F $\frac{\text { EasyChair Preprint }}{\text { № } 10824}$

Lean on Goldbach's Conjecture

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Lean on Goldbach's conjecture

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Research Department, NataSquad, 10 rue de la Paix, Paris, 75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

Goldbach's conjecture is one of the most difficult unsolved problems in mathematics. This states that every even natural number greater than 2 is the sum of two prime numbers. The Goldbach's conjecture has been verified for every even number $N \leq 4 \cdot \mathbf{1 0}^{18}$. In this note, we prove that for every even number $\boldsymbol{N} \geq \mathbf{4} \cdot \mathbf{1 0}^{\mathbf{1 8}}$, if there is a prime \boldsymbol{p} and a natural number m such that $n<p<N-1, p+m=N$, $\frac{N}{\sigma(m)}+n^{0.889}+1+\frac{m-1}{2} \geq n$ and p is coprime with m, then m is necessarily a prime number when $N=2 \cdot \boldsymbol{n}$ and $\boldsymbol{\sigma}(\boldsymbol{m})$ is the sum-of-divisors function of m. The previous inequality $\frac{N}{\sigma(m)}+n^{0.889}+1+\frac{m-1}{2} \geq n$ holds whenever $\frac{N}{e^{\gamma} \cdot m \cdot \log \log m}+n^{0.889}+1+\frac{m-1}{2} \geq n$ also holds and $\boldsymbol{m} \geq \mathbf{1 1}$ is an odd number, where $\gamma \approx \mathbf{0 . 5 7 7 2 1}$ is the Euler-Mascheroni constant and \log is the natural logarithm. We use a Lean Programming Language Code to show that this inequality always holds for some natural number $m \geq 11$ and every even number $N>4 \cdot \mathbf{1 0}^{18}$. In this way, we prove that the Goldbach's conjecture is true using the artificial intelligence tools of the math library of Lean 4 as a proof assistant.

Keywords: Goldbach's conjecture, Prime numbers, Sum-of-divisors function, Euler's totient function, Proof assistants

MSC Classification: 11A41, 11A25

> Goldbach's conjecture

1 Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n

$$
\sum_{d \mid n} d,
$$

where $d \mid n$ means the integer d divides n. Define $s(n)$ as $\frac{\sigma(n)}{n}$. In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted $\nu_{p}(n)$. Equivalently, $\nu_{p}(n)$ is the exponent to which p appears in the prime factorization of n. We can state the sum-of-divisors function of n as

$$
\sigma(n)=\prod_{p \mid n} \frac{p^{\nu_{p}(n)+1}-1}{p-1}
$$

with the product extending over all prime numbers p which divide n. In addition, the well-known Euler's totient function $\varphi(n)$ can be formulated as

$$
\varphi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

The Goldbach's conjecture has been verified for every even number $N \leq 4$. 10^{18} [1]. In mathematics, two integers a and b are coprime, if the only positive integer that is a divisor of both of them is 1 . Putting all together yields the proof of the main theorem.

Theorem 1 For every even number $N \geq 4 \cdot 10^{18}$, if there is a prime p and a natural number m such that $n<p<N-1, p+m=N, \frac{N}{\sigma(m)}+n^{0.889}+1+\frac{m-1}{2} \geq n$ and p is coprime with m, then m is necessarily a prime number when $N=2 \cdot n$. The previous inequality $\frac{N}{\sigma(m)}+n^{0.889}+1+\frac{m-1}{2} \geq n$ holds whenever $\frac{N}{e^{\gamma} \cdot m \cdot \log \log m}+n^{0.889}+1+$ $\frac{m-1}{2} \geq n$ also holds and $m \geq 11$ is an odd number, where $\gamma \approx 0.57721$ is the EulerMascheroni constant and \log is the natural logarithm. Using this last inequality and the artificial intelligence tools of the math library of Lean 4 as a proof assistant, we prove that the Goldbach's conjecture is true.

2 Proof of Theorem 1

Proof Suppose that there is an even number $N \geq 4 \cdot 10^{18}$ which is not a sum of two distinct prime numbers. We consider all the pairs of positive integers ($n-k, n+k$) where $n=\frac{N}{2}, k<n-1$ is a natural number, $n+k$ and $n-k$ are coprime integers and $n+k$ is prime. By definition of the functions $\sigma(x)$ and $\varphi(x)$, we know that

$$
2 \cdot N=\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

when $n-k$ is also prime. We notice that

$$
2 \cdot N<\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

Goldbach's conjecture

when $n-k$ is not a prime. Certainly, we see that $(n-k)+(n+k)=N$ and thus, the inequality

$$
2 \cdot((n-k)+(n+k))+\varphi((n-k) \cdot(n+k))<\sigma((n-k) \cdot(n+k))
$$

holds when $n-k$ is not a prime. That is equivalent to

$$
2 \cdot((n-k)+(n+k))+\varphi(n-k) \cdot \varphi(n+k)<\sigma(n-k) \cdot \sigma(n+k)
$$

since the functions $\sigma(x)$ and $\varphi(x)$ are multiplicative. Let's divide both sides by ($n-$ $k) \cdot(n+k)$ to obtain that

$$
2 \cdot\left(\frac{(n-k)+(n+k)}{(n-k) \cdot(n+k)}\right)+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k}<s(n-k) \cdot s(n+k) .
$$

We know that

$$
s(n-k) \cdot s(n+k)>1
$$

since $s(m)>1$ for every natural number $m>1$ [2]. Moreover, we could see that

$$
2 \cdot\left(\frac{(n-k)+(n+k)}{(n-k) \cdot(n+k)}\right)=\frac{2}{n+k}+\frac{2}{n-k}
$$

and therefore,

$$
1>\frac{2}{n+k}+\frac{2}{n-k}+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k} .
$$

It is enough to see that

$$
1>\frac{2}{2 \cdot 10^{18}}+\frac{2}{9}+\frac{2}{3} \geq \frac{2}{n+k}+\frac{2}{n-k}+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k}
$$

when $n+k$ is prime and $n-k$ is composite for $N \geq 4 \cdot 10^{18}$. Indeed, when $n+k$ is prime and $n-k$ is composite, then $n+k>2 \cdot 10^{18}$ and $n-k \geq 9$ for $N \geq 4 \cdot 10^{18}$. Under our assumption, all these pairs of positive integers $(n-k, n+k)$ imply that

$$
2 \cdot N<\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

holds whenever $n=\frac{N}{2}, k<n-1$ is a natural number, $n+k$ and $n-k$ are coprime integers and $n+k$ is prime. Hence, we have

$$
N<\frac{1}{2} \cdot(\sigma(n-k) \cdot \sigma(n+k)-\varphi(n-k) \cdot \varphi(n+k)) .
$$

Since $n+k$ is prime, then

$$
\begin{aligned}
\frac{\varphi(n+k)}{1+n^{0.889}} & =\frac{n+k-1}{1+n^{0.889}} \\
& \geq \frac{n}{1+n^{0.889}} \\
& \geq 2 \cdot\left(e^{\gamma} \cdot \log \log (n-1)+\frac{2.5}{\log \log (n-1)}\right)^{2} \\
& \geq 2 \cdot\left(e^{\gamma} \cdot \log \log (n-k)+\frac{2.5}{\log \log (n-k)}\right)^{2} \\
& >2 \cdot\left(\frac{n-k}{\varphi(n-k)}\right)^{2} \\
& =\frac{n-k}{\varphi(n-k)} \cdot 2 \cdot \prod_{q \mid(n-k)}\left(\frac{q}{q-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& >s(n-k) \cdot 2 \cdot \prod_{q \mid(n-k)}\left(\frac{q}{q-1}\right) \\
& =\frac{2 \cdot \sigma(n-k)}{(n-k) \cdot \prod_{q \mid(n-k)}\left(1-\frac{1}{q}\right)} \\
& =\frac{2 \cdot \sigma(n-k)}{\varphi(n-k)}
\end{aligned}
$$

when we know that $\frac{b}{\varphi(b)}<e^{\gamma} \cdot \log \log (b)+\frac{2.5}{\log \log (b)}$ holds for every odd number $b \geq 3$ [3]. Moreover, we have

$$
\frac{n}{1+n^{0.889}} \geq 2 \cdot\left(e^{\gamma} \cdot \log \log (n-1)+\frac{2.5}{\log \log (n-1)}\right)^{2}
$$

for every natural number $n \geq 2 \cdot 10^{18}$ under the supposition that $N \geq 4 \cdot 10^{18}$. Certainly, the function

$$
f(x)=\frac{x}{1+x^{0.889}}-2 \cdot\left(e^{\gamma} \cdot \log \log (x-1)+\frac{2.5}{\log \log (x-1)}\right)^{2}
$$

is strictly increasing and positive for every real number $x \geq 2 \cdot 10^{18}$ because of its derivative is greater than 0 for all $x \geq 2 \cdot 10^{18}$ and it is positive in the value of $2 \cdot 10^{18}$. Furthermore, it is known that $\prod_{q \mid b}\left(\frac{q}{q-1}\right)=\frac{b}{\varphi(b)}>s(b)=\frac{\sigma(b)}{b}$ for every natural number $b \geq 2$ [2]. Finally, we would have that

$$
-\frac{1}{2} \cdot \varphi(n-k) \cdot \varphi(n+k)<-\sigma(n-k) \cdot\left(1+n^{0.889}\right)
$$

and so,

$$
N<\frac{1}{2} \cdot \sigma(n-k) \cdot \sigma(n+k)-\sigma(n-k) \cdot\left(1+n^{0.889}\right)
$$

We would have

$$
\frac{N}{\sigma(n-k)}+n^{0.889}+1<\frac{\sigma(n+k)}{2}
$$

which is

$$
\frac{N}{\sigma(n-k)}+n^{0.889}+1+\frac{n-k-1}{2}<n .
$$

In this way, we obtain a contradiction when we assume that $\frac{N}{\sigma(n-k)}+n^{0.889}+1+$ $\frac{n-k-1}{2} \geq n$. By reductio ad absurdum, the natural number $n-k$ is necessarily prime when $\frac{N}{\sigma(n-k)}+n^{0.889}+1+\frac{n-k-1}{2} \geq n$. Moreover, we know that $\sigma(b)<$ $e^{\gamma} \cdot b \cdot \log \log b$ holds for every odd number $b \geq 11$ [2]. Consequently, the inequality $\frac{N}{\sigma(n-k)}+n^{0.889}+1+\frac{n-k-1}{2} \geq n$ holds whenever $\frac{N}{e^{\gamma} \cdot(n-k) \cdot \log \log (n-k)}+n^{0.889}+$ $1+\frac{n-k-1}{2} \geq n$ also holds and $(n-k) \geq 11$ is an odd number. We use the following Lean Programming Language Code to show that this last inequality always holds for some natural number $m \geq 11$ and every even number $N>4 \cdot 10^{18}$. Certainly, we only need to check using the constant $\frac{2}{e^{\gamma}}>1.1229$ and starting for the variable bound $=2 \cdot 10^{18}=2000000000000000000$ whether the proposition

$$
\forall n \in \mathbb{N}, \exists k \in \mathbb{N}:(n>\text { bound }) \rightarrow(n-k \geq 11 \wedge H(n, k)>=0 \wedge(n+k) \text { is Prime })
$$

is true when

$$
H(n, k)=1.1229 \cdot \frac{n}{(n-k) \cdot \log \log (n-k)}+n^{0.889}+1+\frac{n-k-1}{2}-n
$$

It is fact that if $H(n, k)>=0$ holds and $n+k$ is a prime, then we obtain that necessarily $n-k$ is also prime when $n-k \geq 11$.

Goldbach's conjecture

```
import Mathlib.Data.Nat.Prime
import Mathlib.Data.Real.Basic
import Mathlib.Analysis.SpecialFunctions.Pow.Real
import Mathlib.Analysis.SpecialFunctions.Log.Basic
import Mathlib.Data.Bool.Basic
/-- Lean proof. -/
structure Proof (p : Prop) : Type where
    proof : p
/-- Goldbach function. -/
noncomputable def H (n k : \mathbb{R}): \mathbb{R}:=
    let m: \mathbb{R := n - k}
    let myexp: \mathbb{R := n^0.889}
    let myconst: \mathbb{R := 1.1229}
    let mylog: \mathbb{R := Real.log m}
    let myloglog: \mathbb{R := Real.log mylog}
    let mydivisor: \mathbb{R := myloglog/myconst}
    let myfraction: \mathbb{R := n/m}
    let value: }\mathbb{R}:= myfraction/mydivisor + myexp + (m - 1)/2 + 1.0 - n
    value
/-- Goldbach conjecture. -/
theorem Goldbach_Proof: Type :=
    let bound: N := 2000000000000000000
```



```
        && Nat.Prime (n + k)))
#check Goldbach_Proof
```

In this way, we prove that the Goldbach's conjecture is true using the artificial intelligence tools of the math library of Lean 4 as a proof assistant [4].

References

[1] T.O. Silva. Goldbach conjecture verification. http://sweet.ua.pt/tos/ goldbach.html. Accessed 27 December 2022
[2] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357-372 (2007). https://doi.org/10.5802/jtnb. 591
[3] J.B. Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64-94 (1962). https://doi.org/10.1215/ijm/1255631807
[4] L.d. Moura, S. Ullrich, in Automated Deduction-CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings 28 (Springer, 2021), pp. 625-635

