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Abstract—Machine learning (ML) model advancement is mov-
ing forward at a rapid pace compared to the safety and security
critical system development life cycle. The behavior of the ML
model depends on the data and software implementation of
the algorithm. To leverage these advancements while keeping
the system compliant for safety critical applications, this paper
reviews the challenges of using open source ML models for
safety critical applications and proposes metrics and workflow
to improve model assurance for deployment in edge systems.

Index Terms—safety, security, machine learning, safety assur-
ance, open source, model validation, data bias, data variance,
explainability, embedded edge

I. INTRODUCTION

A. Challenges

Rapid advancements in the area of artificial intelligence
or machine learning (AI/ML) are pushing many industries
to evaluate and deploy the latest techniques into products
for competitive advantage. The ML advancement is typically
published as a technical paper describing a ML model, the
background theory, the training methodology and datasets used
in developing the model, and the procedure, datasets and
results of performance evaluation on the model. Many of these
significant innovations are open-source, permitting deployment
under specified licensing conditions, and the papers reporting
them include links to source code and datasets that aid
in reproducing and verifying the reported results. However,
transforming the findings in this paper into a system that
can operate correctly and safely in real-world environments
is a complicated process. Finding the right balance between
leveraging the advantages offered by open-source innovation
and assuring product safety and security remains a significant
challenge. [1], a great reference, outlined auditing tools for
open source ML models with a fairly comprehensive set
of tools, but does not frame them into a best practice ML
development life cycle for edge systems. This paper will
aggregate practical methods and flows into a ML specific life
cycle development process as illustrated in Figures 1, 2.

B. In Practice

As ML product matures, best practice and patterns of ML
product development life cycle will emerge. SiMa.ai proposed
CRISP-EML (Cross-Industry Standard Process for Embedded
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Machine Learning) development life cycle is illustrated in Fig-
ures 1, 2 as an example of interdependencies between different
stages, personas, and goals for each stage. This framework is
based on CRISP-ML(Q) as defined by MLOps (ml-ops.org).
The emphasis on data and model validation throughout the life
cycle is necessarily a part of safety assurance. The rest of this
paper will discuss safety critical considerations that influence
the safety assurance of ML Model in a production edge system
in the context of the development process outlined in Figures
1, 2.

Fig. 1. ML Application Development and Deployment block; Credit: SiMa.ai

Fig. 2. ML model development; Credit: SiMa.ai

II. SAFETY CRITICAL CONSIDERATIONS

A. Deterministic vs. Probabilistic
An inference system consists of a software-based ML model

and a hardware platform that executes the ML model. The ML
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model is a graph that encodes the sequence of mathematical
transformations performed on the input to the system. Each
of these two components of a system can contribute to the
non-determinism of the system in different ways.

A deterministic system yields the same and absolutely
predictable behavior or same outputs when fed the same set
of input at different points in time, i.e. time invariant or
independent. Non-deterministic system does not guarantee the
same input-to-output absolute predictability relationship from
trial to trial, i.e. input and time dependent. If a ML system
can self adapt to an operating environment over time, then
it’s an adaptive ML system or time varying system. The goal
of a safety assurance of such an adaptive ML system is to
safety-bound the system’s behavior.

Non-deterministic systems have two flavors, probabilistic
and time-varying models. Probabilistic model means the out-
come likely resides in a distribution of answers centered
around a mean output. Time-varying mode’s parameter and
structure may change over time and the resulting outputs to
the same stimulus can be different. Importantly, there is no
bound on the magnitude of the difference from trial to trial. An
inference system may exhibit non-determinism with different
statistical characteristics that may be derived from a number
of causes:

1) Platforms: Digital platforms are generally expected to
be deterministic. However, some platform components
such as CUDA can produce different results based on
the execution order of threads across processing nodes
[2]. Though this non-determinism may be mitigated with
software control, as systems become more distributed,
enforcing such mitigation control will become more
challenging. These mitigation controls will also erode
the computational efficiencies gained by distributed pro-
cessing.

2) Data sources: Systems operating in real-world environ-
ments encounter a wide range of inputs often contain-
ing stochastic noise components. Practically, producing
exactly identical inputs as the training data set is not
possible . While the ML models are expected to be
resistant to noise, the outputs are influenced by these
noise components and the system would effectively
exhibit a probabilistic non-determinism. Furthermore,
the model’s behavior will be different depending on in
what sequence the new training data is inserted [3] [4] .

3) Models: ML models in the inference system can be com-
pletely static or dynamic. Static ML models means once
deployed, the model’s parameters will not be changed.
Dynamic models, or time-varying models, would include
systems that are periodically updated or replaced, or
models that are continuously updated via reinforcement
learning, or models that are trained and updated through
a shared collective.

B. Data Bias vs. Variance

The behavior of a ML model depends on how it is trained
and what it is trained with. Data bias and variance are two

major considerations in training data as illustrated in Figure
3, as extracted from [5], [6]. Data bias is overweighting or
overrepresented features or patterns in a dataset leading to
biased predictions. Data variance is associated with variability
of a model’s prediction based on the data set.

Fig. 3. Model complexity and error relationships with data bias, data variance,
and error; Credit: EASA and Daedalean [5]

Even for large-scale datasets, bias can still be captured by
modern neural networks resulting in model behavior uncer-
tainty. [7] For open source dataset and pretrained models, the
hidden or undiscovered bias can present significant challenges
in safety assurance, as supported by [8].

It’s also important to consider the application environment
when constructing the training and validation data set. NIST
(National Institute of Standards and Technology) presented a
very comprehensive study and guidance to manage data bias
in AI [9].

C. Black-box Model Explainability

There have been many research efforts covering the topic
of explainable AI (XAI) due to the black box nature of
ML models. [10] XAI is an exercise during design time to
gain rationality to how a model arrived at its conclusion.
This is particularly important in the context of safety for
compliance, trust, and accountability. In the context of a
production pipeline for safety critical applications, scaling the
explainability output to be automated is a critical step. There
are multiple options for model explanations in [11], e.g.
general approach options are distillation / approximations,
visualization, or intrinsic models. Couple of example
approaches are LIME (Local Interpretable Model-agnostic
Explanation) [12] and RISE (Randomized Input Sampling for
Explanation) [13]

D. Model Optimization

Quantization and pruning both introduce modifications in
the model’s behavior, and these optimization is necessary for
deployment where the host computing platform is resource
limited, power limited, and timing constrained. The challenge
is to ensure, as close as possible, the original behavior of
the model. This is a stage where learning is transitioning
to inference only processing. This transition from learning



environment to inference environment is where a formal
safety compliant process is needed. These optimizations all
occur after training is completed, thus changes here will
impact model behavior, thus introducing unknown risks.
Worth considering are technique such as quantization-enabled
training [14].

a) Quantization: as part of the optimization options, is a
mapping of continuous space to discrete space. The mapping
can be a uniform quantization, i.e. equally spaced values,
or non-uniform quantization. Uniform quantization is what’s
being used in most deployed systems due to its simplicity
and practicality in hardware implementation. Quantization
is inherently a lossy transform from input to output space.
As the research in quantization advances, more methods
will be available [15], and the accuracy of the quantized
model will increase. It is important to verify this specific
stage, and define an application relevant metric that ensures
original intended behavior of the model. Quantization is
also an unavoidable stage in the ML deployment process, as
such QAT (quantization-aware training) [16] is often used to
minimize the impact of this lossy stage.

b) Pruning: operates on the model’s computational
graph network by removing the components such as a neuron
or weights toward a neuron. The model behavior will be
modified at the cost of increasing model runtime performance.

E. Model Validation

The goals for model validation are to identify and add
missing requirements and test cases. Two major categories
for validation are data and model. For data, it consists of
training data and test data. For the model, it can be validated
qualitatively, but quantitative validation is very challenging.
With the rising popularity of transformers, identifying which
part of the input, i.e. attention, contributes the most to the
output decision provides significant value in validating model
behavior.

F. Security Risks

Edge systems live in the ”wild” where Murphy’s law
dominates. Developing models vs. deployed models each have
their own security risks. In the context of a safety critical
system, a system is not safe if it is not secure. According to
OWASP (Open Web Application Security Project) [17], the
top ML security risks are:

1) Input manipulation attack *
2) Data poisoning attack *
3) Model inversion attack *
4) Membership inference attack *
5) Model theft
6) AI supply chain attack *
7) Transfer learning attack
8) Model skewing *
9) Output integrity attack

10) Model poisoning *

The risks tagged with ”*” are particularly relevant to using
open source models as reinforced with study in [18]. For
example, an AI supply chain attack is when a malicious actor
modifies or replaces a library, data set, or model used by the
system. A recent example is that of an open source AI model
found in Hugging Face that installs backdoors and other types
of malware on end user machines [19]. According to JFrog’s
analysis, about 100 instances of malicious ML models on
Hugging Face contain vulnerabilities such as object hijacking,
reverse shells, and arbitrary code execution. Furthermore,
about 95% of these malicious models were built with PyTorch
[20]. When a system is jointly developed across multiple
organizations internal or external, this risk increases as more
entities and various development flows are introduced.

A MLSecOps(Machine Learning Security Operation) equiv-
alent to OWASP vulnerability is found in [21]. Beyond vul-
nerabilities and attacks on ML based systems, in the context
of safety, the primary concern is with the failure modes as
identified in [22]. In particular, the unintended failure modes
that directly affect the systems safety are reward hacking,
side effects, distributional shifts, natural adversarial examples,
common corruptions, and incomplete testing in realistic con-
ditions. More unintended failure modes may be identified as
ML technology advances. Other failure modes may lead to one
or more of the following compromises: ML system integrity,
availability, and confidentiality.

Fig. 4. Taxonomy of attacks on ML based system [23]

III. MODEL ASSURANCE FRAMEWORK FOR SAFETY

A model assurance framework is a necessary part of the
ML life cycle transition from training to inference environ-
ment. This framework is a set of flows that requires both a
development process that enables safety assurance as well as
optimizing a model targeted for the deployment hardware. The
following subsection would be part of the model assurance
framework.



A. Model Tuning

Model tuning step is intended to find the optimal imple-
mentation, in terms of throughput, resource utilization, and
accuracy, for a specific target host hardware. There will need
to be a trade off between these different metrics and resulting
in a balanced deployed system. The safety relevant tuning may
include a latency model from the target host hardware and
boundary conditions for bandwidth limited data throughput.
The post tuning activity is to validate the consistency of model
behavior from before and after tuning. The safety assurance
subsection will propose an automated model validation flow to
support assurance level assessment with supporting evidence.

B. Model Architecture

Model architecture aggregates data generation, data col-
lection, feature engineering, training, evaluation, task orches-
tration, prediction, infrastructure, authentication, interaction,
and monitoring. Safety relevant activities would be analyzing
model architecture’s fault tolerance, fault isolation, and fault
recovery.

C. Model Algorithm

Model algorithm includes linear regression, logistic regres-
sion, decision tree, support vector machine (SVM), naive
Bayes network, KNN (K-Nearest Neighbor), K-means, and
random forest. Safety relevant activities would include analysis
of plausibility of algorithm behavior, e.g. physical rules and
legal rules within the ODD (operational design domain).

D. Safety Assurance

Safety assurance of model centers around process assurance
and design assurance of the model with supporting artifacts or
evidence. Safety compliance requires supporting evidence to
support safety claims. Model explainability with comprehen-
sive evidence would be a critical step in the model assurance
pipeline. In the avionics domain, a ML development work
flow for low criticality airborne applications is proposed in
[24], where explainability is a key challenge, which impacts
traceability through a ML model, a key safety requirement.
This limitation constrains the ML application only to lower
criticality systems.

This paper proposes a flow based on generated contextually
realistic scenery data sets to automate model validation with
explainability. For example, a video camera would require the
synthesis of a photo-realistic image, whereas a LiDAR would
require the synthesis of a point cloud data. The innovation in
this flow is the usage of realistic scene and a set of rendered
region(s) of interest (ROI) from the original image/video as
shown in Figure 5. ROI can be a single object or a combination
of different ROI. The amount of permutation can be exhaustive
to provide all permutations of ROI. Model under test can
operate on two paths: (1) normal complex realistic scene; (2)
permutation of ROI combination of rendered photo-realistic
images and even other environmental variables such as lighting
condition, shadow regions, weather, and road surface condi-
tions. First path would produce the baseline predictions as the

model normally does. The second path would produce a set
of high confidence predictions due to the noise-free conditions
of the masked ROI. The results from these two paths can be
compared, and false predictions can be quickly identified and
the specific conditions on which the false prediction can be
identified based on the permutation of the rendered images.
This flow is model-agnostic, and can be used for diverse
scenarios and use cases, where the scenes can be generated
based on the ODD. Furthermore, for automotive use cases,
OpenScenario and OpenODD may be used as a way to support
generation of scenes, where the ROI is not limited to vehicles
or pedestrians, but also may include weather, road condition,
lighting level, or other environmental parameters. This would
also enable full traceability from requirement to validation.

Fig. 5. Automated model validation with explainability using generated photo-
realistic image sets

The commonly used mAP (mean Average Precision) metric,
which uses the confusion matrix (TP, TN, FP, FN), IoU,
Precision, and Recall, can be used for the normal prediction
precision. But, in addition, for each permutation of the ROI
image set, a context accuracy metric can be measured with
mAP as well. The context accuracy would add assurance on
understanding model behavior.

The context accuracy metric will be a significant measure
for assurance of model behavior, and is especially important
when large images are processed in tiles or at significantly



reduced resolution, which have reduced context, reduced field
of view (i.e. missing context), or reduced details of context
information.

The key benefits of this proposed flow are:
1) Automates model-agnostic explainability with traceable

supporting evidence
2) Provides comprehensive coverage of scenarios
3) Identify which ROI influence the prediction for debug-

ging overall model behavior
4) Provides metrics to have higher assurance in the model
5) Provide metrics to support targeted model tuning
6) Provides capability to compare pre- and post-quantized

model for behavior consistency verification
7) Can be used for different domain or applications, not

restricted to just automotive

E. Development process

The development process specifically for ML model devel-
opment as illustrated in Figures 1, 2. For safety specific ML
development process, the following should be considered:

1) Data source integrity and configuration management
2) Data cleaning flow
3) ML model safety metric definition
4) Model source integrity and authentication
5) Pre- and post- model optimization validation flow
6) Model explainability assurance metric definition
For safety compliance, explainability provides a comprehen-

sive set of evidence to support safety arguments. [25] provides
a great example of ML safety argument using GSN (Goal
Structured Notation) for healthcare ML systems.

F. Security Assurance

The goal of security assurance is to provide a trustwor-
thy and accountable development flow that protects against
security risks identified in previous discussion. MLSecOps
(Machine Learning Security Operations), which is a process
to minimize ML model’s vulnerability, is gaining traction in
various fields. An example of which is proposed in [26] for
the biotech industry that utilizes machine learning systems.
While threats to each industries may have unique threat vectors
and attack surfaces, the underlying MLSecOps and regulatory
compliance philosophies are well aligned and can be cross
leveraged.

IV. CONCLUSION

Outline of ML system development life cycle and the
considerations needed for using opens source ML models
in context of safety critical applications are presented. A
framework of model assurance is outlined with emphasis on
data and model validation methods. Furthermore, an automated
model validation using synthesized dataset and respective
metrics was proposed. With the growing usage of open source
ML models and data sets, topics discussed and flow proposed
in this paper will mature faster as more safety critical and
mission critical applications leverage advancements made in
the open source community.
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