hence, C = {1, 2, 3}, and L = Lφ = {1, 2, 3}.

Scan (ϕ): There exists no conjunct in (the initial formula) ϕ. That is, ψ is empty (L:1).
Recall that ϕ := ϕ1, and that ri ∈ {xi, xi}. Recall also that nontrivial incompatibility of ri
is checked (L:4-8) via Scope (ri, φ). Moreover, the order of incompatibility check is arbitrary
(incompatibility is monotonic) by Theorem 41. Let Scope (x1, φ) execute due to Scan L:6.

Scope (x1, φ): Since ψ(x1) ⊇ {x3, x3}, x1 is incompatible nontrivially (see Example 25).
Thus, x1 becomes necessary (a conjunct). Then, Remove (x1, φ) executes due to Scan L:6.

Remove (x1, φ): Cx1 = ∅ by OvrlEft L:1. Cx1 = {1, 2}, thus φx1 = (x1�x3)∧ (x1�x2�x3)
by OvrlEft L:7. As a result, ψ̃(x1) = {x3} & φ̃(¬x1) =

{
{}, {x2, x3}

}
, the effects of x1 and

¬x1. Note that C1← ∅. Then, ψ2← ψ ∪ {x1} ∪ ψ̃(x1) (Remove L:2), and Lφ← Lφ−{1} and
Lψ← Lψ ∪ {1} (L:4). Also, φ2← φ̃(¬x1) ∧ φ′, where φ̃(¬x1) = (x2� x3) and φ′= (x2� x3)
(L:5). As a result, ψ2 = x1∧ x3, and φ2 = (x2� x3)∧ (x2� x3). Note that C1 = {x2, x3} and
C2 = {x2, x3}. Consequently, ϕ2 = ψ2 ∧ φ2, and Scan (ϕ2) executes due to Remove L:6.

Scan (ϕ2): C2 = {1, 2} and Lφ = {2, 3} hold in φ2. Then, {x2, x2} ∩ ψ2 = ∅ for 2 ∈ Lφ,
while x3 ∈ ψ2 for 3 ∈ Lφ (L:1). As a result, x3 is necessary for satisfying ϕ2, hence x3⇒ ¬x3,
that is, x3 is incompatible trivially. Then, Remove (x3, φ2) executes due to Scan L:2.

Remove (x3, φ2): Cx3
2 = {2}, thus φx3

2 = (x2� x3), and Cx3
2 = {1}, thus φx3

2 = (x2� x3).
As a result, ψ̃2(x3) = {x2} ∪ {x2} & φ̃2(¬x3) =

{
{}
}
, because C1 = {x2} consists in ψ̃2(x3),

rather than in φ̃2(¬x3) (see OvrlEft L:9). Hence, ψ3← ψ2 ∪ {x3} ∪ ψ̃2(x3), Lφ← Lφ− {3},
and Lψ← Lψ∪ {3}, i.e., Lφ = {2}. Therefore, φ3 =

{
{}
}
, thus C3 = ∅, and ψ3 = x1∧ x3 ∧ x2.

Scan (ϕ3): x2 ∈ ψ3 for 2 ∈ Lφ over φ3. Then, Remove (x2, φ3) executes due to Scan L:2.
Remove (x2, φ3): ψ̃3(x2) = ∅ & φ̃3(¬x2) =

{
{}
}
due to OvrlEft (x2, φ3), because Cx2

3 = ∅
and Cx2

3 = ∅, since C3 = ∅. Hence, Lφ← {2} − {2} and φ4 ← φ3. Then, Scan (ϕ4) executes.
Scan (ϕ4) terminates: ϕ̂= ψ̂ = x1∧ x3∧ x2 (L:9), and ϕ collapses to a unique assignment.

L. Salum XX:11

Let Scope (x3, φ) execute before Scope (x1, φ) due to Scan L:6 (see Theorem 41).
Scope (x3, φ): ψ(x3)← {x3} and φ∗ ← φ (L:1). Then, Cx3

∗ = {2} due to OvrlEft (x3, φ∗)
L:1, hence φx3

∗ = (x1� x2 � x3). As a result, c2 ← {x1, x2} and ψ̃∗(x3)← ψ̃∗(x3)∪ c2 (L:3,5).
Moreover, Cx3

∗ = {1, 3} (L:7), hence φx3
∗ = (x1� x3)∧ (x2� x3). Then, C1← {x1, x3} − {x3},

ψ̃∗(x3)← ψ̃∗(x3) ∪ C1, and C1← ∅. Likewise, C3← {x2, x3} − {x3}, ψ̃∗(x3)← ψ̃∗(x3) ∪ C3,
and C3← ∅ (OvrlEft L:8-9). Consequently, ψ̃∗(x3)← {x1, x2, x1} & φ̃∗(¬x3)← φx3

∗ (L:11).
Note that φx3

∗ =
{
{}, {}

}
, since C1 = C3 = ∅. Then, ψ(x3)← ψ(x3) ∪ {x3} ∪ ψ̃∗(x3) due to

Scope L:4, hence ψ(x3) = {x3, x1, x2, x1}. Since ψ(x3) ⊇ {x1, x1} (L:5), x3 is incompatible
nontrivially, i.e., x3⇒ x1∧ x1 and ¬x3⇒ x3. Then, Remove (x3, φ) executes due to Scan L:6.

Remove (x3, φ): φx3 = (x1� x3) ∧ (x2� x3) due to Cx3 = {1, 3}, and φx3 = (x1� x2 � x3)
due to Cx3 = {2}. Then, OvrlEft (x3, φ) returns ψ̃(x3) = {x1, x2} & φ̃(¬x3) =

{
{x1, x2}

}
(Remove L:1), ψ2← ψ ∪ {x3} ∪ ψ̃(x3) (L:2), and Lφ← Lφ−{3} and Lψ← Lψ∪ {3} (L:4). As
a result, ψ2 = x3 ∧ x1∧ x2. Moreover, φ2← φ̃(¬x3) ∧ φ′ (L:5), in which φ̃(¬x3) = (x1� x2)
and φ′ is empty. Therefore, ϕ2 = ψ2 ∧ φ2. Note that C1 = {x1, x2}, hence C2 = {1}. Recall
that Lφ = {1, 2}, and that Lψ = {3}. Then, Scan (ϕ2) executes due to Remove (x3, φ) L:6.

Scan (ϕ2): Lφ = {1, 2} such that x2 ∈ ψ2 and x1 ∈ ψ2. Thus, x2 and x1 are necessary,
hence x2 and x1 are incompatible trivially. Then, Remove(x1, φ2) and Remove(x2, φ2) execute.

The fact that the order of incompatibility check is arbitrary (Theorem 41) is illustrated as
follows. Scope (x3, φ) returns x3 is incompatible nontrivially, since x3⇒ x1∧ x1. Therefore,
¬x1∨ ¬x1⇒ ¬x3, hence x1∨ x1⇒ x3. Then, x3⇒ x1 due to C1 = (x1� x3), and x1⇒ ¬x1.
Thus, x1 is still incompatible, but trivially

(
cf. Scope (x1, φ)

)
, even if ¬x3 holds. That is, x1

the nontrivial incompatible in φ due to x1⇒ x3∧ x3, i.e., ¬x3∨ ¬x3⇒ ¬x1, is incompatible
trivially in ψ2 due to x1⇒ ¬x1. See Scan (ϕ2) above. Also, since x3 /∈ Ck and x3 /∈ Ck in φs
for any s > 2, 2 ϕs(x3) for all s > 2, even if any ri is removed from some Ck in φs, s > 2.

4 Conclusion

X3SAT has proved to be effective to show P = NP. A polynomial time algorithm checks
unsatisfiability of φ(ri) such that 2 φ(ri) iff ψs(ri) involves xj ∧ xj for some s. Thus, φ(ri)
reduces to ψ(ri). ψ(ri) denotes a conjunction of literals that are true, since each rj such that
2 ψs(rj) is removed from φ. Hence, φ is satisfiable iff ψ(ri) is satisfied for any ri ∈ {xi, xi}.
Thus, it is easy to verify satisfiability of φ via satisfiability of ψ(x1), ψ(x1), . . . , ψ(xn), ψ(xn).

References
1 https://rjlipton.wordpress.com/2020/02/28/reductions-and-jokes.
2 Javier Esparza. Decidability and complexity of Petri net problems – an introduction. In

Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
volume 1491 of LNCS, pages 374–428. Springer Berlin Heidelberg, 1998.

3 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, 1978.

A Proof of Theorem 39/40

This section gives a rigorous proof of Theorem 39/40. Recall that the ϕs scan is interrupted
iff ψs involves xi∧ xi for some i and s, that is, ϕ is unsatisfiable, which is trivial to verify.
Recall also that the ϕŝ scan terminates iff ψŝ(ri) = T for any i ∈ Lφ̂, ri ∈ {xi, xi}. Moreover,
ϕ̂= ψ̂∧ φ̂ such that ψ̂ = T (see Scan L:9 and Note 29). Therefore, when the scan terminates,
satisfiability of φ̂ is to be proved, which is addressed in this section. Let φ := φ̂, i.e., L := Lφ̂.

https://rjlipton.wordpress.com/2020/02/28/reductions-and-jokes

XX:12 On the Tractability of Un/Satisfiability

I Theorem 48 (cf. 39-40/Claim 1). These statements are equivalent for any i ∈ L: a) 2 φ(ri)
iff 2 ψs(ri) for some s. b) ri � ψ(ri). c)�αφ by α = {ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)}.

Proof. We will show a⇒ b, b⇒ c, and c⇒ a (see Kenneth H. Rosen, Discrete Mathematics
and its Applications, 7E, pg. 88). Firstly, a⇒ b holds, because a holds by assumption (see
Note 31), and b holds by Lemma 23. Next, we will show b ⇒ c. We do this by showing
that satisfiability of φ is preserved throughout the assignment α construction, where α =
{ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)}, because any partial assignment ψ(ri|rj) is constructed
arbitrarily through consecutive steps having the Markov property. Thus, construction of
ψ(ri|rj) in the next step is independent from the preceding steps, and depends only upon
ψ(rj |rk) in the present step (see also Lemma 34). The construction process is specified below.

Step 0: Pick any ri0 in φ. Then, ri0 � ψ(ri0) by Lemma 23. Also, ri0 partitions L into
L(ri0) and L′(ri0). Note that i0 ∈ L and i0 ∈ L(ri0). Hence, i0 /∈ L′(ri0) by Lemma 33.
Therefore, φ(ri0) = ψ(ri0)∧φ′(ri0) in Step 0. Then, pick an arbitrary ri1 in φ′(ri0) for Step 1.

Step 1: L(ri0) ∩ L′(ri0) = ∅ due to Step 0. Then, ri1 � ψ(ri1) by Lemma 23, as well as
ψ(ri1) � ψ(ri1 |ri0) by Lemma 37. Also, ri1 partitions L′(ri0) into L(ri1 |ri0) and L′(ri1 |ri0).
Thus, L(ri0) ∩ L(ri1|ri0) = ∅, since L′(ri0) ⊇ L(ri1|ri0). As a result, L is partitioned into
L(ri0), L(ri1|ri0), and L′(ri1|ri0) by ri0 and ri1. Thus, ψ(ri0) and ψ(ri1|ri0) are disjoint, as well
as true. Therefore, ψ(ri0) ∧ ψ(ri1|ri0) = T, and φ(ri0 , ri1) = ψ(ri0) ∧ ψ(ri1|ri0) ∧ φ′(ri1|ri0).

Step 2: The preceding steps have partitioned L into L(ri0) ∪ L(ri1|ri0) and L′(ri1|ri0).
Then, ri2 � ψ(ri2) by Lemma 23, as well as ψ(ri2) � ψ(ri2 |ri1) by Lemma 37/38. Also, ri2
in φ′(ri1|ri0) partitions L′(ri1|ri0) into L(ri2|ri1) and L′(ri2|ri1), i.e., L′(ri1|ri0) ⊇ L(ri2|ri1).
Then,

(
L(ri0)∪L(ri1|ri0)

)
∩L(ri2 |ri1) = ∅, thus ψ(ri0)∧ψ(ri1|ri0) and ψ(ri2 |ri1) are disjoint,

as well as true. Therefore, φ(ri0 , ri1, ri2) = ψ(ri0)∧ψ(ri1|ri0)∧ψ(ri2 |ri1)∧φ′(ri2 |ri1), in which
ψ(ri0)∧ ψ(ri1|ri0)∧ ψ(ri2 |ri1) = T. Note that α ⊇ {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1)}, and that L
is partitioned into L(ri0), L(ri1|ri0), L(ri2|ri1), and L′(ri2|ri1) such that L′(ri2|ri1) 6= ∅.

Step n: rin partitions L′(rim |ril) into L(rin |rim) and L′(rin |rim) such that L′(rin |rim) = ∅.
L(ri0) ∪ L(ri1|ri0) ∪ · · · ∪ L(rim |ril) and L′(rim |ril), hence L(rin |rim), form a partition of L.
Therefore, ψ(ri0) ∧ ψ(ri1|ri0) ∧ · · · ∧ ψ(rim |ril) and ψ(rin |rim) are disjoint, as well as true.
That is, φ(ri0 , ri1 , . . . , rim , rin) = ψ(ri0)∧ψ(ri1|ri0)∧ · · · ∧ψ(rim |ril)∧ψ(rin |rim) is satisfied.

Thus, φ is composed of ψ(.) disjoint and satisfied, hence φ is satisfiable, and b⇒ c holds.
Finally, we show c⇒ a. ri transforms φ into ψ(ri)∧φ′(ri). Then, φ ≡ ψ(ri)∧φ′(ri), where φ
and ψ(ri) are satisfiable, and ψ(ri) and φ′(ri) are disjoint. Thus, φ′(ri) is satisfiable. Hence,
unsatisfiability of ψs(ri) for some s is necessary and sufficient for 2 φs(ri) for any s. J

I Note. The assignment α construction is driven by partitioning the set L′(.) such that
L← L− L(ri0) in Step 1, and L← L− L(rin−1 |rin−2) for in ∈ L′(rin−1 |rin−2) in Step n > 2.
I Note. ψ(ri) ≡ φ(ri) by Theorem 48. Thus, the formula φ =

∧
k∈C Ck transforms into the

formula φ′ =
∧
i∈L Ci, where Ck = (ri� rj� rv) and Ci =

(
ψ(xi)⊕ ψ(xi)

)
. See also Note 29.

I Note (Construction of α). In order to form a partition over the set φ, α is constructed such
that ψ(ri1 |ri0) = ψ(ri1)− ψ(ri0), and ψ(rin |rin−1) = ψ(rn)−

(
ψ(ri0) ∪ · · · ∪ ψ(rin−1 |rin−2)

)
for n > 2. On the other hand, if the construction involves no set partition, then α =

⋃
ψ(ri)

for i = (i0, i1, . . . , in), where i0 ∈ L, i1∈ L′(ri0), . . . , in ∈ L′(rim |ril), thus ri0≺ ri1≺ · · · ≺ rin.
Note that there is no need to construct φ′(ri) in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 45 involves no set partition, then α = {ψ(x7), ψ(x2), ψ(x1)}, in
which ψ(x7) = {x7, x6}, ψ(x2) = {x2}, and ψ(x1) = {x1, x2, x7, x6}. Also, x7 ≺ x2 ≺ x1 due
to x2 ∈ φ′(x7) and x1∈ φ′(x2|x7). Moreover, ψ(x7), ψ(x2|x7), and ψ(x1|x2) form a partition
over the set φ, where ψ(x2|x7) = ψ(x2)− ψ(x7) and ψ(x1|x2) = ψ(x1)−

(
ψ(x2|x7) ∪ ψ(x7)

)
.

As a result, α = φ(x7, x2, x1) = {x7, x6} ∪ {x2} ∪ {x1} such that {x7, x6} ∩ {x2} ∩ {x1} = ∅.

	Introduction
	Basic Definitions
	The Formula Scan
	Incompatibility-Reductions
	The core algorithms
	Satisfiability
	Finding an assignment
	Example

	Conclusion
	Proof of Theorem 39/40

