
EasyChair Preprint
№ 11884

A Survey of Refactoring Techniques to Maximize
Code Coverage Metric

Johannes Simatupang, Haryono Soeparno, Ford Lumban Gaol and
Yulyani Arifin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 29, 2024

A survey of Refactoring Techniques to maximize
Code Coverage Metric

Johannes Simatupang
Computer Science Department,

BINUS Graduate Program –
Doctor of Computer Science,

Bina Nusantara University
Jakarta, Indonesia 11480

johannes.simatupang@binus.ac.id

Haryono Soeparno
Computer Science Department,

BINUS Graduate Program –
Doctor of Computer Science,

Bina Nusantara University
Jakarta, Indonesia 11480

haryono@binus.edu

Ford Lumban Gaol
Computer Science Department,

BINUS Graduate Program –
Doctor of Computer Science,

Bina Nusantara University
Jakarta, Indonesia 11480

fgaol@binus.edu

Yulyani Arifin
Computer Science Department,

BINUS Graduate Program –
Doctor of Computer Science,

Bina Nusantara University
Jakarta, Indonesia 11480

yarifin@binus.edu

Abstract— Refactoring is a technique used in software
development to improve the quality of code without changing its
functionality. One metric that is often used to measure code
quality is Code Coverage. This study aims to examine refactoring
techniques that can maximize Code Coverage Metric. Through the
study, identification, evaluation, and summary of empirical
evidence from various literature sources are carried out. The
results of this study provide guidance on effective refactoring
techniques to improve Code Coverage as well as other positive
impacts for software development. There are ten refactoring
techniques that can be used to improve Code Coverage Metrics in
software testing.

Keywords— Refactoring Technique, Code Coverage Metric,
Code Quality

I. INTRODUCTION

One metric used to assess the quality of software is Code
Coverage. Software quality is a key aspect that determines the
success of software development. This metric measures the test
scope of the source code of a software test and measures the
potential to be error-free.[1]

To improve Code Coverage Metric, refactoring techniques
[2] must be carried out so that it will have a direct impact on
Code Quality. Code Coverage Metric as a result of Test
Measurement in software testing activities helps greatly in the
success of software development before the software is released.

This study aims to provide analysis of refactoring techniques
that can be used to maximize Code Coverage metrics. By
understanding these techniques, developers can be more
efficient in improving the quality of their tests, while ensuring
that the software is bug-free.

Some of the motivations for refactoring from the results of
previous research [3] are as follows:

1. Improve Code Design

2. Improve Understandability & Readability

3. Improve Quality of Test Code

4. Preparing Code for Changes

5. Prevent Bugs

The need for information to perform refactoring techniques
is very important considering that there is no standard guide for
the steps that must be taken in the operation of the Refactoring
Code. Analysis of is expected to be a reference for software
developers to perform Code Refactoring. The discussion will be
conducted using the analysis method on papers related to the
topic, published from 2018 to 2023.

The structure of this paper will be divided into four parts to
provide an in-depth discussion of Refactoring Techniques to
maximize Code Coverage Metric. Part two will delve into the
details of the reserach process used and its results. In the third
section, the study results will be discussed and presented, and at
the end, these results will be summarized in part four.

II. RESEARCH METHODOLOGY

The literature on refactoring techniques is reviewed
methodically in order to maximize the Code Coverage Metric.
In software engineering, analysis study are becoming a widely
used review technique. Review Study is a procedure that
involves locating, evaluating, and analyzing all available
research material in order to provide solutions for certain
research questions. Based on Kitchenham and Charters' initial
recommendations, analysis activities has been conducted for
this work.

The following flow chart performs the stages in the research
conducted:

Figure 1. Stages of research

A. Research Questions

The research process begins with 2 (two) research questions
defined to discuss the purpose of this paper and serve as a basic
reference for the next stage of the reserach process. Here are two
research questions:

Figure 2.

Research Questions

The first focuses on the ability of refactoring techniques to
improve Code Coverage Metric. After the first question is
answered, the second question focuses on how to use
refractoring techniques to maximize Code Coverage Metric.

To maintain the focus of the review, specific research
questions (RQ) were provided. The Population, Intervention,
Comparison, Outcomes, and Context (PICOC) criteria [4] were
used in their design. The research questions' (PICOC) structure
is displayed in Table 1.

Table 1. The PICOC

B. Strategy of Query Search

 The search method includes choosing a digital library,
defining a search string, doing a pilot search, honing the search
string, and getting a preliminary list of significant studies from
the digital library that match the search string. To improve the
chances of discovering extremely relevant content, a suitable set
of databases should be chosen before the search is launched. The
goal of the most well-known field literature databases is to
include as many studies as they can. A broad perspective is
necessary due to the literature's extensive and varied reach.

Here is a list of digital databases to look for:

A. ACM Digital Library (dl.acm.org)

B. IEEE eXplore (ieeexplore.ieee.org)

C. ScienceDirect (sciencedirect.com)

D. Springer (springerlink.com)

The query string that is used in the list of digital databases
uses the query string as follows:

("Refactoring techniques") OR (("Maximize" OR
"Prediction") AND ("Code Coverage Metric"))

The Query strings to be combined are as follows:

1. “Refactoring techniques”

2. "Maximize" AND "Code Coverage Metric"

3. “Prediction” AND "Code Coverage Metric"

4. “Refactoring techniques” OR "Maximize" AND "Code
Coverage Metric"

5. “Refactoring techniques” OR "Prediction" AND "Code
Coverage Metric"

Population Code Coverage Metric, Test Coverage

Intervention
Refactoring Techniques, Maximize Code
Coverage, Prediction

Comparison n/a

Outcomes How to use Refactoring Technique

Context Software Metric and Measurement

Define Research
Questions

Define Protocol
Review

Data Synthesis

Strategy of
Query Search

Selection of
Study

Extraction on
Data

C. Selection of Study

 The primary selection of studies is done using inclusion
and exclusion criteria. The following Table 2 displays these
requirements.

Table 2. Inclusion and Exclusion Criteria

To handle and preserve search results, the author uses the
Mendeley software suite (http://mendeley.com). The selection
of studies is done in two (two) stages: first, primary studies are
excluded based on their title and abstract, then they are excluded
based on their entire text. Excluded from consideration are
studies that conduct analysis and other studies that do not present
experimental data.

D. Extraction of Data

A total of 202 papers from all resources and criteria were
analyzed in the study literature. Out of the 202 papers that were
reviewed, 62 were determined to be candidate studies based on
how well the title and abstract linked to the study topic. Only 19
publications remain after more investigation that can be utilized
in this study. The search results from digital databases are shown
in Table 3.

Table 3. Digital Library Search Result

No Digital Library Found Candidate Selection

1 A. ACM Digital
Library (dl.acm.org)

75 23 6

2 B. IEEE eXplore
(ieeexplore.ieee.org)

25 12 7

3 C.ScienceDirect
(sciencedirect.com)

58 21 5

4 D. Springer
(springerlink.com)

44 6 1

Total Papers 202 62 19

III. RESULTS AND DISCUSSIONS

 This study was intended to investigate code refactoring
techniques to maximize Code Coverage metrics. In software
testing, the better the Code Coverage metrics are directly
proportional to the quality of the software developed. Based on
that, this study identifies techniques carried out in code
refactoring operations.

A. Can Refactoring Technique improve Code Coverage
Metric?

Table 4 shows the year, citations, journal publishers and RQs.

Table 4. The List of Primary Studies in the Refactoring
Technique to maximize Code Coverage Metric

Year Studies Citations Source RQs

2018
[10] 17 C RQ1

[12] 0 C RQ2

2019
[5] 0 C RQ1,RQ2

[8] 24 B RQ1,RQ2

2020

[6] 45 B RQ1,RQ2

[9] 0 A RQ2

[15] 6 A RQ2

[3] 26 A RQ1,RQ2

2021 [17] 0 A RQ2

2022

[23] 0 D RQ2

[13] 8 B RQ2

[18] 3 B RQ1

[16] 4 C RQ2

[11] 17 C RQ2

2023

[20] 1 B RQ2

[22] 1 A RQ2

[14] 0 B RQ1,RQ2

[19] 3 B RQ2

[21] 0 A RQ2

Table 5 describes the Research Questions mapped with

Digital Library.

Table 5. Mapping RQs and Digital Library

Research Questions
Digital Library

Total
A B C D

RQ1 0 1 1 0 2

RQ1,RQ2 1 3 1 0 5

RQ2 5 3 3 1 12

Total 6 7 5 1 19

Inclusion
Criteria

Article from Journal or Conference

Article in English

From 2018 to 2023

Exclusion
Criteria

Systematic Literature Review

Article Not English

Not Related RQ1 and RQ2

Newsletter, Policy

Technical Report, Books, Working
Paper

 In this section, this paper presents the demographic
characteristics and trends of the "Selected Studies" literature,
such as publication source, year of publication, number of
citations, and research questions answered.

 From the Papers from Table 5. Research Questions can be
mapped based on Digital Library with a percentage of 31.58%
from ACM Digital Library, 36.84% from IEEE, 26.32% from
ScienceDirect and the remaining 5.26% from Springer.

B. How to use Refactoring Technique to maximize Code
Coverage Metric?

 To make it easier to analyze the results of the study, a check
column is created for each keyword and related word, and given
the result Yes for those that have relevance to keywords and No
for those that have no relevance. Table 6 Mapping Studies and
Keyword and related term.

Table 6. Mapping Studies and Keyword and related term

Studies CCM RT RC SQ ICC ICQ

[5] No Yes Yes No No Yes

[6] No Yes Yes Yes No Yes

[7] Yes No No Yes Yes Yes

[3] No No No No No Yes

[8] No Yes Yes Yes No Yes

[9] No Yes Yes No No No

[10] No Yes Yes Yes No Yes

[11] No Yes Yes Yes No Yes

[12] No Yes No Yes No No

[13] No Yes Yes Yes No No

[14] No Yes Yes Yes No Yes

[15] No Yes Yes Yes No No

[16] Yes Yes Yes Yes No Yes

[17] No No No Yes No Yes

[18] Yes Yes Yes Yes No Yes

[19] No Yes Yes Yes No Yes

[20] No Yes No Yes No Yes

[21] Yes Yes Yes Yes Yes Yes

[22] No No Yes Yes No Yes

CCM: Code Coverage Metric; RT:Refactoring Technique;

RC:Refactoring Code; SQ:Software Quality; ICC: Improve
Code Coverage;ICQ:Improve Code Quality

From several papers reviewed, uniformity was obtained in

carrying out Refactoring Code techniques. There are ten
refactoring techniques described in the research results. The
ten refactoring strategies that were selected are described in the
following order. [20][19][14]

1. Extract Method (EM): By taking a group of statements that
can be combined into a new method, this technique takes a
lengthy and complex method and turns it into a new one.

2. Move Method (MM): When a method is present in one
class but is utilized more frequently in another, this
strategy is applied. As a result, the original class's method
is transferred to the appropriate class.

3. Introduce Parameter Object (IPO): This method is applied
when the same groups of parameters appear repeatedly in
different methods.

4. Remove Setting Method (RSM): This method is employed
to stop any alterations to a field's value.

5. Pull Up Field (PUF): When two subclasses have the same
field, this technique deletes the field from one of them and
transfers it to the superclass.

6. Pull Up Method (PUM): This method transfers methods to
the superclass when they have comparable work with
identical results but are in a subclass.

7. Push Down Field (PDF): This method transfers a field from
the superclass to the associated subclasses when it is used
in only a few of the subclasses.

8. Push Down Method (PDM): When a method is only used
in one or a few subclasses, this technique moves it from the
superclass into related subclasses.

9. Extract Subclass (ESb): Fields and methods in a class are
used only in certain situations. These fields and methods
are created by using this technique to create a subclass.

10. Extract Interface (EI): This technique is used when a
portion of a class interface is shared by two classes or when
multiple clients use the same portion of the interface..

Abdullah Almogahed in his study [18] explained the positive
impact of refactoring code techniques on software quality can
improve software quality.

IV. CONCLUSION

There were two reasons why this study carried out a
thorough evaluation of the literature. Finding state-of-the-art
empirical refactoring code studies that explore how refactoring
might enhance software quality is the first objective. Nineteen
studies have been published, it was discovered. The
identification of the refactoring strategies employed and the
internal and external quality attributes examined is the second
goal. Ten refactoring strategies were applied in three trials to
increase code coverage.

From Table 4 Mapping RQs and Journal Publisher, it has
been concluded that the study obtained Research Question
answers that can be used as a guide for refactoring techniques.
For priority consideration of references Paper [3], [6], [8], [10]
and [11] can be used based on Table 5 and Table 6. The List of
Primary Studies in the Refactoring Technique to maximize Code
Coverage Metric.

An assessment of the use of refactoring techniques is
required for this paper's future research in order to gauge the
effectiveness of increasing Code Coverage metrics during the
software development lifecycle.

From the research it can be concluded that Refactoring
Techniques can improve Code Coverage Metric, and to
maximize can use ten Refactoring techniques so as to improve
software quality. The contribution of this study is as a reference
for future researchers for research on the topic of Refactoring
Techniques.

REFERENCES

[1] N. Ahmad, “Software Measurement and Metrics: Role
in Effective,” Int. J. Eng. Sci. Technol., vol. 3, no. 1, pp.
671–680, 2011.

[2] M. Zakeri-Nasrabadi and S. Parsa, “Learning to predict
test effectiveness,” Int. J. Intell. Syst., vol. 37, no. 8, pp.
4363–4392, 2022, doi: 10.1002/int.22722.

[3] J. Pantiuchina et al., “Why Developers Refactor Source
Code: A Mining-based Study,” ACM Trans. Softw. Eng.
Methodol., vol. 29, no. 4, 2020, doi: 10.1145/3408302.

[4] S. Kitchenham, Barbara Ann and Charters, “Guidelines
for performing systematic literature reviews in software
engineering,” Tech. report, Ver. 2.3 EBSE Tech. Report.
EBSE, vol. 1, no. October, pp. 1–54, 2007.

[5] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A.
Bacchelli, “A large-scale empirical exploration on
refactoring activities in open source software projects,”
Sci. Comput. Program., vol. 180, pp. 1–15, 2019, doi:
10.1016/j.scico.2019.05.002.

[6] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M.
Ocinneide, A. Ouni, and Y. Cai, “An Interactive and
Dynamic Search-Based Approach to Software
Refactoring Recommendations,” IEEE Trans. Softw.
Eng., vol. 46, no. 9, pp. 932–961, 2020, doi:
10.1109/TSE.2018.2872711.

[7] J. D. Velasquez, “Bcc: A suite of Tools for Introducing
Compiler Construction Techniques in the Classroom,”
IEEE Lat. Am. Trans., vol. 16, no. 12, pp. 2941–2946,
2018, doi: 10.1109/TLA.2018.8804260.

[8] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater,
“RefBot: Intelligent software refactoring bot,” Proc. -
2019 34th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE
2019, pp. 823–834, 2019, doi:
10.1109/ASE.2019.00081.

[9] M. Paixão et al., “Behind the Intents: An In-depth
Empirical Study on Software Refactoring in Modern
Code Review,” Proc. - 2020 IEEE/ACM 17th Int. Conf.
Min. Softw. Repos. MSR 2020, pp. 125–136, 2020, doi:
10.1145/3379597.3387475.

[10] P. Hegedűs, I. Kádár, R. Ferenc, and T. Gyimóthy,
“Empirical evaluation of software maintainability based
on a manually validated refactoring dataset,” Inf. Softw.
Technol., vol. 95, no. January 2017, pp. 313–327, 2018,
doi: 10.1016/j.infsof.2017.11.012.

[11] M. Irshad, J. Börstler, and K. Petersen, “Supporting
refactoring of BDD specifications—An empirical
study,” Inf. Softw. Technol., vol. 141, no. August 2021,
2022, doi: 10.1016/j.infsof.2021.106717.

[12] T. Kozsik, M. Tóth, and I. Bozó, “Free the Conqueror!
Refactoring divide-and-conquer functions,” Futur.
Gener. Comput. Syst., vol. 79, pp. 687–699, 2018,

doi:10.1016/j.future.2017.05.011.
[13] S. Rebai, V. Alizadeh, M. Kessentini, H. Fehri, and R.

Kazman, “Enabling Decision and Objective Space
Exploration for Interactive Multi-Objective
Refactoring,” IEEE Trans. Softw. Eng., vol. 48, no. 5,
pp. 1560–1578, 2022, doi:
10.1109/TSE.2020.3024814.

[14] A. Almogahed, H. Mahdin, M. Omar, N. H. Zakaria, G.
Muhammad, and Z. Ali, “Optimized Refactoring
Mechanisms to Improve Quality Characteristics in
Object-Oriented Systems,” IEEE Access, vol. 11, no.
September, pp. 99143–99158, 2023, doi:
10.1109/access.2023.3313186.

[15] A. Bogart, E. A. Alomar, M. W. Mkaouer, and A. Ouni,
“Increasing the Trust in Refactoring through
Visualization,” Proc. - 2020 IEEE/ACM 42nd Int.
Conf. Softw. Eng. Work. ICSEW 2020, pp. 334–341,
2020, doi: 10.1145/3387940.3392190.

[16] P. Smiari, S. Bibi, A. Ampatzoglou, and E. M.
Arvanitou, “Refactoring embedded software: A study
in healthcare domain,” Inf. Softw. Technol., vol. 143,
no. October 2021, p. 106760, 2022, doi:
10.1016/j.infsof.2021.106760.

[17] E. A. Alomar, H. Alrubaye, M. W. Mkaouer, A. Ouni,
and M. Kessentini, “Refactoring Practices in the
Context of Modern Code Review: An Industrial Case
Study at Xerox,” Proc. - Int. Conf. Softw. Eng., pp.
348–357, 2021, doi: 10.1109/ICSE-
SEIP52600.2021.00044.

[18] A. Almogahed, M. Omar, and N. H. Zakaria, “Recent
Studies on the Effects of Refactoring in Software
Quality: Challenges and Open Issues,” 2022 2nd Int.
Conf. Emerg. Smart Technol. Appl. eSmarTA 2022, pp.
1–7, 2022, doi:
10.1109/eSmarTA56775.2022.9935361.

[19] A. Almogahed, M. Omar, N. H. Zakaria, G.
Muhammad, and S. A. Alqahtani, “Revisiting
Scenarios of Using Refactoring Techniques to Improve
Software Systems Quality,” IEEE Access, vol. 11, no.
October 2022, pp. 28800–28819, 2023, doi:
10.1109/ACCESS.2022.3218007.

[20] A. Almogahed et al., “A Refactoring Classification
Framework for Efficient Software Maintenance,” IEEE
Access, vol. 11, no. July, pp. 78904–78917, 2023, doi:
10.1109/ACCESS.2023.3298678.

[21] P. Reich and W. Maalei, “Testability Refactoring in
Pull Requests: Patterns and Trends,” no. 1449, pp.
1508–1519, 2023, doi: 10.1109/icse48619.2023.00131.

[22] H. Damasceno, C. Bezerra, E. Coutinho, and I.
Machado, “Analyzing Test Smells Refactoring from a
Developers Perspective,” ACM Int. Conf. Proceeding
Ser., no. i, 2022, doi: 10.1145/3571473.3571487.

[23] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio,
“An executable metamodel refactoring catalog,” Softw.
Syst. Model., vol. 21, no. 5, pp. 1689–1709, 2022, doi:
10.1007/s10270-022-01034-9.

