
EasyChair Preprint
№ 9341

A Software Framework for the Development of
Collaborative Robotic Surgery : Robotics
Toolkit for Collaborative Work.

Gunjan Bhandari, Sanskar Ghosh, Dimpal Saini and Anmol Jain

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 20, 2022

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A software framework for the
development of collaborative robotic

surgery : Robotics Toolkit for
Collaborative Work.

Gunjan Bhandari
Computer Science And Technology

Quantum University ,Roorkee
Saharanpur,Uttar Pradesh
Bhgunjan.05@gmail.com

Anmol Jain
Computer Science And Technology

Quantum University ,Roorkee
Uttar Pradesh

anmoljainshab@gmail.com

Sanskar Ghosh
Computer Science And Technology

Quantum University ,Roorkee
Patna,Bihar

prince990ghosh@gmail.com

Dimpal Saini
Computer Science And Technology

Quantum University ,Roorkee
Saharanpur,Uttar Pradesh

Sainidimpal760@gmail.com

Abstract—In the past few decades, robot-assisted minimally
invasive surgery has made a significant impact in operating
rooms due to its high dexterity, small tool size, and impact on
the adoption of minimally invasive techniques. Medical robotics
endeavors at numerous academic institutions and leading
surgical robot companies have contributed to the development
of intelligence and different levels of autonomy in surgical
robots in recent years. To accelerate interaction within the
research community and prevent repeated development, we
propose the Collaborative Robotics Toolkit (CRTK), a common
API for the RAVEN-II and da Vinci Research Kit (dVRK),
which are both open surgical robot platforms installed in over
40 institutions globally. Other robots and devices have been
added to CRTK, including industrial robots and simulations of
robotic systems. In areas such as semiautonomous teleoperation
and medical robotics, this API provides a community software
infrastructure that can be used for research and education. The
purpose of this paper is to present the concepts, design details,
and integration of CRTK with physical robot systems and
simulation platforms.

Keywords—dVRK, CRTK, AMBF, MTMs, PSM

I. INTRODUCTION (BACKGROUND)
Telerobotics and cooperatively-controlled robots both

have compelling applications in surgery. In telerobotic
systems, one or more robots are controlled by a master console
by the surgeon. These systems can (1) For minimally invasive
surgery, provide high dexterity through small incisions.(2)
When acting on a patient while they are exposed to ionizing
radiation, such as when performing computed tomography
(CT) or x-ray imaging,(3) An MRI scanner's bore, for
example, enables it to fit into confined spaces (4) Remote
operations are performed by expert surgeons. As a result of
cooperatively-controlled robots, the surgeon can share control
of the surgical instrument with the robot. An embedded force
sensor is usually used to measure the surgeon's intent to guide
the surgical instrument. While many search robots and
commercial surgery systems have been put in place to provide
one or more of the greater than the advantages, to date, the da
Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale,
CA) (1) has achieved its greatest success with more than 5,000
robotic systems installed in hospitals worldwide and with

more than 6 million surgical procedures executed. The da
Vinci, however, only provides direct teleoperation , when a
human surgeon individually controls the action of the robots
on the patient side, even if the semi-independent teleoperation,
in particular prudential supervision, shared supervision, and
other co-robotic methods, has been active during decades.
Furthermore, the da Vinci does not currently support
teleoperation across large distances, though that capability
was demonstrated in 2001 with a competing system(2) In the
field of research, however, there is a trend towards the
integration of semi-autonomous staff trained via device or
Learning enhancement (ML/RL) in the surgical workflow.
Some notable research in this field include autonomic
algorithms for soft tissue suture.(3) a computerized approach
to sinus surgery using computerized navigational
techniques.(4) characterizing and automating soft tissue
suture with a curved needle guide.(5) automation
reduction/reduction of sub-tasks while utilizing
apprenticeship ascertaining.(6) Additionally,(7) offers a
holistic approach simplify the positioning of the handler
before surgical interplay,(8) has demonstrated surgical
simulation remote manipulator designed for cardiac
surgery.(9) An infrastructure trainer is introduced with
controllable domination and aggressiveness factors for the
automation of repetitive surgical tasks. Finally, a common
infrastructure for the training of apprenticeship agents through
the decomposition of sub-task movements is developed
in.(10) Naturally, these research systems cannot be applied
directly to an actual surgical procedure, but rather rely on
model configurations with custom robots or commercially
available industrial robots. Researchers often have to make the
tough decision to:(1) build a realistic experimental robot
system (for example a custom robot) that matches the
complexity and variety of tasks of the intended application,
but is expensive and one of a kind or Choose a "tabletop"
platform (e.g. an industrial robot) with less complexity and
abundance of tasks, which is easier to develop but reduces the
impact of research. . A few years ago it became clear that one
of the obstacles to surgical robotics research was the lack of a
robust and realistic common research platform. This led to the
development and community adoption of two open research
platforms: : the Raven-II and the da Vinci Research Kit

mailto:Bhgunjan.05@gmail.com
mailto:anmoljainshab@gmail.com
mailto:prince990ghosh@gmail.com
mailto:Sainidimpal760@gmail.com

(dVRK), described in the following sections. Currently these
two robotic surgical platforms together have an installed base
of about 50 systems in over 40 research centers (several
laboratories use both systems) and several of the above
publications were developed using one of these systems [5],
[6], [9], [10]. In addition, simulations of the da Vinci robot
have been developed, including commercial products used for
training surgeons. In the field of research, da Vinci
simulations include [11] and [12], the former based on Gazebo
and the latter on V-REP. These typically simulate the Patient
Side Manipulator (PSM) and use a human input device such
as a mouse. B. da Vinci Master Tool Manipulators (MTMs) or
haptic devices. Below we also summarize the recently
developed Asynchronous MultiBody Framework (AMBF)
[13] that supports the simulation of Raven II, dVRK and other
robots. Simulators of the da Vinci robot have also been
created, including products that are sold to train surgeons.Da
Vinci simulations are found in [11] and [12], the former based
on V-REP and the latter on Gazebo.The Patient Side
Manipulator (PSM) is typically simulated by these, which
make use of a mouse or other human input device.B. haptic
devices or da Vinci Master Tool Manipulators (MTMs).The
Asynchronous MultiBody Framework (AMBF) [13], which
enables the simulation of Raven II, dVRK, and other robots,
is described in detail below.

Fig 1. The Raven-II surgical robot Fig 2. The da Vinci Research Kit

1) Raven II:The Raven-II (Fig.1) was developed in 2012 by
the University of Washington and the University of
California, Santa Cruz, and initially distributed to seven
institutions as an-improvement to the previous Raven surgical
robot.It was made to provide the necessary forces and range
of motion in a small package with cutting-edge motion
control.The Raven-II system's portability and durability have
been demonstrated through experiments, including a
simulated telerobotic surgery in a tent at a remote location
north of Simi Valley, California; a gas-powered generator that
powers the wireless teleoperation;also, shipping also, re-
gathering the robot at the Aquarius undersea exploration
station at a profundity of 19 meters off the bank of Key Largo
(as a feature of NASA's NEEMO program).At the end of
2013, production of Raven II systems was outsourced to a new
company called Applied Dexterity Inc., which has since
installed a number of other systems.

2) dVRK: da Vinci Research KitAdditionally in 2012,
Worcester Polytechnic Institute (WPI) and Johns Hopkins
University (JHU) released open source software and
mechatronics to enable researchers to construct dVRK
platforms (Fig.2) [16] and [17] are examples taken from
defunct da Vinci Systems of the initial generation .In
particular, researchers could connect the cables that connect
the da Vinci Master Tool Manipulators (MTMs), Patient Side
Manipulators (PSMs), and Endoscopic Camera Manipulators
(ECMs) to an open source controller that uses bridge linear
amplifiers to drive the motors and field programmable gate
arrays (FPGAs) to process the sensor feedback and control
signals that are associated with them. These devices are

known as da Vinci manipulators . Through the use of IEEE-
1394 (FireWire), the FPGAs exchange all data with a control
PC, resulting in closed-loop control rates exceeding 1 kHz.

3) Simulator for the Asynchronous Multi-Body Framework
(AMBF):We recently proposed a simulation framework based
on a front-end description format known as Asynchronous
MultiBody Framework (AMBF Format) and an associated
robust realtime dynamic simulator to address the requirements
for a highly flexible simulation framework in terms of robot
definitions, support for a wide variety of disparate input
devices, and interactions with the environment [13].The
AMBF Format permits:improved readability and editability
for humans, distributed definition of the simulation elements,
independent constraint handling, controllability of the way
forces are applied to the bodies, communicability of all
aspects of each body that are independent of one another, and
dynamic loading with the capability to add bodies and alter
constraints at run-timeBased on this AMBF format, the
AMBF simulator offers soft body support, flexible
visualization options, asynchronous support for a wide range
of input devices used simultaneously without affecting
performance, and dynamic body simulation.[18] describes a
method for modeling the dVRK's dynamic model parameters,
and [11] describes an example of using this framework to
implement closed-loop kinematic chain mechanisms, which
are difficult in many simulation environments.Section III-C
provides additional information about how AMBF has been
applied to the dVRK and Raven II.

Fig. 3. Concept for Common API to Raven II, dVRK and other
systems, and Surgical Tool Class to facilitate sharing of surgical
instruments, especially those actuated by the four disks introduced by
the da Vinci robot.

II. MOTIVATION

A. Even though the Raven II and the dVRK share a research
platform, it became clear that the "one design" advocated by
[19] would be even better.Because Raven II and dVRK are
based on different hardware designs, it would appear
impossible to develop a common software and hardware
platform.However, since many Raven II robots drive the four-
degree-of-freedom da Vinci instruments, the part of the robot
that interacts with the environment is frequently the same for
both systems.As depicted in Figure, this served as the initial
impetus for the development of a common surgical tool class
and software interface for Raven II and dVRK.3.However, it
soon became clear that researchers in surgical robotics could
use a similar software interface for other robots, so the goal
was expanded to include defining a common "language" for
component-based robotics software.One particular goal was
to make it simple to replicate research on other robot
platforms, like the ones mentioned earlier. We take into
account two aspects of this universal language:1) the message
content and the communication infrastructure that carries
messages between the components.With abstract
(implementation agnostic) definitions of the message content,
our work focuses on the second aspect, presuming that one or
more existing middleware packages can meet the first
requirement. The widely used robotics operating system
Robot Operating System (ROS) [20] is an obvious choice for
the communication infrastructure.However, despite the fact
that ROS provides common message types and standard
middleware (such as topics and services), there is no
welldocumented consensus standard for how these messages
and interfaces should be used.Beginning users are able to
quickly become proficient in ROS-based applications due to
the low barrier to entry provided by ROS topics and the ROS
communication structure as a whole. ROS is now regarded as
the "community standard" middleware due to its widespread
adoption and lack of enforcement of a messaging payload
standard.However, the absence of a payload standard leads to
the creation of redundant "wrapper" or "adapter" nodes for
connecting ROS applications that have been independently
developed.This was discovered at an early stage, and efforts
were made to create some unofficial, but broadly accepted,
payloads for particular applications.These messaging payload
specifications have been widely adopted by the community,
particularly when utilized by well-known ROS open source
packages.However, despite their usefulness, these standards
do not take into account the complexity of modern robots'
hierarchical control structure.

III. . PROJECT OUTLINE AND SOFTWARE
ARCHITECTURE

A. Project Outline The Collaborative Robotics Toolkit
(CRTK) is a community-based software infrastructure made

for research and education in cutting-edge fields like semi-
autonomous teleoperation and medical robotics.The project
development process consists of two steps:Technical
Implementation and Community ParticipationCommunity
engagement for medical robotics communities worldwide
includes both in-person and online discussion forums.The
technical implementation defines the CRTK structure and
hierarchy based on user feedback and takes into account the
community's comments and suggestions.

1) Community Participation:A major objective of the project
is to involve the global community of software developers and
researchers in medical robotics.We held workshops on
"Shared Platforms for Medical Robotics Research,"
"Supervised Autonomy in Surgical Robotics," and "Open
Platforms for Medical Robotics Research" at IROS 2017,
"ISMR 2019," and "CRTK" and "Open Platforms for Medical
Robotics Research" tutorials at IROS 2018. Joint editing of
collaborative documents defining a set of use cases, naming
conventions, and functionalities was the outcome of these
workshops and tutorials.Some of the examples described in
Section III were demonstrated during hands-on
demonstrations, and Raven-II and dVRK robots were
physically present at some of the events.

2) Technical Implementation: The authors gathered
community ideas and defined use cases (Section II-B) through
these community workshops and events, which they then used
to define and modify the CRTK infrastructure.Weekly
teleconferences were held by the authors, including
developers of Raven-II and dVRK, to ensure that the ROS
message payloads, such as frames, units, the API, and
namespace usage, were consistently implemented across both
robotic platforms.Python and C++ were used to implement
example tests and interface scripts.Implementation status and
solutions to devicespecific technical issues were discussed
during these weekly meetings.

B. Use Cases The medical robotics research use cases we
identified during our collaborative design process will serve
as the foundation for the API's development.The use cases
were divided into five themes by the authors.

1) Working remotely:Allow force information to be
incorporated through bilateral teleoperation or force reflection
and support teleoperation across various communication
channels with various master and slave devices. 2) Motion by
Oneself:interfaces that let researchers use Cartesian and joint
space autonomous robot motion planners. 3) Custom Control
and Kinematics:Allow researchers to implement advanced
controllers that simultaneously solve kinematics and control,
such as constrained optimization, for applications like
optimizing kinematic redundancy or enforcing virtual
fixtures. 4) Compliant or cooperative control:Provide
capabilities for custom cooperative or compliant control, such
as by attaching a force sensor to the wrist of the robot and
driving it with measured forces. 5) Individual
instruments:Facilitate the integration of custom instruments
that provide capabilities like increased dexterity or additional
sensing with the RavenII or dVRK for researchers.

A. SOFTWARE ARCHITECTURE
Standard conventions for the flow of command and

feedback messages within a robotic system are the objective
of CRTK.We believe that each message has a unique name

and a payload attached to it.The payload is specified in a
message description file (msg file, for example) in ROS, and
the name is related to the name of the topic or service.ROS
provides tools for parsing message files and creating software
to convert messages to and from the target programming
language's (C or Python) data types.However, other
middleware, such as OpenIGTLink [22], could be utilized
because CRTK is not restricted to ROS.

These two interfaces—the Robot Motion Interface and the
Robot State Interface— were the primary focus of the initial
development of CRTK.

1) Interface for Robot Movement:A robot's ability to move
is arguably its most important feature, making it an obvious
target for any standardization efforts.High-level motion
primitives were traditionally used to program industrial
robots, such as moving in a straight line to a desired
pose.Medical robots that are teleoperated or cooperatively
controlled (as noted in the use cases in Section II-B) also
require a low-level motion interface, despite the fact that
highlevel motions are relevant to medical robotics.A
teleoperated robot, for instance, might require a continuous
stream of position or velocity commands from the master
manipulator to the slave manipulator.In a similar vein, some
forms of cooperative control make use of a force sensor that is
attached to the wrist of the robot and converts the forces it
detects into a stream of commands for the desired velocity
(called admittance control).The rate of command streaming
must also be taken into account, as it may affect the slave
robot's assumptions regarding motion smoothness and
interpolation. As a result, as depicted in Figure, we define
three levels of motion commands in CRTK.4.In a nutshell, the
servo level is designed for low-level, high-rate robot
control.This includes numerous use cases for cooperative
control and teleoperation. In most cases, the robot should
respond to the servo command as quickly as possible,
preferably after performing some safety checks.Similar to the
interpolate level, the robot should perform a straightforward
interpolation to ensure smooth motion because the rate of
setpoints may be slow or unreliable. Last but not least, the
move level is for routine, high-level motion commands like
moving into a certain pose.In this instance, the robot ought to
have the capability of planning its trajectory.Table I's naming
convention for CRTK motion commands must be followed,
indicating whether the motion is in Cartesian or joint space
and which motion parameter is being controlled (position,
velocity, or force, for example). Additionally, the robot's
motion-related information is depicted in Figure 4.It is
possible to inquire about the current setpoint as well as the
ultimate objective of the current motion in addition to the
measured (sensor) feedback.

Fig. 4. CRTK motion commands: high-level move commands, mid-level
interpolate commands, and low-level servo commands, which move robots in
joint or Cartesian space based on various desired quantities, as defined in

Table I. The arrows in the diagram represent data flow. Three types of inquiry
are supported: measured, setpoint, and goal.

Keep in mind that the goal will be the same as the setpoint in
the case of a low-level servo motion. It is vital to take note of
that robots are not expected to support a wide range of
movement orders in any case, on the off chance that an order
is executed, it should follow the naming show in Table I.
Likewise, it should likewise utilize the recommended payload
(message type).The payloads for those commands are
documented on the project website because we initially
focused on the servo interface [23].The payloads for the move
and interpolate commands are currently being defined by us.
An interesting observation is that the higher levels could be
implemented by generic software modules that interact with
that level, so a standard servo interface might be sufficient.In
point of fact, having only the joint space servo commands
might be sufficient.This is comparable to ROS's strategy,
which typically involves joint interactions with robots.
However, the fact that it disregards any existing high-level
implementations is the approach's drawback.For instance, all
industrial robots offer the same move command in joint space
and Cartesian space.Researchers can "wrap" these vendor-
supplied capabilities, which may have been optimized for the
particular robot, according to the CRTK naming convention
and prescribed message type using the CRTK approach.In
situations where the high-level functionality may not exist
(such as custom robots) or when the wrapped vendor-supplied
solution is deemed inadequate, a software-based solution can
still be utilized.

2) The Robot State Interface:Even though most, if not all,
robot systems have operating states, it is impossible to try to
create a state diagram that is the same for all of them.As a
result, our primary focus is on creating a high-level
"metastate" diagram that, as depicted in Figure 5, provides a
summary of the operating states and the commands necessary
to move between them. It's possible that a robot's various
internal states correspond to these meta-states. Additionally,
we define two operating modes that can be applied to any one
of the meta-states.

For example,the is_homed working mode shows whether the
robot has been homed and applies to all of the meta-states.The
is_busy operating mode, on the other hand, only applies to the
is_enabled meta-state and indicates that the robot is currently
executing a motion command.

B. Client APIs
On Raven-II, dVRK, the AMBF simulator, and other robots
and devices in our laboratories, the authors implemented the
lowest-level (servo) CRTK interface in 2018–19.Example

interfacing scripts, also known as the Client APIs, are
provided for users to modify or test on their robots in order

to lessen the learning curve for new users.
• ROS Client API for C++:The authors created the crtk-

cpp repository [24] to demonstrate how to use the
CRTK interface. This repository includes (a) a library,
(b) examples, (c) utilities, and (d) functionality
tests.For improved readability and code compression,
the rest of the package makes use of the library's
fundamental CRTK API robot state and motion helper
functions.The two types of C++ client APIs are utilities
and examples.Section II-E will provide a more in-
depth description of Client Test Scripts. Software
packages called utilities are intended to be useful in a
variety of robot control scenarios.As part of their
research applications that enable robots to demonstrate
CRTK functionalities, the authors envision community
users directly downloading and utilizing the utilities
(Table II), which are likely to be modified to meet
future user requirements.

• ROS Client API for Python:The provision of a CRTK
API that enables users to communicate with a ROS
CRTK-compliant robot is the primary objective of the
Python client API.The rospy package can be used
directly in Python, but it can be difficult to learn.The
ROS publishers and subscribers are hidden by the
Python client API, the payloads are converted to more
convenient data types like PyKDL frames and Numpy
vectors and matrices, and blocking commands (for
state changes and move commands) are implemented
by using Python thread events.

• The Python client module provides methods to
instantiate only portions of the CRTK standard
because CRTK devices may implement different
subsets of the CRTK specifications and the application
may only require some of the CRTK
features.Add_operating_state() and
add_measured_cp(), for instance, would be used to
only monitor a device's operating state and Cartesian
position:

•
• The user can later develop a customized Python client

instance and use the CRTK feature measured_cp():

•
• Additionally, there are methods for waiting for CRTK

state events in the Python client API.With
wait_while_busy, for instance, the client can wait
while the device is busy executing a move
command.Examples and the most recent version can
be found at [25].

C. Client Test Scripts
To demonstrate that a robot system correctly supports the

API, we developed a set of standard client test scripts and
written descriptions of expected robot behavior in parallel
with the design of the CRTK API (Table III).Each test is
performed on a for each arm premise.When the test is run, the
robot namespace is sent as an input;ROS parameters are then
loaded with robot-specific information like joint types, joint
numbers, and home poses.The authors envision that all
CRTK-compliant robots will be able to use the same test
scripts to verify compliance with the CRTK API.

.EXAMPLES

1. Teleoperation- In order to enable teleoperation of a
Raven-II at the University of Washington in Seattle,
CRTK servo_cr and robot state transitions were
successfully implemented during the hands-on
tutorial session at IROS 2018 in Madrid. At a rate of
1000 Hz, ROS topics are used by the Raven-II robot
to check for new CRTK commands.As shown in
Figure,6, Raven-II automatically maps the desired
CRTK states to the internal Raven-II states upon
receiving a state transition command and proceeds
with the state change.Raven-II responds as follows
when a servo_cr CRTK motion command is
received:

1) Determine whether the incremental Cartesian
command servo_cr falls within a predetermined
safety threshold for step sizes. If true, proceed, and if
not, disregard the command. 2) Change the units and
spatial transformation of the reference coordinates
from the CRTK frame to the Raven-II base frame to
transform servo_cr into raven_cr. 3) Attach the
raven_cr command to the raven_cp_d command for
the desired Raven-II Cartesian pose. 4) If the desired
Raven-II pose differs from the current Raven-II pose
by more than a safety threshold, cap raven_cp_d. 5)
Give the motion command a shot.

Identify applicable funding agency here. If none, delete this text box.

Servo_cp and the Python client interface were used
to demonstrate the CRTK-based teleoperation at the
ISMR 2019 workshop in Atlanta, where a Phantom
Omni was used to teleoperate a dVRK system at
Johns Hopkins University in Baltimore, Maryland.A
Novint Falcon was used as the slave arm to
demonstrate the same code.

2. Image-Guided Surgery -The CRTK API aims to
make it simple to translate its commands to various
surgical robot systems with different software
architectures.Image-guided robots belong to a
different category than teleoperated and
cooperatively controlled surgical robots.These
robots are frequently used to percutaneously or
stereotactically place instruments like needles for
therapy and biopsy, instruments for ablation, and
electrodes.Medical imaging, such as MRI,
ultrasound, or CT, is typically used intraoperatively
or registered to an intraoperative tracking system to
direct the procedure in this scenario. CRTK
command structures were implemented on the WPI
NeuroRobot system in order to demonstrate the
capability of the proposed framework for this kind of
robot [26].This seven-degree-of-freedom MRI-
compatible stereotactic surgical robot is used for
interstitial needle-based therapeutic ultrasound for
the ablation of brain tumors. Its use case is typical of
the kind of robot in which one or more targets and
optionally an associated trajectory to reach them are
defined in medical imaging and the robot is intended
to follow that trajectory to align and insert the
instrument. Often, real-time imaging is used to
update the trajectory on the fly.A modular MRI-
compatible robot controller that is used to control a
number of surgical robots and has applications in
prostate cancer [27] and neurosurgery [28] is in
charge of the NeuroRobot system. This control
system is a self-contained centralized controller that
is housed in the MRI scanner room. It is connected
to a robot that is housed with the patient on the
scanner bed in the scanner bore.Onboard, a National
Instruments sbRIO 9561 module runs a real-time
Linux operating system. This system communicates
with external devices via a fiberoptic Ethernet
network connection with surgical navigation
software, such as 3D Slicer [29]. This
implementation of CRTK is directly translatable to a
wide range of devices that also use the Open
Network Interface for Image-Guided Therapy
(OpenIGTLink) communication interface, which
provides a standardized mechanism for

communication among computers and devices in
operating rooms for a wide variety of image-guided
therapy (IGT) applications [22]. This image-guided
surgery robot controller makes use of the Open
Network Interface for Image-Guided Therapy
(OpenIGTLink). The NeuroRobot controller uses the
C++ OpenIGTLink library to communicate with
other systems in both directions.The OpenIGTLink
interface's packet naming convention was changed to
use CRTK notation.The NeuroRobot can now
receive a desired Cartesian setpoint with the
servo_cp command and a desired joint setpoint with
the servo_jp command thanks to this update. The
CRTK-defined commands measured_cp,
measured_jp, measured_jv, desired_cp, and
desired_jp enable the NeuroRobot to also transmit
internal robot parameters.The ROS-OpenIGTLink
bridge is compatible with this transmit and receive
implementation, making ROS-based control simple.

3. AMBF simulator example Using a plugin-based
interface for haptic interaction, the physical dVRK
MTMs are incorporated into the dynamic simulation
by the AMBF Simulator [13].The plugin, which goes
by the name dVRK ARM, can be found at
"https://github.com/WPI
AIM/ambf/tree/master/ambf ros modules/dvrk arm."
Class methods that are modeled after the CRTK
specification are provided by this plugin, which
makes use of the ROS messaging interface that is
made available by the dVRK software (Figure
7).Servo_jp,servo_jf,servo_cp, servo_cf,
measured_jp, measured_jv, measured_cp,
measured_cf, move_jp, and move_cp are just a few
of the functions that it supports. The use of the
CRTK-proposed hierarchical controller structure
specification made the plugin's design and
implementation simpler because it satisfied the
plugin's requirements for controlling and sensing a
simulated environment, which included a variety of
control modes and different types of feedback data.
A controller for a simulated Raven-II was
implemented in AMBF, demonstrating yet another
example of CRTK.Yun-Hsuan Su wrote the code,
which can be found at [30].Raven-II kinematics
calculation and support for a variety of control
modes, such as homing, sinusoidal motions, and
virtual 3-dimensional cube tracing, are included in
this code and are also available in the actual Raven-
II system.Simply pressing one of the preset keyboard
shortcuts will select one of these modes.

IV. CONCLUSION
The Collaborative Robotics Toolkit (CRTK), a common robot
command and feedback interface suitable for complex
teleoperation and cooperative control tasks at various control
levels, is the focus of this work.The AMBF simulator and the
Raven-II and dVRK software have been updated to support
CRTK.Download a set of sample client API and test codes at
[31]. In the past few years, we have also held workshops and
tutorials at a number of international robotics conferences to
introduce CRTK to the community, collect user feedback, and
encourage community adoption.In the meantime, you can find
the user guide, additional documentation, and design details at
[23].We hope to continue expanding the user base and making
the CRTK infrastructure more userfriendly in future projects.

ACKNOWLEDGMENT
The authors we grateful to Yun-Hsuan Su, Adnan Munawar,
Anton Deguet, Andrew Lewis, Kyle Lindgren, Yangming Li,
Russell H. Taylor, Gregory S. Fischer, Blake Hannaford and
Peter Kazanzides at Y-H. Su is with the Dept. of Computer
Science, Mount Holyoke College, South Hadley, MA USA,
msu@mtholyoke.edu. A. Lewis is with the Dept. of
Mechanical Engineering, K. Lindgren, and B. Hannaford are
with the Dept. of Electrical and Computer Engineer ing,
University of Washington, Seattle, WA USA, {alewi,
kyle509, blake}@uw.edu. A. Munawar and G.S. Fischer are
with the Robotics Engineering Pro gram, Worcester
Polytechnic Institute, Worcester, MA USA, {amunawar,
gfischer}@wpi.edu. A. Deguet, R.H. Taylor and P.
Kazanzides are with the Dept. of Computer Science, Johns
Hopkins University, Baltimore, MD USA, {anton.deguet, rht,
pkaz}@jhu.edu. Y. Li is with the Dept. of Electrical,
Computer, and Telecommunication Engineering Technology
at Rochester Institute of Technology, Rochester, NY USA,
Yangming.Li@rit.edu. This work was supported by NSF
National Robotics Initiative Awards IIS 1637789, IIS-
1637759, and IIS-16374 for the research work in the paper
“Collaborative Robotics Toolkit (CRTK): Open Software
Framework for Surgical Robotics Research ” [32].

REFERENCES
[1] Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, et al.,

"Learning by observation for surgical subtasks: Multilateral cutting of
3d viscoelastic and 2d orthotropic tissue phantoms", IEEE Intl. Conf.
on Robotics and Automation (ICRA), pp. 1202-1209, 2015.

[2] Shademan, R. Decker, J. Opfermann, S. Leonard, A. Krieger and P. C.
W. Kim, "Supervised autonomous robotic soft tissue surgery", Science
Translational Medicine, vol. 8, May 2016.

[3] Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng, et
al., "Raven-II: an open platform for surgical robotics research", IEEE
Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 954-959,
2012.

[4] E. Messina, "Your mileage may vary", Science Robotics, vol. 4, no. 35,
pp. eaay6004, 2019.

[5] F. Proctor, S. Balakirsky, Z. Kootbally, T. Kramer, C. Schlenoff and
W. Shackleford, "The Canonical Robot Command Language (CRCL)",
Industrial Robot: An International Journal, vol. 43, no. 5, pp. 495-502,
2016.

[6] G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficucicllo, M. Vendiuelli
and B. Siciliano, "A V-REP simulator for the da Vinci Research Kit
robotic platform", Intl. Conf. on Biomedical Robotics and
Biomechatronics, pp. 1056-1061, 2018.

[7] G. Guthart and J. Salisbury, "The Intuitive™ telesurgery system:
Overview and application", IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 618-621, May 2000.

[8] J. MacDonell, N. Patel, G. Fischer, E. C. Burdette, J. Qian, V.
Chumbalkar, et al., "Robotic Assisted MRI-Guided Interventional
Interstitial MR -Guided Focused Ultrasound Ablation in a Swine
Model", Neurosurgery, vol. 84, no. 5, pp. 1138-1148, 2018.

[9] J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, et
al., "Transatlantic robot-assisted telesurgery", Nature, vol. 413, no.
6854, pp. 379, 2001.

[10] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P.
Cheng, et al., "OpenIGTLink: an open network protocol for image-
guided therapy environment", Intl. J. of Medical Robotics and
Computer Assisted Surgery, vol. 5, no. 4, pp. 423-434, 2009.

[11] K. Bumm, J. Wurm, J. Rachinger, T. Dannenmann, C. Bohr, R.
Fahlbusch, et al., "An automated robotic approach with redundant
navigation for minimal invasive extended transsphenoidal skull base
surgery", Minimally Invasive Neurosurgery, vol. 48, pp. 159-64, July
2005.

[12] K. Shamaei, Y. Che, A. Murali, S. Sen, S. Patil, K. Goldberg, et al., "A
paced shared-control teleoperated architecture for supervised
automation of multilateral surgical tasks", IEEE Intl. Conf. on
Intelligent Robots and Systems (IROS), pp. 1434-1439, 2015.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, et
al., "ROS: an open-source Robot Operating System", ICRA Workshop
on Open Source Software, 2009.

[14] M. Wartenberg, J. Schornak, K. Gandomi, P. Carvalho, C. Nycz, N.
Patel, et al., "Closed-loop active compensation for needle deflection
and target shift during cooperatively controlled robotic needle
insertion", Annals of Biomedical Engineering, vol. 46, no. 10, pp.
1582-1594, Oct 2018.

[15] N. A. Patel, G. Li, W. Shang, M. Wartenberg, T. Heffter, E. C.
Burdette, et al., "System integration and preliminary clinical evaluation
of a robotic system for MRI-guided transperineal prostate biopsy",
Journal of Medical Robotics Research, vol. 04, no. 02, pp. 1950001,
2019.

[16] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor and S.
P. DiMaio, "An open-source research kit for the da Vinci® surgical
system", IEEE Intl. Conf. on Robotics and Auto. (ICRA), pp. 6434-
6439, Jun 2014.

[17] R. A. Gondokaryono, A. Agrawal, A. Munawar, C. J. Nycz and G. S.
Fischer, "An approach to modeling closed-loop kinematic chain
mechanisms applied to simulations of the da Vinci Surgical System",
Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 2019-2048, 2019.

[18] R. Bauernschmitt, E. U. Schirmbeck, A. Knoll, H. Mayer, I. Nagy, N.
Wessel, et al., "Towards robotic heart surgery: Introduction of
autonomous procedures into an experimental surgical telemanipulator
system", The Intl. Journal of Medical Robotics and Computer Assisted
Surgery, vol. 1, no. 3, pp. 74-79, 2005.

[19] R. Kikinis, S. D. Pieper and K. G. Vosburgh, 3D Slicer: A Platform for
Subject-Specific Image Analysis Visualization and Clinical Support,
New York, NY:Springer New York, pp. 277-289, 2014.

[20] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen and K. Goldberg,
"Automating multi-throw multilateral surgical suturing with a
mechanical needle guide and sequential convex optimization", IEEE
Intl. Conf. on Robotics and Automation (ICRA), pp. 4178-4185, 2016.

[21] T. D. Nagy and T. Haidegger, "An open-source framework for surgical
subtask automation", ICRA Workshop on Supervised Autonomy in
Surgical Robotics 2018.

[22] Y. Li, B. Hannaford and J. Rosen, "The Raven open surgical robotic
platforms: A review and prospect", Acta Polytechnica Hungarica, vol.
16, no. 8, 2019.

[23] Y. Wang, R. Gondokaryono, A. Munawar and G. S. Fischer, "A convex
optimization-based dynamic model identification package for the da
Vinci Research Kit", IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 3657-3664, Oct 2019.

[24] Z. Chen, A. Deguet, R. H. Taylor and P. Kazanzides, "Software
architecture of the da Vinci Research Kit", IEEE Intl. Conf. on Robotic
Computing, April 2017.

[25] 2019, [online] Available: https://github.com/collaborative-robotics/.
[26] 2019, [online] Available: https://github.com/collaborative-

robotics/crtk-cpp.

[27] 2019, [online] Available: https://github.com/collaborative-
robotics/documentation/wiki.

[28] 2019, [online] Available: https://github.com/WPI-
AIM/ambf/tree/master/ambf_controller/.

[29] 2019, [online] Available: https:/github.com/collaborative-
robotics/crtk-python-client/.

[30] Krupa, J. Gangloff, M. de Mathelin, C. Doignon, G. Morel, L. Soler, et
al., "Autonomous retrieval and positioning of surgical instruments in
robotized laparoscopic surgery using visual servoing and laser
pointers", IEEE Intl. Conf. on Robotics and Automation (ICRA), vol.
4, pp. 3769-3774, 2002.

[31] A. Munawar, Y. Wang, R. Gondokaryono and G. Fischer, "A
realtime dynamic simulator and an associated front-end representation
format for simulating complex robots and environments", IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019.

[32] Image Referance Fig 1 https://www.researchgate.net/figure/The-
RAVEN-II-Surgical-Robot-is-the-target-system-for-the-cable-
research-in-this-paper_fig1_303941918,Fig2
http://biorobotics.ri.cmu.edu/robots/daVinci.php

[33] Yun-Hsuan Su, Adnan Munawar, Anton Deguet, Andrew Lewis, Kyle
Lindgren, Yangming Li, Russell H. Taylor, Gregory S. Fischer, Blake
Hannaford, Peter Kazanzides, "Collaborative Robotics Toolkit
(CRTK): Open Software Framework for Surgical Robotics
Research",IEEE, 2020

https://www.researchgate.net/figure/The-RAVEN-II-Surgical-Robot-is-the-target-system-for-the-cable-research-in-this-paper_fig1_303941918,Fig
https://www.researchgate.net/figure/The-RAVEN-II-Surgical-Robot-is-the-target-system-for-the-cable-research-in-this-paper_fig1_303941918,Fig
https://www.researchgate.net/figure/The-RAVEN-II-Surgical-Robot-is-the-target-system-for-the-cable-research-in-this-paper_fig1_303941918,Fig

	I. Introduction (background)
	II. MOTIVATION
	A. Even though the Raven II and the dVRK share a research platform, it became clear that the "one design" advocated by [19] would be even better.Because Raven II and dVRK are based on different hardware designs, it would appear impossible to develop a...

	III. . PROJECT OUTLINE AND SOFTWARE ARCHITECTURE
	A. SOFTWARE ARCHITECTURE
	B. Client APIs
	C. Client Test Scripts

	.EXAMPLES
	IV. CONCLUSION
	Acknowledgment
	References

