
EasyChair Preprint
№ 9117

Riemann Hypothesis on Grönwall’s Function

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 3, 2023



A Millennium Prize Problem

Riemann Hypothesis on Grönwall’s Function

Frank Vega1*

1*Research Department, NataSquad, 10 rue de la Paix, Paris,
75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

Grönwall’s function G is defined for all natural numbers n > 1
by G(n) = σ(n)

n·log log n
where σ(n) is the sum of the divisors of

n and log is the natural logarithm. We require the properties of
colossally abundant numbers in relation to the Grönwall’s function
G. There are several statements equivalent to the famous Riemann
hypothesis. We state that the Riemann hypothesis is true if and only
if there exist infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < G(N ′). Using
this new criterion, we prove that the Riemann hypothesis is true.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. In 1997, Ramanujan’s old notes
were published where it was defined the generalized highly composite num-
bers, which include the superabundant and colossally abundant numbers [1].
A natural number n is called superabundant precisely when, for all natural

1



A Millennium Prize Problem

2 The Riemann hypothesis

numbers m < n
σ(m)

m
<

σ(n)

n
.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Every colossally abundant number is superabundant [2]. In 1913, Grönwall

studied the function G(n) = σ(n)
n·log logn for all natural numbers n > 1, [3]. We

have the Grönwall’s Theorem:

Proposition 1
lim sup
n→∞

G(n) = eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant [3].

Next, we have the following Robin’s results:

Proposition 2 Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers,
then

G(n) ≤ Max
(
G(N), G(N ′)

)
when satisfying N < n < N ′ [4, Proposition 1 pp. 192].

Proposition 3 There are infinitely many colossally abundant numbers N such that
G(N) > eγ when the Riemann hypothesis is false [4, Proposition 1 pp. 204]. There
exist infinitely many colossally abundant numbers N such that G(N) < eγ [4,
Theorem 1 pp. 188], [4, Proposition 1 pp. 204].

There are champion numbers (i.e. left to right maxima) of the function
n 7→ G(n):

G(m) < G(n)

for all natural numbers 10080 ≤ m < n. A positive integer n is extremely
abundant if either n = 10080, or n > 10080 is a champion number of the
function n 7→ G(n). In 1859, Bernhard Riemann proposed his hypothesis [5].
Several analogues of the Riemann hypothesis have already been proved [5].

Proposition 4 The Riemann hypothesis is true if and only if there exist infinitely
many extremely abundant numbers [6, Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:
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Proposition 5 Let N < N ′ be two consecutive colossally abundant numbers and
n > 10080 is some extremely abundant number, then N ′ is also extremely abundant
when satisfying N < n < N ′ [6, Lemma 21 pp. 12].

This is our main theorem

Theorem 1 The Riemann hypothesis is true if and only if there exist infinitely
many pairs (N,N ′) of consecutive colossally abundant numbers N < N ′ such that
G(N) < G(N ′).

Putting all together yields a new criterion for the Riemann hypothesis.
Now, we can conclude with the following result:

Theorem 2 The Riemann hypothesis is true.

Proof Note that, for all u > 0 [7, pp. 254]:

lim
n→∞

σ(n)

n · (logn)u = 0

and so, there are infinitely many pairs (N,N ′) of large enough consecutive colossally
abundant numbers N < N ′ such that(

logN

logN ′

)u

≥

(
σ(N)
N

)
(
σ(N ′)
N ′

)
for some u ≥ 1. The inequality G(N) < G(N ′) is equivalent to say

log logN

log logN ′ >

(
σ(N)
N

)
(
σ(N ′)
N ′

) .
In addition, we have

log logN

log logN ′ >
logN

logN ′

since e < logN < logN ′ by Lemma 1. So, the following inequality(
log logN

log logN ′

)u

>

(
logN

logN ′

)u

≥

(
σ(N)
N

)
(
σ(N ′)
N ′

)
holds. Hence, it is enough to show that

log logN

log logN ′ ≥
(

log logN

log logN ′

)u

which is satisfied since u ≥ 1. Consequently, we obtain that G(N) < G(N ′) holds
anyway. In this way, there are infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < G(N ′). Finally, the proof is complete
by Theorem 1. □



A Millennium Prize Problem

4 The Riemann hypothesis

2 Central Lemma

Lemma 1 For two real numbers y > x > e:

y

x
>

log y

log x
.

Proof We have y = x+ ε for ε > 0. We obtain that

log y

log x
=

log(x+ ε)

log x

=
log

(
x · (1 + ε

x )
)

log x

=
log x+ log(1 + ε

x )

log x

= 1 +
log(1 + ε

x )

log x

and

y

x
=

x+ ε

x

= 1 +
ε

x
.

We need to show that (
1 +

log(1 + ε
x )

log x

)
<

(
1 +

ε

x

)
which is equivalent to (

1 +
ε

x · log x

)
<

(
1 +

ε

x

)
using the well-known inequality log(1 + x) ≤ x for x > 0. For x > e, we have

ε

x
>

ε

x · log x .

In conclusion, the inequality
y

x
>

log y

log x

holds on condition that y > x > e. □

3 Proof of Theorem 1

Proof Suppose there are not infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < G(N ′). This implies that the inequal-
ity G(N) ≥ G(N ′) always holds for a sufficiently large N when N < N ′ is a pair of
consecutive colossally abundant numbers. That would mean the existence of a single
colossally abundant number N ′′ ≥ 10080 such that G(n) ≤ G(N ′′) for all natural
numbers n > N ′′ according to Proposition 2. Certainly, the existence of such sin-
gle colossally abundant number N ′′ is because of the Grönwall’s function G would
become decreasing on colossally abundant numbers starting from some single value.
We use the Proposition 5 to reveal that under these preconditions, then there are
not infinitely many extremely abundant numbers. This implies that the Riemann
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hypothesis is false as a consequence of Proposition 4. By contraposition, if the Rie-
mann hypothesis is true, then there exist infinitely many pairs (N,N ′) of consecutive
colossally abundant numbers N < N ′ such that G(N) < G(N ′).

Suppose that there exist infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < G(N ′). On the one hand, let’s assume
from these infinitely many pairs (N,N ′) of consecutive colossally abundant numbers
N < N ′ such that G(N) < G(N ′), then there could be only a finite amount of these
N ′ such that eγ < G(N ′). Thus, we deduce there could be only a finite amount of
colossally abundant numbersN ′′ such that eγ < G(N ′′). However, when the Riemann
hypothesis is false, then there are infinitely many colossally abundant numbers N ′′

such that eγ < G(N ′′) by Proposition 3. On the other hand, let’s assume from these
infinitely many pairs (N,N ′) of consecutive colossally abundant numbers N < N ′

such that G(N) < G(N ′), then there could be an infinite amount of these N ′ such
that eγ < G(N ′).

Based on this opposite assumption, it could appear the possible scenarios:

� there would be an infinite increasing subsequence of colossally abundant
numbers Ni such that eγ < G(Ni) and G(Ni) < G(Ni+1),

� or there would be a colossally abundant number N ′′ such that for all
colossally abundant numbers N > N ′′ we have eγ ≤ G(N),

� or there would be infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < eγ < G(N ′).

However, it cannot exist an infinite increasing subsequence of colossally abundant
numbers Ni such that eγ < G(Ni) and G(Ni) < G(Ni+1), by Proposition 1 and the
properties of limit superior. Moreover, there cannot be a colossally abundant number
N ′′ such that for all colossally abundant numbers N > N ′′ we have eγ ≤ G(N), since
this implies that there are not infinitely many colossally abundant numbers N ′′′ such
that G(N ′′′) < eγ which is a contradiction by Proposition 3.

Furthermore, there are not infinitely many pairs (N,N ′) of consecutive colossally
abundant numbers N < N ′ such that G(N) < eγ < G(N ′). Certainly, we deduce
that

G(N ′)
G(N)

=

(
1 +

G(N ′)−G(N)

G(N)

)
>

(
1 +

G(N ′)−G(N)

eγ

)
>

(
2− G(N)

eγ

)
.

We obtain a contradiction since the inequality
G(N ′)
G(N)

+
G(N)
eγ > 2 tends to be

unsatisfied as long as N goes to infinity when G(N) < eγ < G(N ′) by Proposi-
tion 1. Therefore, the Riemann hypothesis would be true when there exist infinitely
many pairs (N,N ′) of consecutive colossally abundant numbers N < N ′ such that
G(N) < G(N ′). □

4 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothe-
sis is closely related to various mathematical topics such as the distribution
of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the
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Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypoth-
esis could spur considerable advances in many mathematical areas, such as
number theory and pure mathematics in general.
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