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Abstract—Natural Language Understanding (NLU) is a core
task when building conversational agents, fulfilling the objectives
of understanding the user’s goal and detecting any valuable
information regarding it. NLU implies Intent Detection and Slot
Filling, to semantically parse the user’s utterance. One caveat
when training a Deep Learning model for domain-specific NLU
is the lack of specific datasets, which leads to poorly performing
models. To overcome this, we experiment with fine-tuning BERT
to jointly detect the user’s intent and the related slots, using a
custom-generated dataset built around an organization-specific
knowledge base. Our results show that well-constructed datasets
lead to high detection performances and the resulting model has
the potential to enhance a future task-oriented dialogue system.

Index Terms—natural language understanding, intent detec-
tion, slot filling, BERT, task oriented dialogue system

I. INTRODUCTION

Artificial Intelligence has become a hot topic in recent
years, and the ability to understand natural language is a true
requirement for such systems [1]. Conversational agents try
to implement this ability, in the form of chatbots or task-
oriented dialogue systems. Nonetheless, each agent solves
the task of understanding the user’s utterance by enhancing
the Natural Language Understanding module. NLU covers
Intent Detection (ID) and Slot Filling (SF); the former deals
with recognizing the user’s goal from a sentence, while the
latter identifies key information accompanying it. Treated as
two separate goals, recent literature presents neural networks
that jointly solve them, as they are highly correlated and
tied [2]. Recent advances [3]–[7] make use of transfer learning
to construct ID and SF classifiers starting from pre-trained
models such us BERT [8], T5 [9], or GPT-3 [10].

Task-oriented dialogue (TOD) systems help users to solve
particular tasks related to a specific context [11], [12]. That
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means tailoring all constructed models for the domain knowl-
edge describing that context. Our long-term goal is to construct
a TOD system for automating tasks within a business organi-
zation characterized by a knowledge base (KB), persisted in
a machine-readable format. Therefore, we can leverage this
knowledge base to produce the requested dataset for training
the NLU component of a future TOD system. Initially, our
TOD system [13] provides support with the essential Create-
Retrieve-Update-Delete (CRUD) procedures for the manage-
ment of the organizational KB. Therefore, the NLU module
needs to identify the intents related to those procedures and
the associated slots, strongly tied with the specific instances
stored within the organizational KB.

Our work focuses on fine-tuning a BERT instance to jointly
detect intent and associated slots, trained using a custom-
generated dataset for recognizing domain-specific actions.
With this approach, we can develop a TOD system that is
able to understand the needs of a company, without giving
away private data to third-party dialogue systems (such as
ChatGPT), and comply with GDPR regulations. We assess the
quality of the simple architecture built on top of BERT by first
separately fine-tuning it on two popular datasets, ATIS [14]
and SNIPS [15], and compare results with other state-of-the-
art BERT models for NLU. The custom-generated dataset
was built using a dialogue simulator [13], that exploits a
given organizational knowledge base and generates dialogues
between two machines, simulating human-like discussions
regarding the management of the KB. Results show that
minimal adjustments have to be done to pre-trained models
like BERT, if the given dataset is properly fitting the desired
domain, leading to high model performance.

The paper is structured as follows. Section II presents
related work that influenced our experimental research. Sec-
tion III shows our methodology, including the dataset, model’s
architecture, performance evaluation procedure and metrics.
Section IV discusses the obtained results and sectionV con-
cludes the paper.

II. RELATED WORK

ID can be thought of as a sentence classification problem,
while SF is considered a sequence labeling task. Let’s analyze
the user’s utterance “Insert a project with code as 123 and



class as Python”. A NLU model would consider “insert” as
the intention, while “code = 123” and “class = Python” are
the related slots. Usually, all the detectible intents and slots
are defined before constructing the classification models, and
they are fit for the target domain of the NLP problem under
investigation.

Initially, ID and SF were not solved together. Ravuri and
Stolcke [16] used RNN and LSTM models to detect user’s
intention, while Mesnil et al. [17] implemented and compared
a variety of RNN architectures, including Elman and Jordan
type, to detect slots. Later, the two tasks were combined to
exploit their connections. Hakkani-Tur et al. [18] leveraged the
power of combining bidirectional RNN with LSTM networks,
to solve both tasks at the same time. Another interesting
approach was introduced by Zhang et al. [19], who introduces
the Graph LSTM to tackle the shortcomings of sequential
models and exploit the correlation between slots and intents.

Recently, pre-trained DL models helped researchers to
achieve new state-of-the-art results, by using the concept of
transfer learning. This means one does not need to start
from a vanilla model but can inherit the already learned
knowledge and fine-tune it for its desired task. Examples of
popular pre-trained models are BERT [8], T5 [9], or GPT-
3 [10]. Other studied paradigms are cross-lingual [20], or low-
resource NLU [21], for transferring knowledge to low-resource
languages.

BERT [8] is a popular pre-trained model among researchers,
therefore a large number of NLU versions were fine-tuned.
Chen et al. [3] only add a softmax layer on top of BERT to
predict intent and slots, but prove that it is enough to achieve
great results on datasets such as ATIS or SNIPS. Castellucci
et al. [4] attach two layers on top of BERT, one for intent
detection and the other for slot filling, but design a single
loss function for both tasks. Also, they extend their research
by generating an Italian dataset and prove that training a
model over multiple languages, even with noticeable syntax
differences, can increase the overall performance of a model.

Zhang et al. [5] propose an encoder-decoder framework,
leveraging BERT as an encoder and implementing a two-stage
decoding process for ID and SF. An interesting mechanism is
the insertion of the intent encoding into the encodings of each
associated slot, to increase the detection of intent-specific slots
and leave out the unimportant ones.

Krone et al. [6] propose a few-shot joint learning task, to
improve the performance on labels not seen at training time.
They prove that their algorithm, together with a pre-trained
network such as BERT, is complementary and yields further
gains. Qin et al. [7] modify the standard attention mechanism
from vanilla transformers with a co-interactive module that
considers the bidirectional connection between intents and
slots, rather than the classical approach which focuses only
on the intents-slots direction. Additionally, they connect their
approach with BERT, proving that pre-trained models can
increase the final performances of a system.

III. METHODOLOGY

In this section, we introduce the architecture of our model,
the datasets, and the training and testing procedures. The
code1 was written in Python 3.10 and computational resources
were provided by high-performance computational facility
of the Babeş-Bolyai University [22]. The tokenizer and the
base BERT transformer are loaded using the Hugging Face
libraries, while the joint NLU component is described using
the Tensorflow library. We followed the suggestions of Chen
et al. [3] and Shawon Ashraf2, who implemented their models
using Tensorflow.

A. Datasets

The performance of a deep learning model strongly depends
on the quality of the datasets used for training. Therefore,
to increase the model’s capacity of recognizing entities of
interest, one needs to use specific data, well covering the
search space of the target problem. In general, public datasets
are tailored for solving general problems, but for specific tasks,
such as the one introduced by this paper, those datasets are of
little help.

To accomplish our needs, i.e. creating a dataset with con-
versations related to our specific concepts and instances within
our organization, we designed a Machine-to-Machine (M2M)
conversation generator with the overall architecture presented
in fig. 1. The system consists of a rule-based TOD system
fully described in [13], an user simulator and a prompt.

Fig. 1. M2M conversation generator system

The system generates conversations about specific con-
cepts from a provided ontology, growing an organizational
knowledge base (KB) related to the concepts supplied in
the ontology. The final goal of each conversation is to per-
form CRUD (Create-Retrieve-Update-Delete) operations on
the organizational KB, thus collecting important information

1Code and data are available at https://github.com/IonutIga/
Domain-Specific-NLU-BERT

2https://github.com/ShawonAshraf/nlu-jointbert-dl2021



Fig. 2. The input ontology

regarding the target organization, meantime generating the
properly annotated dataset for the NLP tasks, in our case,
intent detection and slot filling.

The starting ontology is presented in Fig. 2. It describes
three concepts (Project, Status, and Employee) and the rela-
tionships between them or other literal values such as strings
or integers. Each relationship represents a parameter assigned
to a concept. In each conversation the user simulator asks
the TOD system to perform one or more CRUD operations
over the organizational KB and if the requested operation
is confirmed by the system, it is persisted as valid in the
organizational KB. Each user utterance could request one
of the 13 intents, with a total of 27 slots. User intents
recognized the by TOD system helps fulfilling specific CRUD
procedures on the organizational KB (like insert, select, delete
or update), discard the value of a parameter (remove) confirm
or reject a given response (agree and disagree) or maintain
the conversation flow (intents hello, goodbye and thank). The
TOD system responds with 27 actions, such that to maintain
a natural conversation flow. All user intents and TOD system
actions are described in detail in [13]).

Generated data is presented in the JSON format depicted
in Fig.3. Each phrase has a unique ID and the key elements
stored are the user utterance, the intent of the phrase, important
slots, and their positions.

Fig. 3. Generated dataset format

We can generate datasets with a variable number of conver-
sations, thus, we generated multiple datasets with a number of
conversations ranging from 625 to 5000, equivalent to 2500 to
17500 user utterances (phrases) per dataset, letting us select

the best dataset alternative considering the tradeoff between
training performance and training time.

Table I presents the statistics of the generated datasets (GD)
used for model training and performance assessment. In each
case, the validation procedure used for model fine-tuning was
the hold-out procedure with 20% of the training data kept
for validation. For the testing dataset we selected about 1000
conversations or a number of conversations no more that 25%
of the training data.

TABLE I
STATISTICS REGARDING THE GENERATED DATASETS

Statistics / Dataset GD1 GD2 GD3 GD4
No of conversations 625 1250 3250 5000

No of user utterances (phrases) 2458 4677 9750 17515
Training dataset (no. phrases) 2000 3800 8750 16500

Test dataset (no. phrases) 458 877 1000 1015

B. The model’s architecture
The architecture of our model adapts the one supplied by

Castellucci et al. [4] to our specific ID and SF problems with
13 intents and 27 slots. It starts from a vanilla version of
BERT, with two added layers on top of it. One dense layer is
used for deciding about the intent, while another dense layer
detects important slots associated with it. Fig. 4 depicts the
model’s architecture.

Text processing starts by tokenizing the input with a BERT-
specific tokenizer, that uses the sub-word technique. Next,
the tokens are fed into a pre-trained instance of BERT. A
dropout layer with a rate of 0.1 is added in order to prevent
overfitting and increase the overall performance of the system.
The last step is predicting the intent and slots of the input
utterance. Both classifiers contain a number of perceptrons
equal to the number of intents and slots, respectively. Finally,
the model outputs logit values, in the form of tensors. For
intent detection, the output tensor contains 13 logit values.
For slot filling, the model outputs a tensor with 27 logit
values for each token in the sentence. To predict the final
label, we choose the highest logit from each tensor, get its
ID and convert it into natural language using a dictionary of
intents/slots.

The optimizer selected for the perceptrons is Adam, with a
learning rate of 3e−5, and ϵ = 1e−8, to avoid weights division



Fig. 4. Model’s architecture

by zero. Categorical cross-entropy is selected as the loss
function for each task. The metric observed during training
is sparse categorical accuracy. The batch size is 32 and the
number of epochs is set to 4, as decided from the experiments
performed in subsection III-D. All parameter values are set
to respect the guidelines from Devlin et al. [8] when dealing
with fine-tuning operations of BERT for NLP tasks.

C. Model’s performance evaluation

The main metrics that assess the quality of a model are
intent accuracy, slot F1 score, and overall accuracy. The intent
accuracy is a simple metric that tells us the percentage of
times a model predicted the right intent, while the slot F1
score assures that the model keeps a high balance between
precision and recall, to prevent wrong label predictions from
propagating to further tasks. The overall accuracy measures
whether both intent and slots were correctly predicted in one
utterance, which is the desired behavior of a model.

D. Model’s baseline performance

The first step of the training process is to assess the
model’s baseline capacity and determine the suitability of
the selected architecture for our specific ID and SF tasks.
Therefore, we have separately fine-tuned our BERT-based
architecture presented in subsection III-B on ATIS [14] and
SNIPS [15] datasets, comparing the results with other state-
of-the-art BERT models.

ATIS consists of transcripts of audio recordings between
humans and some automated airline travel inquiry systems.
The training dataset contains 4478 utterances, while the test
set has 893. It has 120 slot labels and 21 intent types in
the training data. SNIPS includes phrases generated by the
interaction between humans and a smart assistant that can
execute a variety of desired tasks. The training set has 13084
phrases, while the test set consists of 700. There are 72 slot
labels and 7 intent types.

The training procedure for ATIS and SNIPS is not straight-
forward as our data format is JSON, while ATIS and SNIPS
data are texts. We have converted the ATIS and SNIPS datasets
in out JSON format, preserving all important data and labeling.
We run the training procedure with a number of epochs varying
from 2 to 32.

Table II presents the performance of our fine-tuned BERT-
based architecture for intent detection and slot filling on ATIS
and SNIPS datasets for various number of epochs, together
with the necessary time to train up to a given epoch. On the
last column of table II we report a training efficiency measure
computed according with eq. 1: the additional time needed
to complete the training reported to the performance gain,
measured with the help of the overall accuracy.

RT =
Tx − T2

OAx −OA2
(1)

where x ∈ [4, 8, 16, 32] is the number of epochs, Tx stands
for the training time of the model fine-tuned for x epochs and
OAx represents the overall accuracy of that model.

On the test sets, compared to the 2 epochs variant, results
have shown that using 4 epochs has the best time-to-train /
overall accuracy increase ratio among all variants. On ATIS,
the overall accuracy increased by 16.23%, needing only 12.8
seconds per gained percentage. Similarly, on SNIPS, the
overall accuracy raised by 8%, leading to 30.4 seconds per
gained percentage, 6 seconds faster than the 8 epochs variant.
Although a higher number of epochs generated higher values
for the overall accuracy, in order to prevent overfitting and
waste of resources, we have concluded that it is best to keep
the number of epochs equal to 4, which also follows the
guidelines from BERT [8].

Comparing our results with the ones reported in the liter-
ature, we notice that our model yields good results on the
individual tasks, but lower overall accuracy compared to the
other ones. Nonetheless, as ATIS and SNIPS are more complex
datasets than our custom-generated ones, our proposed archi-
tecture seems promising to solve our specific intent detection
and slot-filling tasks.

IV. RESULTS

In this section we present the results of the model fine-tuned
on the generated datasets presented in subsection III-A, with
the above-described methodology.

First, we fine-tuned our architecture for the generated
datasets described in table I. Results are presented in table III.

Training happens surprisingly quickly, as for a dataset of
7000 instances (GD3) it took 11 minutes and 48 seconds to
finish the 4 training epochs. Increasing the number of instances
in the dataset leads to a more than proportional increase in the
training time. Models trained on a large enough number of
conversations are good candidates for selection, as the intent
and slot detection accuracy surpasses 99%. On the test set,
all models reached 100% intent detection, while the slot F1
score ranged between 88%-99.6%. Although all models seem
powerful enough to complete the task, the overall accuracy is



TABLE II
JOINT MODEL PERFORMANCE ON INTENT DETECTION AND SLOT FILLING

FOR BERT-BASED MODELS

Dataset Epochs Training
time (s)

Slot F1 Intent
Acc

Overall
Acc

RT (s./%)

ATIS 2 175 87.42 95.97 54.54 -
4 384 92.63 97.10 70.77 12.88
8 515 94.59 97.08 78.61 14.13

16 979 95.13 96.97 82.41 28.85
32 1909 95.76 97.42 85.56 55.90

BERT-SLU [5] 99.76 98.75 93.89
Qin et al. [7] 98.00 96.10 88.80

Joint BERT [3] 97.50 96.10 88.20
BERT-Joint [4] 97.80 95.70 88.20

SNIPS 2 302 89.00 97.28 61.42 -
4 545 91.26 97.71 69.42 30.38
8 1032 93.34 98.00 74.71 36.64

16 1982 93.74 97.85 77.71 58.32
32 3900 93.20 98.29 77.50 119.28

BERT-SLU [5] 98.96 98.78 96.76
Qin et al. [7] 98.80 97.10 93.10

Joint BERT [3] 98.60 97.00 92.80
BERT-Joint [4] 99.00 96.20 91.60

TABLE III
PERFORMANCE METRICS FOR MODELS FINE-TUNED ON GENERATED

DATASETS WITH VARIOUS NUMBER OF CONVERSATIONS

Metrics / Training Dataset GD1 GD2 GD3 GD4
Training intent accuracy 98.59 99.47 99.83 99.98

Validation intent accuracy 98.64 99.58 99.83 99.99
Training slot accuracy 100 99.97 100 100

Validation slot accuracy 99.75 100 100 100
Time to train (min.sec) 2.37 3.54 11.48 20.30

Test intent accuracy 100 100 100 100
Test overall slot F1 score 88.78 96.00 98.72 99.58

Test overall accuracy 80.40 90.99 96.80 99.40

the decisive metric for choosing the best model out of them.
The GD1 model only has around 80% overall accuracy, which
is the lowest among all. Models trained on GD3 and GD4 took
significantly more time to train than the first one, but their
overall accuracy is high enough to compensate for it. Finally,
between the last two models, a comparison of the metrics for
each slot was used to determine the best model. GD4 model
has two important advantages over GD3 model: it finds slots
that the latter one was not able to (ex. remove param) and
does not confuse new values and old values slots between
themselves. Therefore, the GD4 model was chosen as the
best-performing one. This proves that a powerful pre-trained
model, such as BERT, can be fine-tuned with a well-designed
dataset to obtain excellent results, leading to the possibility of
integrating it into a conversational agent’s architecture.

Table IV presents an extended analysis of the performance
achieved by the GD4 model for each slot. Each line of the table
presents the performance for a given slot of the user utterance.
new values refer to novel values proposed by the user for a
given slot and old values refer to slot values corresponding
either to instances already existing in the organizational KB
or values that the user tries to search (or retrieve) from the
existing KB.

Within our general TOD architecture, correctly detecting the

TABLE IV
TEST DATASET PERFORMANCE METRICS FOR EACH SLOT

Slot / Metric Precision Recall F1 score
entity 100 100 100

procedure 100 100 100
parameter to remove 100 100 100

hasClass 100 99.81 99.91
hasName 100 100 100
hasCode 99.84 100 99.92
hasStatus 100 100 100

hasManager 100 100 100
hasRole 100 100 100

new values hasClass 100 100 100
new values hasName 100 99.11 99.55
new values hasCode 100 100 100
new values hasStatus 98.94 100 99.47

new values hasManager 99.77 99.77 99.77
new values hasRole 98.51 100 99.25
old values hasClass 100 100 100
old values hasName 97.33 100 98.65
old values hasCode 100 100 100
old values hasStatus 100 100 100

old values hasManager 100 98.08 99.03
old values hasRole 100 96.00 97.96

entity type and the procedure is crucial. These let the system
properly locate the corresponding relevant information in the
KB that accompanies our TOD system. We indeed achieve
this, as performance metrics for entity and procedure are equal
to 100%.

The model is able to successfully detect the parameter slots
(hasClass, hasCode, hasName, hasManager, has Status, and
hasRole - see Fig. 2), crucial for the correct insertion / retrieval
of instances in the organizational knowledge base.

The new values and old values slots were more difficult to
detect. These slots may appear only in update requests, where
the user wants to update existing instances that fit certain
filters (hence, old values) with new information for some slots
(hence, new values). The property of slot value being new or
old is differentiated by the presence of other words in the
utterance, thus the model has a harder job in identifying those
values, and this ends in a lower performance. Although this
problem, the GD4 model was the only one to successfully
identify both types of slots, without any confusion between
them, leading to high performance metrics. This highlights
once again that a simple, yet powerful architecture using a pre-
trained neural network such as BERT, together with enough,
domain-related data can solve the task of Natural Language
Understanding.

V. CONCLUSION

In this paper, we have successfully proven that a popular
pre-trained model such as BERT, with minimal architectural
additions, can solve the task of NLU on a custom-generated
dataset. We have tested the proposed architecture on well-
known datasets for intent detection and slot-filling tasks, such
as ATIS and SNIPS, to establish a baseline verification of
the architectural effectiveness. The in-depth analysis of the
performance metrics for each slot in the test split has shown



that the model can yield high performance, when sufficient
number of instances were seen during training.

Future work will focus on better-generated datasets, that
may contain several variations of phrases to include more
instances for each slot. Finally, the model will be included
in a task-oriented dialogue system, to solve the NLU task and
we will test its performance in real-life scenarios.
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