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Abstract— Command generation to control 

robotic hand gripping is a demanding application 

of brain-computer interfacing (BCI) in automotive 

manufacturing, rehabilitation, and service robots. 

In this experimental work, the functional Near 

InfraRed Spectroscopy (fNIRS) based command is 

generated to control robotic hand gripping. 

Commands generated with improved accuracy of 

machine learning classifiers using acquired data 

from motor area of brain cortex. Results show 98% 

reliable performance of robot hand grasping and 

releasing of objects with a variety of shapes and 

surface characteristics within the workspace. In the 

future, generated commands can be applied in real-

time automotive manufacturing robot control. 

Keywords—functional Near Infrared Spectroscopy 

(fNIRS), robot hand gripping, machine learning 

classifiers 

Introduction  

The BCI is a unidirectional and occasionally 

bidirectional interaction concerning the living 

brain and peripheral devices such as computers, 

which excludes human muscle activation. BCI 

technology provides rehabilitation to patients with 

motor impairments and enhancement in the 

working ability of humans either cognitively or 

physically [1]. In controlling devices and the 

environment through BCI applications, the most 

challenging factor is the complexity of the human 

brain. The human brain is an extremely 

complicated dynamical system in accordance with 

nonlinear dynamics, comprising about 86 billion 

neurons [2]. The nerve cells are linked together by 

synapses to create a complicated network where 

connection is represented by synapses and neurons, 

as given in figure 1. To know the current status of 

the brain neural networks and dynamics of 

different brain areas time-spatial features are 

captured via placing sensors either on the scalp or 

within the cerebral cortex. Depicted features 

provide valuable information to control the 

amputee’s prosthetic limbs [3] to enhance the 

excellence of post-stroke and post-traumatic 

patients’ life by applying BCI technology. It offers 

extensive freedom both by improving or replacing 

human working ability and has applications in 

several fields such as robotics, physiotherapy, gate 

rehabilitation [4], gaming, and neuroscience[5].  

Initially, BCI intention was to develop assistive 

and rehabilitative devices as biomedical 

applications[6]. But with the passage of time BCI 

technology significantly extended its applications 

in drowsiness detection to improve human 

performance at work [7] [8], approximating 

response time [9], brain-related fingerprinting lie 

detection system [10], virtual reality controlling 

[11], humanoid robots controlling [12] [13], 

quadcopters controlling in 3D space [14]and, BCI 

video games [15].  

 

Figure 1: Activation and deactivation of nerve cell 

BCI system shown in figure 2, includes brain signal 

recording, preprocessing of signals to remove 

physiological and experimental artifacts, selecting 

high signal-to-noise ratio channels, features 

extraction, signal classification, and an application 

of classified signals to control exoskeletons and 

robotic devices. [16] [17]

 

Figure 2: BCI system to control robotic hand gripping. 
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To record brain signals available imaging 

technologies are Electroencephalography (EEG), 

fNIRS and functional Magnetic Resonance 

Imaging (fMRI)[18]. Over the last decade, fNIRS 

has gained lots of attention as a non-invasive, 

portable, low-cost, and safe, functional 

neurological imaging technology to monitor brain 

activation during a particular activity[19]. 

fNIRS technology alternates with EEG and fMRI 

as it has limited penetration into the biological 

brain tissue, lower spatial resolution (2 to 3 cm), 

better sensitivity to superficial physiological 

motion artifacts, and noise, and resistance to motor 

artifacts. The fNIRS technology uses light optical 

proprieties in the wavelength of range 600 to 1000 

nm (infrared light) to estimate regional 

hemodynamic responses (i.e., consumption of 

oxygen and increase in blood flow) in the active 

cortical area. Hemodynamic response changes are 

measured by the tissue optical absorption 

represented as signal contrast for oxygenated and 

deoxygenated hemoglobin in the fNIRS. Source-

to-detector pairs, placed on the scalp at a distance 

of 3cm between each pair used to measure 

hemodynamic response [20], which is measured 

through changes in concentration of optical 

absorber, called chromophore (i.e., HbO and HbR, 

water, fats, etc.). In the brain tissue, each of 

chromophore has an explicit extinction or 

absorption coefficient, thus the influence of each 

chromophore molecule can be measured and can 

quantify its concentration level. The most common 

tissue chromophore is oxygen-dependent, called 

hemoglobin. Changes that occur in oxy-genated 

[HbO] and deoxy-genated [HbR] hemoglobin 

concentrations through activation and deactivation 

of the brain tissues are non-invasively measured in 

real-time using the NIRS technique [21]. To 

calculate deviation in [HbO] and [HbR], which are 

features of classifying the motor activity signals, 

Modified Beer-Lambert law is used [22]. Further, 

these classified signals are used for the amputees’ 

prosthetic arm and robot control application.  

Preceding findings on techniques for signal 

acquisition and classification approaches show 

encouraging results, but the best possible results are 

required for rehabilitation applications. In Sumit 

Raurale et al. [23] a Myo-Armband with 8 active 

surface EMG sensors was used for EMG-based 

hand-gripping brain signals acquisition for 

rehabilitation application with an accuracy of 95%. 

In Gene Shuman et al. [24] motor actions of the 

hand gripping and resting data were collected for 

25-class problems using an accelerometer which 

shows an accuracy of 85%. ML classifier 

accuracies for the fNIRS-based data can be 

improved by data filtration and feature selection 

methods. In accordance with previous studies, 

fNIRS data filtration using Gaussian, Kalman, 

Butterworth, hemodynamic response filter (hrf), 

finite impulse response, and Wiener, has improved 

accuracies up to 97% [25]. Similarly, data filtration 

methods for feature selection are suggested such as 

genetic algorithms (GA) techniques for 

dimensionality reduction of the complex 

dimensional features [26], and the Z-score method 

for the channel’s selection with 88.5% accuracies 

of ML classifiers [27]. 

In Haroon Khan et al. [28] six classes of motor 

activity of finger movements were investigated 

using eight different classifiers. The features 

selected from fNIRS -based ΔHbO data were signal 

mean, Skewness, Kurtosis, peak, minimum, 

variance, median, and peak-to-peak than 60% 

accuracies were observed with Neural Networking 

(NN), Support Vector Machine (SVM), AdaBoost, 

Linear Discriminant Analysis(LDA) and Decision 

Tree (DT) algorithms for classification problem. K-

Nearest Neighbours (KNN), Random Forest, and 

XGBoost algorithms show accuracies of up to 77%. 

In Mustafa A. H. Hasan et al. [29] EEG, fNIRS, and 

hybrid EEG-fNIRS modalities were used to acquire 

motor task signals and their classification. For the 

classification of motor activity accuracy of 94.2% 

was achieved through the EEG-fNIRS hybrid, 

higher than that through EEG at 85.4% and fNIR at 

92.4%.  

The proposed study consists of two major parts. The 
first part consists of fNIRS data acquisition and the 
second part consist of features extraction, and 
feature classification to generate the command for 
robotics hand gripping control. In the second part 
by using the first part’s results robotic arm 
controlling was done to grip the pen in the right 
hand and to grip other objects like eggs, glass, etc. 

Materials and Methods 

This session will describe the procedure followed 
during experimental design, data collection, pre-
processing, and classification. 

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0308-1#auth-Gene-Shuman


Participants 

Ten healthy right-handed participants were chosen 

from the air university for hand-gripping data 

collection. The ages of the participants were 20–25 

years. The enclosure criterion for right-handed 

participant selection was that they perform their 

daily activities with their right hand and no 

neurological disorders and motor disabilities were 

reported in their medical history. Literature review 

shows the best region to acquire motor activity is 

the primary motor cortex (M1) area of the brain: 

hand-gripping activity data acquired from the left 

as well as right hemispheres [30] [31] [32]. 

A verbal agreement was taken and participants 

were given instructions before conducting the 

experiment also Air University’s Human Research 

Ethics Committee (HREC) has permitted the 

collection of data from university students. The 

trials were accomplished as per the ethical 

standards, allotted by the pronouncement of 

Helsinki [33]. 

Instrumentation and Optode Placement 

fNIRS setup with aurora software used to acquire 

data under the supervision of the head of the 

mechatronics and biomedical department and 

research group at Air University Islamabad. The 

data collection was done, using 8 ˣ 8 sensors array 

placed on the scalp surface onto the motor cortex 

area of the human. 10–20 system that creates 20 

channels was used to acquire signals, 10 channels 

were created on right hemisphere and 10 channels 

on the left hemisphere.  fNIRS optodes placement 

is shown in figure 3 a standard distance of 3 cm 

between the source and detector [34] [35]. Data 

collection was done with 760nm and 850nm IR 

wavelengths, i.e., at 10.1725 Hz sampling rate. 

 
Figure 3: Optodes placement. Red color dots are sources and blue are 

detectors. Lines between sources and detectors represent channels. 

Experimental paradigm 

Experimental data was collected in a quiet and 

comfortable room. participants were given 

instructions to prevent the motion of their heads 

and unnecessary body movements.  Initially, in 

paradigm there was 30s rest to generate a baseline, 

followed by an activity and rest cycle (10s activity 

and 10s rest) of 10 trials and informed by an alarm 

beep to start and stop the activity. An experimental 

paradigm of study is labeled in figure 4. Ignoring 

60s rest at start and end of the experiment, 

individual experiment length was 200 s.  

 
Figure 4: Experimental paradigm 

The signal acquisition, processing, and feature 

extraction from oxy-and deoxyhemoglobin 

concentration data. Optical imaging techniques 

used in fNIRS to acquire hand gripping data 760nm 

and 850 nm wavelength of light intensity values 

were used [36]. 

The attained light intensities were processed using 

nirslab to eliminate undesirable data and gaps 

grabbed during the signal acquisition experiment. 

The data filtration and hemodynamic concentration 

are also computed with the same application. 

Signal acquisition 

The fNIRS setup provided with flexible cap and 

optodes placement marks on its’ fabric. To acquire 

hand griping motor activity optodes were 

positioned on the surface of the scalp at the motor 

cortex area and the aurora software, based on 

MBLL was used. It converts the unprocessed 

signals to oxyhemoglobin and deoxyhemoglobin, 

by calculating the hemodynamic response. After 

wearing a cap with sensors and detectors on the 

head, optodes were calibrated. The connection 

between sensors and detector represents the 

channels. 20 channels were created and acquired 

raw data from all channels of subject 10 is shown 

in figure 5.

 
Figure 5: Raw signals acquired from fNIRS setup. 

Signal processing 

 To attain maximum accuracy, data filtration and 

pre-processing were done using nirsLAB. The 



physiological (0.5 Hz respiration, 1-1.5 Hz 

heartbeat, and blood pressure), and instrumental 

artifacts were eliminated through low pass filter 

with a cutoff frequency of 0.5 Hz and a 0.01 Hz 

cutoff frequency high-pass filter according to the 

literature review. By applying a bandpass filter 

resultant signal of multi-hemo state, 

oxyhemoglobin, deoxyhemoglobin, total 

hemoglobin, and oxygen saturation of channel 1 

for subject 1 are shown in figure 6. 
Multi-hemo state 

 

Oxy-hemo state 

 
Deoxy-hemo state

 

Hbtotal state 

 
Oxygen Saturation state

 
Figure 6: Processed data from nirsLAB 

 

Feature Extraction  

To improve the classifier accuracy for the hand 

gripping data the most common descriptive and 

morphological features extracted from filtered data 

are standard deviation, mean, Mean Absolute 

Deviation, maximum, minimum, signal entropy, 

and Interquartile range (IQR) (projection on a 

normally distributed density). Besides these 

statistical features data scaling features were also 

used to improve the classifier accuracy. Scaling 

features used are StandardScaler, RobustScaler, 

Quantile Transformation, Data discretization, 

PCA, and TruncatedSVD. 

Classifiers 

The machine learning classifier for the 

classification of the hand-gripping data used are  

LDA, Logistic Regression (LR), KNN, Decision 

Tree (DT), SVM and Naïve Bayes (NB). 

 

Results 
The results of this study comprise the classifier 

accuracies for the fNIRS-based hand-gripping 

data. Classifiers accuracies are given in table 2.  

The classification accuracy of the data without 

feature extraction was observed given in table 2 

and the highest accuracy observed using six 

classifiers is of the KNN and DT represented in 

Figure 7a. 

In order to improve the classifier accuracies, the 

scaling method was used as a feature and the result 

is shown in table 2 with a plot in figure 7b with 

improved accuracies of classifiers. Classifiers 

show up to 98% accuracy for deoxyhemoglobin 

concentration. The statistical features were also 

extracted from preprocessed data, plotted in figure 

7b, showing no improvement in classifier 

accuracies. 

In figure 7b comparative results are also shown for 

classifiers’ accuracies for preprocessed data, 

scaling features, and statistical features. 

Subject-wise classification results were analyzed to 

calculate the average accuracy of all subject’s data. 

The noisy signals resulting in error were refined by 

repetition of pre-processing steps.  

  
Figure 7 a: Accuracies with Preprocessed Data and Scaling Features.

  
Figure 7 b: Statistical Features and other Accuracies Comparisons

Table 1: Classifiers accuracies for preprocessed data, scaling feature, and statistical features. 

    

Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Sub.7 Sub.8 Sub.9 
Sub. 
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LR 59.70 60.39 59.60 58.13 58.47 60.08 61.17 60.06 59.60 60.50 59.77 

LDA 87.59 78.75 89.98 86.93 87.12 85.20 77.52 82.96 74.05 86.89 83.69 

KNN 98.74 98.37 99.06 97.92 98.82 98.71 99.11 98.70 97.63 98.62 98.56 



DT 97.11 96.93 98.59 97.37 98.13 97.62 98.29 97.38 96.88 97.08 97.53 

NB 81.39 63.91 75.42 69.25 78.58 68.54 58.91 70.27 69.67 83.85 71.98 

SVM 59.70 60.39 59.60 58.13 58.47 60.08 61.17 60.06 59.60 60.50 59.77 

S
ta

ti
st

ic
a
l 

F
ea

tu
re

s 

R
es

u
lt

s 
LR 59.20 82.74 93.04 87.37 89.99 89.40 79.94 84.98 76.13 90.36 83.32 

LDA 59.21 82.14 91.23 87.82 88.73 88.50 80.43 84.75 75.63 89.27 82.77 

KNN 55.47 98.44 98.53 98.38 98.79 98.56 98.71 98.77 98.86 98.68 94.32 

DT 86.93 97.07 98.32 97.07 98.43 97.43 98.26 97.56 96.15 97.73 96.49 

NB 59.53 63.72 75.70 69.77 79.43 70.42 56.60 69.80 68.77 84.35 69.8 

SVM 59.20 83.23 94.49 88.52 91.10 90.18 81.58 86.75 77.45 91.14 84.36 

F
ea

tu
re

 d
a
ta

 

R
es

u
lt

s 

LR 91.94 58.89 58.37 56.90 57.11 58.86 60.17 58.56 58.37 58.61 61.78 

LDA 89.96 60.62 72.32 64.40 62.02 67.54 61.03 59.34 65.18 62.09 66.45 

KNN 98.55 57.49 55.63 51.81 57.85 58.07 58.54 54.11 56.78 55.14 60.34 

DT 97.61 89.72 93.11 82.97 92.94 88.92 94.96 89.50 79.53 90.30 89.95 

NB 81.70 59.44 60.67 62.05 50.99 58.61 54.26 61.87 59.86 57.73 60.71 

SVM 92.85 58.89 58.37 56.90 57.11 58.86 60.17 58.56 58.37 58.91 61.89 

 

Conclusion  
In this research study, hand-gripping data was 

recorded using an fNIRS-based approach. Brain 

signals from the motor cortex region are acquired. 

nirsLAB software with bandpass filters was 

applied to filter the physiological, motion, and 

instrumental artifacts. The statistical features set to 

improve classifier accuracies were SD, mean, 

mean absolute deviation, minimum, signal entropy, 

and interquartile range (IQR) but no reasonable 

accuracy improvements were observed. The 

scaling features were also used with valuable 

increments in classifiers’ accuracies. LR, LDA, 

KNN, DT, SVM, and NB classifiers were used to 

achieve maximal accuracy. The highest accuracy 

with individual subject data was noted as 98%. In 

the future, the presented work can be possibly 

extended for accuracy enhancement using deep 

learning neural networks along with more hand 

gestures to control the 3D motion of the robotic 

arm. Controlling robotic arm motions by the 

implementation of generated commands in real 

time is another focus for future work. 
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