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Abstract. The Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and com-
plex numbers with real part 1

2
. It is considered by many to be the

most important unsolved problem in pure mathematics. There are sev-
eral statements equivalent to the famous Riemann hypothesis. Robin’s
criterion states that the Riemann hypothesis is true if and only if the
inequality σ(n) < eγ ·n·log logn holds for all natural numbers n > 5040,
where σ(n) is the sum-of-divisors function of n, γ ≈ 0.57721 is the Euler-
Mascheroni constant and log is the natural logarithm. We prove that the
Riemann hypothesis is true whenever there exists a large enough positive
number x0 such that for all x > x0 we obtain that the value of∑

n≤αx

1

n
−

∑
6≤n≤ x

log x

e−γ

n · (log(n · logn)) −
∑
n<6

e−γ

qn

is lesser than or equal to e−γ ·
(
γ −B − 1

2·(x−1)

)
where B ≈ 0.26149 is

the Meissel-Mertens constant and αx =
(
log x+ 0.0222·log x

log log x

)
. Since the

previous expression goes to 0 as x tends to infinity, then we deduce that
the Riemann hypothesis must be true.
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1. Introduction

In mathematics, the Prime-counting function π(x) is given by

π(x) =
∑
q≤x

1

with the sum extending over all prime numbers q that are less than or equal
to x.
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Proposition 1.1. For x ≥ 17 [11, Corollary 1 (3.5) pp. 69]:

π(x) >
x

log x
,

where log is the natural logarithm.

Proposition 1.2. For the nth prime number qn and n ≥ 6 [11, Corollary (3.13) pp. 69]:

qn < n · (log(n · log n)) .

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is
defined as

γ = lim
n→∞

(
− log n+

n∑
k=1

1

k

)

=

∫ ∞

1

(
− 1

x
+

1

⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some im-
portant results about the constants B and H (1874) [5]. We define H = γ−B
such that B ≈ 0.26149 is the Meissel-Mertens constant [5].

Proposition 1.3. We have [2, Lemma 2.1 (1) pp. 359]:

∞∑
k=1

(
log

(
qk

qk − 1

)
− 1

qk

)
= γ −B = H,

where qk is the kth prime number.

For x ≥ 2, the function u(x) is defined as follows [7, pp. 379]:

u(x) =
∑
q>x

(
log

(
q

q − 1

)
− 1

q

)
.

Proposition 1.4. We have [7, (11) pp. 379]:

0 < u(x) ≤ 1

2 · (x− 1)
.

On the sum of the reciprocals of all prime numbers not exceeding x, we
have:

Proposition 1.5. For x ≥ 2278383 [3, Theorem 5.6 (1) pp. 243]:

− 0.2

log3 x
≤
∑
q≤x

1

q
−B − log log x ≤ 0.2

log3 x

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n .
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Proposition 1.6. Let
∏r

i=1 q
ai
i be the representation of n as a product of prime

numbers q1 < . . . < qr with natural numbers a1, . . . , ar as exponents. Then [4,
Lemma 1 pp. 2],

f(n) =

(
r∏

i=1

qi
qi − 1

)
·

r∏
i=1

(
1− 1

qai+1
i

)
.

Definition 1.7. We say that Robin(n) holds provided that

f(n) < eγ · log log n.

The Ramanujan’s Theorem stated that if the Riemann hypothesis is
true, then the previous inequality holds for large enough n. Next, we have
the Robin’s Theorem:

Proposition 1.8. Robin(n) holds for all natural numbers n > 5040 if and only
if the Riemann hypothesis is true [10, Theorem 1 pp. 188].

Unconditionally on Riemann hypothesis, we have:

Proposition 1.9. Robin(n) holds for all natural numbers 1010
13.11485 ≥ n >

5040 [9, Theorem 5 pp. 6].

Proposition 1.10. For x ≥ 1 [11, Corollary 2 (3.31) pp. 71]:∏
q≤x

q

q − 1
< eγ ·

∑
m≤x

1

m
,

where m denotes a natural number.

In 1997, Ramanujan’s old notes were published where he defined the
generalized highly composite numbers, which include the superabundant and
colossally abundant numbers [8]. Superabundant numbers were also studied
by Leonidas Alaoglu and Paul Erdős (1944) [1]. Let q1 = 2, q2 = 3, . . . , qk
denote the first k consecutive primes, then an integer of the form

∏k
i=1 q

ai
i

with a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 is called a Hardy-Ramanujan integer [2, pp. 367].
A natural number n is called superabundant precisely when, for all natural
numbers m < n

f(m) < f(n).

We know the following property for the superabundant numbers:

Proposition 1.11. If n is superabundant, then n is a Hardy-Ramanujan inte-
ger [1, Theorem 1 pp. 450].

Proposition 1.12. Let n be a large enough superabundant number such that q
is the largest prime factor of n. Then [6, Corollary 4.16 pp. 16]:

q < (log n) ·
(
1 +

0.0222

log log n

)
.
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A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 1.13. Every colossally abundant number is superabundant [1,
pp. 455].

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. However, there are
some implications in case of the Riemann hypothesis could be false.

Proposition 1.14. If the Riemann hypothesis is false, then there exist infinitely
many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e.
Robin(n) does not hold) [10, Proposition pp. 204].

Putting all together yields a proof for the Riemann hypothesis.

2. Central Lemma

The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely
many superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1.8, 1.13 and 1.14. □

3. Main Insight

This is the main insight.

Theorem 3.1. The Riemann hypothesis is true whenever there exists a large
enough positive number n0 such that for all n > n0 we obtain that the value
of ∑

m≤αn

1

m
−

∑
6≤m≤ n

log n

e−γ

m · (log(m · logm))
−
∑
m<6

e−γ

qm

is lesser than or equal to e−γ ·
(
H − 1

2·(n−1)

)
where αn =

(
log n+ 0.0222·logn

log logn

)
.

Proof. Let n > 5040 be a counterexample such that Robin(n) does not hold.
We know this number could be a large enough superabundant number by

Lemma 2.1. Let
∏k

i=1 q
ai
i be the representation of this superabundant num-

ber n as the product of the first k consecutive primes q1 < . . . < qk with
the natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents according to

Proposition 1.11. We know that n > 1010
13.11485

by Proposition 1.9. Under
our supposition, we have

σ(n) ≥ eγ · n · log log n.
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By Proposition 1.5, we notice that∑
q≤n

1

q
≤ log log n+B +

0.2

log3 n
.

We can see that∑
q≤n

log

(
q

q − 1

)
−
∑
q≤n

(
log

(
q

q − 1

)
− 1

q

)
≤ log log n+B +

0.2

log3 n

which is ∑
q≤n

log

(
q

q − 1

)
−H < log log n+B +

0.2

log3 n

and ∑
q≤n

log

(
q

q − 1

)
< log log n+ γ +

0.2

log3 n

by Proposition 1.3. That is the same as

n ·
∑
q≤n

log

(
q

q − 1

)
< n · log log n+

(
γ +

0.2

log3 n

)
· n

after multiplying both sides by the superabundant number n. We know that(
γ +

0.2

log3 n

)
· n ≤ (eγ − 1) · n · log log n

for n > 1010
13.11485

. Consequently, we obtain that

σ(n) > n ·
∑
q≤n

log

(
q

q − 1

)
by transitivity since

eγ · n · log log n ≥ n · log log n+

(
γ +

0.2

log3 n

)
· n.

In this way, we have

f(n) >
∑
q≤n

log

(
q

q − 1

)
which is ∏

q≤αn

(
q

q − 1

)
>
∑
q≤n

log

(
q

q − 1

)
by Proposition 1.6 and 1.12 since∏

q≤qk

(
q

q − 1

)
> f(n)

and

qk < (log n) ·
(
1 +

0.0222

log log n

)
=

(
log n+

0.0222 · log n
log log n

)
= αn
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for large enough superabundant number n. That would be

eγ ·
∑

m≤αn

1

m
>
∑
q≤n

log

(
q

q − 1

)
since ∏

q≤αn

(
q

q − 1

)
< eγ ·

∑
m≤αn

1

m

by Proposition 1.10. So, we would have

eγ ·
∑

m≤αn

1

m
−
∑
q≤n

1

q
> H − u(n)

by Proposition 1.3. By Proposition 1.4, we have

eγ ·
∑

m≤αn

1

m
−
∑
q≤n

1

q
> H − 1

2 · (n− 1)
.

That is equivalent to

eγ ·
∑

m≤αn

1

m
−

∑
m≤ n

log n

1

qm
> H − 1

2 · (n− 1)

since

π(n) >
n

log n

by Proposition 1.1. Hence, it is enough to show that∑
m≤αn

1

m
−

∑
m≤ n

log n

e−γ

qm
> e−γ ·

(
H − 1

2 · (n− 1)

)
which means that the expression∑

m≤αn

1

m
−

∑
6≤m≤ n

log n

e−γ

m · (log(m · logm))
−
∑
m<6

e−γ

qm

would be greater than e−γ ·
(
H − 1

2·(n−1)

)
by Proposition 1.2. However, that

contradicts the fact that n could be a superabundant number as large as
we want and thus, it could happen that n > n0 from our pre-conditions.
This contradiction implies that it cannot exist infinitely many superabundant
numbers n such that Robin(n) fails and therefore, the Riemann hypothesis
should be true using a proof by contraposition from Lemma 2.1. □

4. Main Theorem

This is the main theorem.

Theorem 4.1. The Riemann hypothesis is true.
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Proof. Since the expression of Theorem 3.1 goes to 0 as n tends to infin-
ity, then we deduce that the Riemann hypothesis must be true. This is
because of the upper bound n

logn is exponentially larger than the number

αn =
(
log n+ 0.0222·logn

log logn

)
and

e−γ

m · (log(m · logm))
≈ 1

m

is true for each value of m ≥ 6 since eγ ≈ 0 according to the Proposition
1.2. □
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