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Abstract—Modeling results of planar 2D/3D semiconductor 

heterostructure based on GaN/MoS2 junction are presented. 
The heterostructure represents a III-nitride based planar diode 
with length of 1 m. The diode has a GaN n-type channel and 
MoS2 layer placed at the bottom and connected to anode 
contact. Doping concentration in the channel is (1–6)·1022m−3. 
Model of electron exchange between 2D and 3D regions of the 
diode is proposed. Electron transition between 2D and 3D 
region of diode is suggested to occur due to polar optical 
phonon scattering. Monte Carlo simulation of electron 
transport in device is carried out. Dependences of current 
density on applied voltage are obtained. Impact of parameters 
of MoS2 layers on current – voltage characteristic of diodes is 
discussed. 

Keywords—two-dimensional(2D) layer, heterojunction, 
electron transfer, phonon scattering, current density, I-V-
characteristic. 

I. INTRODUCTION 

Two-dimensional (2D) semiconductors are considered as 
perspective materials for novel electronic devices. Well 
known monolayer materials as graphene was first of them. 
Today, other 2D materials are extensively investigated. For 
example, hexagonal transition metal dichalcogenides 
(TMDCs) [1,2], black phosphorus (BP) [3,4] et. al. Usage of 
vertical 2D – based heterostructures allows to create 2D 
analoges of most original devices from bipolar and field 
effect transistor [5,6] to photoelectronic devices [7]. There 
are also examples of active devices which were traditionally 
used for high frequency generation. In particular Esaki diode 
[8] and resonance tunneling diode [9] were proposed. Thus, 
2D materials can be used for creating high frequency active 
element either using only 2D materials or combination of 2D 
and 3D materials. In submicron structures the movement of 
electrons is known to be close to ballistic. Therefore, adding 
additional active elements to the surface or changing the 
shape of the electrodes can strongly changes the frequency 
and energy characteristics of the devices. In particular, in 
[10, 11] it was showed that in planar structures with 
additional semiconductor elements placed on top of the diode 
side border and electrically connected to the anode of the 
diode, it is possible to obtain generation in a wide frequency 
range, including millimeter and terahertz ranges. Active 
element placed at side borders can influence to formation of 
the above-mentioned conditions both by modulating the 
conductivity, for example, as is the case in self-switching 
diodes [12], and by redistributing the charge carrier between 
regions of the diode having different properties similar to 
transfer electron device (TED). For those purposes, the using 
of 2D materials grown on traditional 3D semiconductors is 
promising, and it give a possible to combine the advantages 

of established 3D semiconductors with the unique properties 
of 2D materials. 

One of these combinations can be obtained by using bulk 
GaN semiconductors and 2D materials, in particular 
transition metal dichalcogenites (TMPs) [13-21] in 
heterostructures of mixed sizes. That is possible to the 
developed planar GaN technology practically implemented 
in a number of devices: from light-emitting diodes to high-
power electronics. Therefore, combination of GaN with 2D 
DPMs, such as MoS2, is of particular importance for 
development of new hybrid heterostructures, including high-
frequency electronics. 

Theoretical studies of such heterostructures are 
particularly difficult, experimental research work is 
mandatory to reveal interfacial and electronic properties of 
2D DPM/3D heterostructures and to initiate further 
theoretical analysis. In this section, planar diode structures 
containing active surface layers formed both on the basis of 
traditional 3D materials and using 2D TMD/3D 
heterostructures on the example of the MoS2/GaN 
heterostructure are considered, and charge transfer between 
two electronic subsystems in one device is investigated. 

II. MODEL 

Usage of 2D materials with 3D GaN is an example of a 
2D/3D structure corresponding all the general requirements 
for heteropairs in contact. These heterojunctions have been 
actively studied in the latest 5 years both experimentally and 
theoretically [16,18–23]. In the first works, heterojunctions 
between GaN−MoS2 [18] and GaN−WSe2 [19] are 
considered. The authors grew undoped GaN on 2D materials 
and performed high-resolution X-ray photoelectron 
spectroscopy to determine the position of the band gaps in 
these heterostructures. 

In work [16], MoS2 was grown on an n- type GaN film, 
initially formed on sapphire. Using the methods of atomic 
force microscopy with a conducting probe, it was shown that 
the MoS2/GaN heterostructure electrically conducts in the 
direction perpendicular to the plane separating the materials 
through the van der Waals gap. 

In [21] it was shown that heterodiodes with p-n junction 
p-MoS2 − n-GaN could also be realized as a structure, in 
which rectification effect characteristic of ordinary diodes is 
observed. A number of data regarding the position of zones 
are currently somewhat contradictory. This fact is it is 
difficult to create a reliable model of the heterojunction in 
MoS2/GaN. In addition, the influence of the layer formation 
order can change electronic properties of the semiconductor 
interface. 
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with energy iE due to the absorption or emission of a 

phonon with energy qw  is reduced to the determination of 

the coupling parameter qC for the given mechanism and the 

overlap integral 2 ( , , )xI k k q¢
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 and the calculation of the 

integral (1) for all possible states k ¢


 in a 2D semiconductor: 
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where 1(4 )S qbA pr w -= , Sr - surface density of MoS2, qbN - 

phonon occupation number. The probability of a reverse 
transition from the initial state with energy in 2D material to 
any other state with energy in 2D material is determined in a 
similar way. In both cases, it is assumed that transitions 
occur as a result of interaction with bulk optical modes of 
GaN. 

The definition of integral (1) over all final states is 
carried out by integration over the possible polar angles to 
obtain the expressions for the probabilities as an integral over 
interval of value of transmitted moment q. The value of the 
emitted (absorbed) phonon momentum as a result of 
scattering is determined using the Neumann procedure using 
probability density function. Taking into account the 
parabolic law of dispersion in GaN and MoS2, momentum 
values and final energy states are determined from the 
conservation energy law: 

 
*

2 2
2 2

2 2* *
22 2
||* 2 *

3 3

2
(

2
,

2

D
D C LO

xD D
C LO

D D

m
k E E

km m
k E

m m



 

     

 
     

 




 


 (2) 

2 3
3

2

( ).D
D i LO C

D

m
p E E

m
       (3)  

The angle between the initial and final wave vectors is 
determined from the law of momentum conservation. The 
limitation caused by the two-dimensional model is related to 
the fact that the width of the monolayer is assumed to be 
equal to the width of the diode, while the nature of the 
movement of charge carriers under the monolayer is a three-
dimensional process and depends on the distribution of the 
electric potential in the transverse direction, which, due to 
the small areas of the monolayer, can be significantly 
uneven. 

All contacts of metal to a semiconductor are suggested to 
be ohmic ones. Values of electrostatic potential involved 
contact different potential due to difference material at the 
cathode and anode were fixed. To obtain the electrostatic 
potential distribution the 2D Poisson equation was solved by 
using of geometric full multigrid (FMG) method. Sampling 
the particle motion is realized at a very small-time interval of  

1710t -D = s. The mathematical model details are accorded to 
[32]. Material parameters of GaN and MoS2 are 
corresponded to [33] and [26] respectively. 

III. RESULTS AND DISCUSSION 

The characteristics of the diodes were considered in t 
voltage range of 0 – 8 V. This guaranteed limitation of the 

energy of the electrons and their localization in the parabolic 
Г- valley of GaN, which corresponds to the calculation 
model. The cases of n-GaN – undoped MoS2 transitions and 
n-GaN – n-MoS2 transitions are considered. Additionally, 
the situation when the diode contains a lightly doped layer 
located between the n+- contacts, which separates the main 
part of the diode from the monolayer, is considered 
(Fig.2,3). 

As it can be seen from the dependences, the presence of 
a monolayer in the considered structure has little effect on 
the drift conditions of charge carriers along the diode 
channel. The area of space charge that occurs at the GaN–
MoS2 separation boundary does not exceed 0.05 μm in size. 
Since the probability of scattering of an electron by a polar 
optical phonon has a weak dependence on the energy of the 
electron, the capture of charge carriers in the 2D- layer 
occurs along the entire length of the monolayer Fig.4. 

 

Fig. 2. Distribution of electrostatic potential in a diode, SN = 0, kbl =
0.16 μm. 

 
a) 

 
b) 

Fig. 3. Distribution of Ey a) and Ex b) - components of electric field 
intensity, SN =0, kbl =0.16 μm. 



 

Fig. 4. Static distribution of surface electron concentration (1) and electric 
field strength (Ey) (2) in a monolayer, SN =0, kbl =0,16 μm, U=0 V. 

Due to presence of a potential barrier between the 
monolayer and the bulk semiconductor, the space charge is 
somewhat higher in the contact region and increases the 
electric field in the region of the 2D MoS2 – n+- GaN- anode 
interface. The main mechanism limiting 3D → 2D 
transitions is the formation of a potential barrier. 

In Fig.5 the dependence of the current density on the 
voltage for diodes based on GaN with 2D MoS2 – 3D GaN 
heterojunctions, which had different doping levels in the 
monolayer, are shown. The figure also shows the 
dependence of the current density on the voltage for a 
conventional (without MoS2 –layer) GaN- based planar 
diode. 

Dependence 5 was obtained for the diode containing a 
weakly doped layer 80 nm thick, which was located between 
n+- contacts and separated the main part of the diode from 
the monolayer. It can be seen from the given dependences 
that the presence of a heterojunction reduces the amount of 
current flowing through the diode, but practically does not 
change the qualitative current-voltage dependence. Also, the 
presence of heterojunction does not affect the qualitative 
behavior of the introduction of a weakly doped layer, which 
only reduces the conductivity of the channel. Under 
condition that the value of the band gap between the 
contacting materials does not change, the conductivity of the 
monolayer has a weak effect on the current of the diode 
structure. 

 

Fig 5. Dependence of current density on voltage for diodes based on GaN 
without a heterolayer and with a heterolayer with a thickness of 0.8 μm 
(lkb=0,16 μm): 1 – diode without heterojunction; 2-5 diode with 2D-MoS2 – 
3D GaN heterojunction: 2– SN =0; 3, 5– SN =1011 сm-2; 4– SN =1012 сm-2. 

 

Fig. 6. Dependence of current density on voltage for diodes with 2D-MoS2 
– 3D GaN heterojunction, donor concentration SN =1011 сm-2: 1 – bl =0.8 

μm; 2,4 – bl =0.64 μm; 3,5 – bl =0.48 μm. 

The biggest differences are observed in the voltage range 
of 0–2.5 V and are related to the dependence of the phonon 
scattering probability on energy. 

Fig. 6 shows dependences of the current density on the 
voltage for GaN-based diodes with 2D-MoS2 – 3D GaN 
heterojunctions with different monolayer lengths. The main 
differences are observed at high voltages, which is mainly 
due to the effect of the space charge in the diode channel. 
Decreasing the carrier’s concentration in the channel 
weakens this effect. Differences in dependencies are not 
observed. 

IV. CONCLUSIONS 

Using the Monte Carlo method, simulation of electronic 
processes in planar diodes containing a 2D–3D 
semiconductor heterojunction has been carried out. 

The static characteristics of planar diodes with a 2D 
MoS2 – 3D GaN heterojunction were obtained within the 
framework of the proposed model. It was shown that the 
arrangement of the monolayer along the diode channel leads 
to a decrease in the current through the diode but does not 
qualitatively change the current- voltage dependence.  

Our simulation shows that the electron transition process 
time between 3D and 2D regions is about 10 ps on average. 
Therefore, considered structures can be investigate further 
for their possible high frequency application. 
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