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Abstract: To connect the molecular length scale phenomena to the macroscopic length scale in
diffusion controlled growth in solid state, there is need to consider the movement of individual
atoms in the crystal lattice and examine the length scale effect where the average density of the
atoms approaches to the continuum macro scale. For this purpose a lattice random walk model
has been constructed to represent the diffusion of atoms to form a precipitate. Once the atom
is in contact with the precipitate surface, the precipitate grows and the atom is not anymore
contributing to the random walk. Through the model, it is possible to evaluate the concentration
fluctuations at different length scales in diffusion controlled growth and connect the continuum
description of diffusion to the atomic level description. We connect the different length scales in
theoretical description from atomistic scale through random atom movements to macroscale. In
the current study, two-dimensional lattice random walks and growth are considered. The study
contributes to the modelling efforts of understanding diffusion controlled precipitate growth in
steels.
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1. INTRODUCTION

Diffusion is an important phenomena, which affects dras-
tically the formation of several microstructural features in
materials, such as formation of precipitates Pohjonen et al.
(2022), movement of phase boundaries Pohjonen (2023),
segregation of atoms to crystal defects Cottrell and Bilby
(1949); Macchi et al. (2024); Pohjonen et al. (2022), etc.
Therefore, it is of utmost practical importance to obtain
the highest possible level of thorough understanding of the
phenomena that affects the diffusion in atomic lattice in
different conditions.

Traditionally, diffusion in macroscopic scales can be mod-
elled using the Fick’s laws of diffusion Porter et al.
(2022). The connection of the probability of molecular
movements and their macroscopic effects dates back to
Brownian motion and the theoretical explanation of Ein-
stein and Smoluchowski Kac (1947). Previously, the diffu-
sional growth of a precipitate in steels has been examined
through random movements of atoms in the atomic lattice.
Larsson and Agren (2003) Also the activation energy that
relates to the atomic movement in steels has been cal-
culated for austenitic and ferritic/martensitic structures
Wang et al. (2021). In the current study, we describe the
theory connecting these different length scales through
the implementation of a random walk algorithm for diffu-
sional atom movement in the atomic lattice. This approach

provides initial step for bridging the atomistic energy,
length, and time scales to macroscopic description, and it
provides information on the transition, where the inherent
concentration fluctuations in atomic scale diminish when
increasing the length scale.

2. THEORY

The basic connection between flux of atoms and the
random movement is reasonably straightforward. Porter
et al. (2022) Consider neigbouring planes of atomic sites
containing diffusing atoms. If the diffusing atom on plane
1 has probability of p,; to move in positive x direction
to plane 2 and atom on plane 2 has probability p,_ to
move in the negative direction to plane 1, then the net
flux in z-direction f, = fi(pyyn1 — pz—n2)/A where fi,
is the unit normal vector in x direction. For simplicity, let
us consider the movement of atoms in cubic lattice, where
the atom hops from one cube to another with probability
p. If the probability of the random atom movement is
independent of direction x, y, z, one obtains the Fick’s first
law of diffusion, Eq. (1).

J=-DVC (1)
where C' is the concentration of atoms, and the tempera-

ture dependent diffusion coefficient D has the connection
to the atomic level probability of movement p through Eq.

(2)
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where N is the dimension (for 2 dimensional diffusion
N =2 and 3 dimensional diffusion N = 3) «a is the lattice
constant and I' is the frequency of atom movement, which
is related to the direction independent probability for atom
to move per unit time p and the number of dimensions the
atom can move during time-step.Porter et al. (2022) For
example consider k timesteps. If atom has probability p,
to move in x direction and probability p, to move in y-
direction during one time-step At, then the frequency of
the atom movement is I' = p, k/(kAt)+pyk/(kAt) = (ps+
py)/At. If probability p, = p, = p, then I' = Np/At.
The equations (1) and (2) provide the connection between
average random atomic movement in bulk material and
the flux of atoms. The time evolution of the concentration
field can be obtained from the continuity equation by the
divergence of the flux, which yields the Fick’s 2nd law, Eq.
a—C:—V-J:V-(DVC’) (3)
ot

In atomistic scale there is considerable fluctuation of
atomic movement around the average quantities, which
can be examined with random walk simulations for dif-

ferent cases.

In case the probability of the random atomic movement p
is independent of the position @, the time evolution of the
concentration field is only affected by the gradient VC.
However, if the probability p(x) is function of position,
the drift (i.e. advection) of atoms occurs according to Eq.
(4).
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which is the advection-diffusion equation, where the ad-
vection velocity v = —=VD = —V%\; = —V%. Consid-
ering the position dependent probability for random atom
movements p(x) and compression/tension of the lattice, it
becomes possible to link the atomistic phenomena to the
emergent macroscopic diffusion and advection phenomena

Cottrell and Bilby (1949).

An analytical solution is available for diffusion from point
concentration MIT (2024), which serves as a useful test
case for diffusion models Pohjonen (2024b,a), which we
shall compare to also in the current study. For two-
dimensions, the analytical solution is described by Eq. (5)

M 2+ y?
Clz,y,t) = D &P (— Y ) (5)

4Dt
where M is the number of atoms.

The atom movement is thermally activated process, which
is caused by the random vibrations of atoms. If the
diffusing atom gains enough energy, it has high probability
of moving in the lattice. The probabilities for the atom
movement from a stable lattice site to another stable site
can be obtained from Arrhenius type Eq. (6)

E4
=A —— 6
p P ( RT) (6)
where the activation energy barrier £ 4 can be calculated

using atomistic simulations using the nudged elastic band
method (NEB) Wang et al. (2021). NEB method is a

powerful tool to identify the microstructural evolution of a
system in which defects or impurity atoms are present and
they evolve interactively Jonsson et al. (1998); Henkelman
et al. (2000, 2002) The atomic scale information such as
the energies of the initial, final and transition states, can be
used to identify the energy barriers and can serve as inputs
to the description of mesoscale phenomena. Basically NEB
method can provide a minimum energy path that describe
the energy variaton of the atomic movement from an initial
to final state. It is a chain of states method, to determine
the minimum energy path on the potential energy surface.
Each atomic configuration will be at a potential energy of
0 K, represented by a point in the configuration space, and
can be determined either by empirical potentials or first
principles calculations. In the NEB method the initial and
final configurations will be calculated by minimizing the
energy and then a linear interpolation will be carried our
between the two end states to generate a finite number of
replicas. Two nearby replicas will be connected by a spring,
resembling an elastic band made of beads and springs.
The to solve the corner cutting and sliding that can arise,
a force projection, such as "nudging” is employed. This
procedure followed by proper optimization ensures that
the elastic band converges to the minimum energy path.
Further, after optimization, both the position and energy
information of the configurations can be obtained. There
are different variations of the basic NEB method, adapted
to suit the needs of the system in use, such as extended
three dimensional defects which requires a large model
system with a long reaction path. This is to ensure that
enough replicas are included to map the long trajectory
between the saddle point and final state Zhu et al. (2007).

The effect of elastic lattice distortions can bias the ran-
dom movement of the atoms and give rise to net drift
of interstitial atoms towards tensile stress and away from
compression. The dependence of the random movement
probability on the local strain can be quantitatively exam-
ined with ab-initio based NEB methods, and the emerging
flux and the random fluctuations can be examined with
the random walk simulations.

In certain temperature range, it is energetically favourable
for the atoms to coalesce and form a precipitate, which
then grows due to diffusion of more atoms to the surface of
the precipitate Larsson and Agren (2003); Pohjonen et al.
(2022).

3. NUMERICAL ALGORITHM

A random walk algorithm was implemented to simulate
the random movements of atoms in two-dimensional lat-
tice, and their coalescence to a precipitate, which is located
in the center of the simulation domain. When the atom
coalesces to the precipitate surface, it’s radius will grow.
Due to the removal of atoms from random walk simulation
once they become impinged on the precipitate surface, the
concentration is lowered near the precipitate, which then
implicitly causes net flux of atoms towards the negative
of the concentration gradient. Periodic boundaries were
applied.

The random walk algorithm has two main stages. First,
it moves the atoms based on the random probability
of movement, and secondly, it will remove the atoms
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Fig. 1. Flow chart depicting the operation of the random
walk and precipitate growth algorithm.

from calculation when they are within the precipitate
radius, which grows each time an atom is located within
the radius. A flow chart depicting the operation of the
algorithm is shown in Fig. 1.

The local density of atoms was calculated by dividing
the simulation domain to rectangular subdomains and
calculating the number of atoms within each subdomain,
and dividing the number of atoms by the size of the
subdomain (area in 2D).

To speedup the simulations we accelerated the random
walk algorithm to run on GPUs by writing our algorithm
directly in CUDA. We refer readers unfamiliar with CUDA
and GPU terminology to NVIDIA (2024). The random
walk algorithm is straightforward to parallelize and accel-
erate, because except for growing the precipitate radius
the atoms do not affect each others. In the performed
simulations it was found that atoms coalescing to the
precipitate surface is rare enough that performance-wise
the radius expansion can be performed with GPU atomic
operations.

Atomic operations guarantee that no other atomic oper-
ations happen while the atomic operation is being per-
formed. Thus they prevent race conditions that would
otherwise happen when multiple threads try to write to
the same variable. Naturally atomic operations are more
costly than normal operations, especially if many of them
are being performed on the same memory address, since
the operations have to be synchronized in some manner.

To minimize the costs of the atomic operations we use a
common technique of first combining all atomic updates
inside a threadblock into a variable in shared memory and
make a single atomic update from the threadblock into
the variable in global memory that is shared across all
threads. This cuts down the amount of atomic operations
to variables in global memory significantly and atomic
operations to variables in shared memory are significantly
faster due to them being closer in memory and due to
the need of synchronizing only between the threads in the
current threadblock.

Due to this optimization and the radius updates being rare
we found the atomic operations to be a easy to implement
solution for growing the radius that did not have measur-
able effect on the performance of the kernels. The rarity
of the coalescing motivated optimization where instead of
synchronizing between a single update of each atom we
update each atom n steps and then synchronize. This cuts
down memory traffic by a factor of n since we can reuse
the values loaded to local memory. The only difference
between synchronizing between each step and every n
steps is that the radius size lags after the first update
done after synchronizing in the second scheme, but if the
number of radius updates is small enough this difference
is negligible. We found that on the tested hardware, a
single RTX A2000 8GB Laptop GPU, synchronizing after
every second step gave a performance improvement of 30
percent.

4. NUMERICAL TEST CASES
4.1 Diffusion from initial point source

To test the connection between the random movements
and the macroscopic diffusion equation, we compared the
random walk simulation from initial point concentration
to corresponding diffusion calculation. Consider a two-
dimensional case where all atoms are initially located at
the origin. The random movement is assumed to occur in
two dimensional square lattice with lattice constant a = 1.
Also, timestep is chosen as At = 1, i.e. dimensionless
units were used as this is mathematical study not directly
connected with physical properties. The atoms have 50
% probability to move within time-step in x-direction,
and the same probability for y-direction. If they move,
they have equal probability to move either in positive or
negative direction. Since the diffusing atom can move both
z and y direction within timestep with 50% chance in each
direction, the frequency for the atom movement during
timestep is I' = (0.5 4+ 0.5)/At = 1/At, and according
to Eq. (2) the diffusion coefficient in this case becomes
D=T/(2N)=1/4.

4.2 Concentration fluctuations as function of system size

Fluctuations in small systems are inherent due to discrete
particles. It was examined how the concentration fluctua-
tions in a two dimensional system depend on the system
size. For this, the length of the square domain and the
number of atoms were both scaled by scaling factor sf,
which was altered in the simulations. The atoms were
initialized to random positions and the random walk sim-
ulation was ran for 1000 timesteps. In each simulation the
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Fig. 2. Diffusion from initial point concentration. The lines show the simulation results and the markers show the

corresponding analytical solution.
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Fig. 3. The standard deviation sd of the concentrations
of 40 by 40 subdomains as function of system scaling
factor sf

domain was divided in to 40x40 square subdomains. The
2d concentration was calculated as number of atoms/area
for each subdomain. Then standard deviation of the sub-
domain concentrations was calculated. The standard de-
viation as function of the scaling factor is shown in Fig.
3. The result shows that the standard deviation depends
on the scaling factor approximately proportional to 1/sf.
Increasing the system size in the random walk simulations
up to sf = 12 still showed noticeable fluctuations, and was
not much different from the case sf = 6.

4.8 Diffusion controlled growth of precipitate

To test the random walk simulatin in a more interesting
case, a coupled precipitate growth and diffusion simula-
tion. The atoms, which were initially located randomly at
the domain, were moved randomly similar to the previous
case, but if they arrive within a radius, the precipitate
radius grew and the atom was removed from the random
walk. The simulation results from small scale simulations
are shown in Fig. 4, where a) shows the concentration
of atoms in the whole simulated two dimensional domain
and b) shows the plot of concentration of atoms along the
horizontal line which passes throught the origin, where the
growing precipitate is located. The area increase of precip-
tate due to attachment of atom was set as A, = 7(a/6)?.

The result shows that the concentration near the precip-
itate becomes depleted as atoms are being removed from
the diffusion to increase the precipitate radius, which is a
realistic effect Porter et al. (2022).

5. CONCLUSIONS

A theory linking random movement (i.e. random walk)
of atoms in crystalline material to the activation barrier
of atom hopping from stable lattice cite to another was
described and also the link between the diffusion equation
and the random movement probability was presented. The
random random walk model describing diffusional move-
ment of atoms in a lattice was constructed and parallelized
using GPU. The model was compared to an analytical
solution for diffusion from an initial point concentration,
and it was applied for mathematical calculation of diffusion
controlled growth of a precipitate. In future studies, the
probabilities and their dependence on different factors,
such as local stress/strain state, can be obtained from
nudged elastic band (NEB) calculations and the model
can be parameterized using physical data.
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