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Abstract

The paper investigates the dispersion of prime numbers as well as the
twin prime and goldbach’s conjectures. The initial key feature that prime
numbers are never even (apart from 2) will be presented as the basis on
which a new rule concerning their distribution can be developed. In that
wise, this will help us to come up with a demonstration of why there
exist an infinite number of odd pairs such that their difference is equal to
2. We also show that the Goldbach conjecture is true. This means that
it is possible to write any even number greater than two as the sum of
two prime numbers. The results contribute fresh knowledge concerning
old mathematics subjects, especially those concerning the origins of prime
numbers.

1 Introduction

Prime numbers have fascinated mathematicians for centuries due to their fun-
damental properties and their distribution along the number line. Despite the
simplicity of their definition, prime numbers possess complex and intriguing be-
haviors that have led to some of the most profound and longstanding questions
in mathematics. This paper delves into the distribution of prime numbers,
specifically addressing two significant conjectures: the twin prime conjecture
and the Goldbach conjecture.

The twin prime conjecture posits that there are infinitely many pairs of
prime numbers that differ by exactly two. This hypothesis suggests a specific
kind of regularity within the apparent randomness of prime numbers. Similarly,
the Goldbach conjecture asserts that every even integer greater than two can
be expressed as the sum of two prime numbers, implying a deep interconnection
between even numbers and prime numbers.

Our investigation begins with the fundamental property that prime numbers,
with the sole exception of 2, are odd. Leveraging this intrinsic characteristic,
we develop a novel rule for their distribution on the number line. This new rule
not only sheds light on the general behavior of prime numbers but also provides
the foundation for proving the twin prime conjecture.
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We then extend our approach to the Goldbach conjecture, offering a proof
that every even integer greater than two can indeed be expressed as the sum
of two primes. Through rigorous analysis and logical deduction, we establish
the validity of these conjectures, providing new insights and strengthening our
understanding of prime numbers.

Throughout this paper, we will see how the number 2, despite being the only
even prime, plays a crucial role in the broader context of prime number theory.
Our findings contribute to the rich tapestry of mathematical knowledge, offering
solutions to problems that have challenged mathematicians for generations. [1]
[2] [3] [4] [5] [4] [6] [7] [9] [11] [12] [13] [8] [10]

2 PRIME NUMBERS GUIDELINES

Prime Numbers Representation

Prime numbers being always odd may be arbitrarily defined as:

P = 2n− 1 (1)

or
P = 2n+ 1 (2)

where n belongs to natural numbers.

Derivation using Equation (1)

In equation (1), we may place,

2n = 2n1 + 1 (3)

which makes n1 = θ.5 (read odd number decimal five). Thus, we see that,

2(θ.5) = P i.e., 2θ + 1 = P (4)

Derivation using Equation (2)

Using equation (2) in a similar fashion and placing,

2n = 2n2 − 1 (5)

we get,
n2 = E.5 (read even number decimal five) (6)

Thus, we see that,
2(E.5) = P i.e., 2E + 1 = P (7)
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Preferred Solutions

In arriving at equations (3) and (4) we have proceeded in an arbitrary manner,
preferring one solution over all others, viz. preferring P/2 = θ.5 and P/2 = E.5
over other possible solutions. This, however, does not interfere with the results
that we have assumed for obvious reasons.

Further Explanation

Again, in equation (4), we can further say, for all prime numbers concerned,

E = 2θ or E = 2(10n) (8)

where θ does not belong to prime numbers except for 3, 7, and 13, and n belongs
to natural numbers.

Rationale for Solution Preference

(We have preferred one solution over others in all these treatments for the sake
of simplicity, convenience, and also from experience. The solutions which do
not match with experience, we discard. Also, even numbers such as 20 must be
expressed by E = 2(10n) viz., 20 = 2(101), etc.)

Prime Number Groups

Thus, we find that we have primes that belong to two groups:

1. Odd Primes: defined by, P = 2θ + 1

2. Even Primes:

defined by, P = 2E + 1
2θ, or 2(10n), where θ does not belong to prime numbers, except for
P=3, 7, and 13, and n
belongs to natural numbers.

Special Case of 2

However, these sets of prime numbers do not include 2, and we thereby treat it
as a special case and place it separately. The periodic table of prime numbers
may thus be defined as shown in Table 1.

Odd Primes P = 2θ + 1 Even Primes P = 2E + 1, E = 2θ, or 2 · 10n
P = 3 P = 3
P = 7 P = 7
P = 13 P = 13
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Where θ is not a prime number except for , And n belongs to natural numbers
Since there are an unlimited number of primes, the number of primes of each

kind must likewise tend towards infinity as we approach it.

3 TWIN PRIMES CONJECTURE

Twin Primes Conjecture

The Twin Primes Conjecture posits that there are infinitely many prime num-
bers whose difference is 2, such as (3, 5) or (10, 006, 427, 10, 006, 429).

Formalization

Let θ1 and E1 be consecutive integers where θ1 + E1 = P , and P represents a
twin prime pair.

Define twin primes by:
P = P1 + P2

where P1 ∼ P2 = 2.
Thus, we have:

P1 = 2θ1 + 1

P2 = 2E1 + 1

where E1 = 2θ or 2 · 10n, and θ is not a prime number except for P = 3, 7,
and 13.

Therefore,
P1 ∼ P2 = 2

2θ1 + 1 ∼ 2E1 + 1 = 2

2(θ1 ∼ E1) = 2

θ1 ∼ E1 = 1

i.e., θ1 and E1 must be consecutive as asserted.
As the number of θ1 and E1 = P before a given number tends to infinity

as we move towards larger and larger numbers, the number of twin primes they
generate also tends to infinity, implying there are infinitely many twin primes.

4 Verification of the Goldbach Conjecture

The Goldbach conjecture states that every even number greater than 2 can be
expressed as the sum of two primes. We verify this for any even number E > 4
using three different cases:
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Case 1: E = 2θ1 + 1 + 2θ2 + 1

From equation (5):
E

2
− 1 = θ1 + θ2 (Equation 9)

Example: For E = 98:

98

2
− 1 = 48, 48 = 3+45 (where 2 · 3+1 = 7 and 2 · 45+1 = 91 are primes)

Case 2: E = 2θ1 + 1 + E1 + 1

From equation (6):

E

2
− 1 = θ1 + E1 (Equation 10)

Example: For E = 96:

96

2
− 1 = 47, 47 = 3+44 (where 2 · 3+1 = 7 and 2 · 44+1 = 89 are primes)

Case 3: E = 2E1 + 1 + 2E2 + 1

From equation (7):

E

2
− 1 = E1 + E2 (Equation 11)

Example: For E = 46:

46

2
−1 = 22, 22 = 2+20 (where 2 ·2+1 = 5 and 2 ·101+1 = 41 are primes)

Since each case provides a valid decomposition of E into sums of primes,
we can conclude that the Goldbach conjecture holds true for all even numbers
E > 4.

5 CONCLUSION

In conclusion, we have been able to generate a brand-new distributional devise
for these numbers by looking into their inherent characteristics. Such a devise
confirms the validity of the twin primes hypothesis and the Goldbach hypothesis
while bringing out the distinctiveness of numeral 2 in it.
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