
EasyChair Preprint
№ 16006

Game Modeling of Blockchain Protocols

Sophie Rain, Anja Petković Komel, Michael Rawson and
Laura Kovács

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2025

Game Modeling of Blockchain Protocols

Sophie Rain1 , Anja Petković Komel1 , Michael Rawson2 , and Laura
Kovács3

1 Argot Collective, Switzerland
2 University of Southampton, UK

3 TU Wien, Austria

Abstract. Reasoning about incentives in a blockchain protocol can be
captured by game-theoretic modeling. We present modeling principles
sufficient to create a faithful representation of a blockchain protocol as
an extensive form game. Such games are then suitable for automatically
establishing game-theoretic security. We showcase the semi-automated
generation of the game models for two parts of Bitcoin’s Lightning pro-
tocol: the closing of a channel and the routing of a payment along chan-
nels. Additionally, we provide a domain-specific language, which eases
the implementation of the games. We believe our modeling principles
and guidelines strengthen machine-supported modeling practices.

Keywords: Game Theory · Formal Models · Modeling Template · Pro-
tocol Modeling.

1 Introduction

Users of decentralized economic systems, such as cryptocurrencies, demand se-
curity guarantees of the system as a whole. This includes cryptographic secu-
rity [1,18,13], which ensures that the cryptographic premises of the protocol are
secure, implementation security [12,6,4], which ensures the implementation of
the protocol does not allow any unexpected behavior, and game-theoretic secu-
rity [25,2], which ensures that cryptographically and implementationally possible
but undesired behavior, such as collusion, is economically disincentivized. This
paper focuses on the rigorous modeling of protocols as games, in order to auto-
matically assess their game-theoretic security.

To say that a protocol is game-theoretically secure means that it has vari-
ous desirable properties. Notably, we are interested in capturing that protocol
users/participants cannot be economically harmed, and that a group of players
cannot collaborate to gain an advantage. These properties are called Byzantine-
fault tolerance and incentive compatibility [20] and revised in [2]: These prop-
erties are implemented through the game-theoretic concepts weak immunity,
respectively weaker immunity, for Byzantine-fault tolerance, and collusion re-
silience and practicality for incentive compatibility. Manually checking that a
game has a particular game-theoretic property is, however, tedious and often
not viable. Protocols may allow many possible options at each step, producing

http://orcid.org/0000-0002-8940-4989
http://orcid.org/0000-0001-7203-6641
http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0002-8299-2714

2 Rain et al.

game trees with millions of paths, as showcased in [2]. To overcome the burden
of manual and notoriously error-prone protocol analysis, automated approaches
arose to check the game-theoretic properties for a given protocol [2], which work
– in essence – by an exhaustive symbolic enumeration of all paths through the
game tree. In this setting, game-theoretic security derived by an automated for-
mal approach increases user trust in the protocol under analysis.

Tacit in game-theoretic security is the expertise and work required to model
a protocol as a game rather than only as a list of specifications. Extensive form
games (EFGs) turn out to offer suitable expressivity for modeling protocols us-
ing a tree-like data structure capturing actions between protocol users. Ensuring,
though, that protocol requirements are best represented by EFGs is, however,
challenging: it is reminiscent of the formalization of mathematics in that hidden
details must be recovered, but with the added challenge of managing very large
game trees. To the best of our knowledge, game-theoretic modeling of protocols
has remained mostly manual to date, partially due to the fact that – until re-
cently – automated methods did not scale to very large trees found in real-world
protocols.

Our paper addresses this key missing bit in game-theoretic security: provide
(semi-)automated methods to represent protocols as games, upon which game-
theoretic analysis can be performed. We present a network of techniques (Sec-
tion 3) to partially automate and accelerate the development of game models,
while increasing trust in their construction. Using these techniques, we have suc-
cessfully encoded very large games, such as those required to model a phase of
Bitcoin’s Lightning protocol [19], and the large proprietary protocol FAsset [7] on
the Flare blockchain [8] for digital currency exchange. Our resulting models were
then handed to the automated game-theoretic security tool CheckMate [21],
as this framework allows automatically analyzing the Byzantine-fault tolerance
and incentive compatibility of game models of very large protocols, and further
supports models containing conditional actions (Section 7).

In summary, the main contributions of our paper come with (i) providing gen-
eral principles guiding the automated synthesis of games from protocols (Sec-
tion 3); (ii) introducing a domain specific language for game modeling (Sec-
tion 4); and (iii) illustrating the generation of games from protocols on various
examples (Section 5).

Related Work. The modeling principles described in Section 3 rely on the
definition of an EFG as a suitable model for the game-theoretic security anal-
ysis as introduced in [20,25], that can be automatically processed by Check-
Mate [2,21]. While [20,25] introduce manually made models, our semi-automa-
ted approach enables exhausting all parameter options systematically in a ma-
chine supported manner, and thus refines these models, making fewer assump-
tions on the way.

Extensive form games can be translated to Open games with agency [3,10,11].
The utilities in Open games are restricted to constant numeric utilities, and ra-
tional behavior of players is assumed. We, however, work with symbolic utili-

Game Modeling of Blockchain Protocols 3

ties and capture honest/rational behavior, and hence game-theoretic security.
PRISM-games [14], offer a modeling language for concurrent stochastic multi-
player games (CSGs), thus capturing probabilistic behavior. They are also lim-
ited to constant numeric utilities, as opposed to the symbolic ones.

The manual game-theoretic models as static noncooperative games, such as
a model for shard-based permissionless blockchains [16], the griefing attack in
blockchain mining [5,17], the mining strategy for Bitcoin-NG blockchain pro-
tocol [24], the reward distribution in Algorand [9], use many of the modeling
principles presented in Section 3. The authors of these models detail the as-
sumptions and design decisions in forming a static game model. They are also
able to use symbolic utilities in their (manual) game-theoretic security analysis.
As opposed to the approach described in the present paper, these games were
modeled manually and are not amenable to automatic processing.

2 Preliminaries

This section introduces relevant aspects for game-theoretic modeling of (block-
chain) security, complementing the automated verification of game-theoretic se-
curity, and in particular the CheckMate framework [2].

2.1 Protocols

Blockchain protocols are a natural use for game-theoretic security, and in par-
ticular for the CheckMate framework [2], as they formalize economic incen-
tives within strict formal rules. We, therefore, introduce an interesting Bitcoin
protocol called Lightning [19] as a running example. It enables users to safely
send numerous transactions while only having to publish two of them on the
blockchain. This saves transaction fees and time. The protocol is based on so-
called channels, each connecting two users. The part of the protocol we focus
on is called routing : it enables Lightning users to route money from a user A to
another user B (who do not share a channel) along a path of channels.

A I1 I2 I3 B

y
(1)

(m+ 3f, y, t1)

(2)

(m+ 2f, y, t2)

(3)

(m+ f, y, t3)

(4)

(m, y, t4)

(5)

x

(6)

x

(7)

x

(8)

x

(9)

Fig. 1. Routing in Lightning, where hash(x) = y.

Example 1 (Routing in Lightning). Figure 1 illustrates the routing of transac-
tions from a user A to a user B with the three intermediaries I1, I2, and I3,

4 Rain et al.

where all neighbors (i.e. A and I1, I1 and I2, etc.) have a Lightning channel. To
route money from A to B using Lightning, B has to (1) define a secret x and
send its hash value y to A. Next, (2) A locks some amount in the channel with
I1, which can only be unlocked with the secret x before a timeout t1. The locked
amount should be the amount m to be sent to B plus a fee f for each inter-
mediary. The intermediaries proceed accordingly in steps (3–5), each reducing
the amount by f . Then (6), as B knows the secret, they can unlock the money
in their channel with I3, thereby revealing the secret to I3. Knowing the secret
x, the intermediaries continue to unlock the money in their respective channels
(7–9). For the sake of simplicity, in this paper we focus mostly on the unlocking
phase, i.e., steps (6 – 9). Steps 1–5 are referred to as the locking phase.4.

Closing a Lightning Channel. As mentioned above, the Lightning protocol is
based on channels that each connect two users. Such a channel can be closed
at any time by the users, releasing the money that was locked inside. Either
user can unilaterally close the channel by posting the latest distribution state
they agreed upon on the blockchain; we refer to this as honest unilateral closing.
However, a user can also take an outdated distribution state and publish it on the
blockchain to close the channel; we call this dishonest unilateral closing. After
dishonest unilateral closing, the other channel user has the option to prove that
the posted distribution state was outdated and evoke a punishment mechanism
that keeps the other one from getting their assets. This is done through a so-
called revocation transaction.

Further, the channel users can also collaboratively close their channel: this
can be achieved through both signing and publishing the same transaction that
distributes their assets. The distribution transaction proposed by one of them
can be both honest (using the values of the latest agreed distribution state) or
dishonest (using any other distribution values). The other user has to decide
whether or not they agree to the distribution by signing or not signing the
transaction. If none of the users ever close the channel in any way, their money
will stay locked forever.

2.2 Game-Theoretic Concepts and CheckMate Input Structure

As detailed in [21], game-theoretic security verification relies on inputs given as
extensive form games (EFGs) with symbolic utilities.

Definition 1 (Extensive Form Game –EFG). An extensive form game
(EFG) is a finite tree G together with a finite set of players N , where

– each path in G that starts from the root is called history;
– each internal node has a player – the one whose turn it is – assigned;
– the set of edges at each internal node is called actions and are the options

the assigned player can choose from;

4 The model of the full routing protocol and its generation code are available at [22].

Game Modeling of Blockchain Protocols 5

B

· · ·

S ∈

P({A, I1, I2, I3})

· · ·
I3

· · ·
S ∈

P({A, I1, I2})

· · ·
I2

B

· · ·

SA

· · ·

SA,I1

I1

· · ·
S ∈

P({A, I1})

· · ·
I1

(ρ, f, f, f, ρ)

ρ, f > 0

U

I

SS U

I

SS U

I

S∅ SI1

I

U

SS U

I

S∅ SA

Fig. 2. Sketch of Lightning’s Routing Unlocking phase. Tree icons by Freepik - Flaticon.

A

B
B

B

Ch

H

D

Cc

I

P I

H

Ch

D
Cc

I U S

H

Ch

D
Cc

IUS

Fig. 3. Sketch of Lightning’s Closing phase. Tree icons by Freepik - Flaticon.

– each leaf has a utility assigned and represents a possible end of the game.
The utility specifies the pay-off for each player in N after this history (root
to this leaf);

– there is at least one history to a leaf that represents the expected behavior of
the underlying protocol, called honest history.

Example 2 (Routing EFG). Figure 2 illustrates an EFG modelling routing un-
locking in Figure 1. At the root, it is player B’s turn to choose between the
actions U (unlocking), I (ignoring), or one of the SS choices, representing B’s
option to share their secret x. We assume history (U,U, U, U) to be the honest
history leading to utility ρ for A and B and f for the intermediaries I1, I2, I3.

Example 3 (Closing EFG). Figure 3 shows an EFG model of closing a Lightning
channel. We call the two users of a channel player A and player B. Without
loss of generality, we assume player A has the first turn. Players can choose
between action H (closing unilaterally and honestly), action Ch (closing the

6 Rain et al.

channel honestly and collaboratively, which requires player B to react), action
D (dishonest unilateral closing, allowing B to post a revocation transaction –
action P – or to ignore it – action I), action Cc (dishonest collaborative closing,
again requiring B to react), or action I (not closing the channel).

If player A chose action Ch or Cc, player B gets to react. They have the same
choices as player A before, but they additionally can pick action U (propose an
update to the channel) or action S (signing player A’s closing proposal).

We fix both ways of closing honestly: history (H) and history (Ch, S) to be
honest histories.

The symbolic utilities are terms with two kinds of variables: constants and
infinitesimals. Both types are interpreted over the reals, but the infinitesimals
are assumed to be closer to 0 than any of the constants and are supposed to
represent subjective motivation. This is achieved by interpreting utilities as
constant-infinitesimal pairs, which are ordered lexicographically, thereby achiev-
ing infinitesimality. Further, to allow for more realistic models, the values of the
constants and infinitesimals can be restricted through initial constraints.

Example 4 (Symbolic Utilities). The utility after the honest history in Figure 2
contains one constant f and one infinitesimal ρ. For each variable, its type has
to be specified. For example, A’s utility ρ will be interpreted as the pair (0, ρ)
since it does not contain any constant variable. Further, it is assumed in Figure 2
that both ρ and f are positive, hence the initial constraints ρ > 0, f > 0.

3 Modeling Principles for Game-Theoretic Security

Usually, several EFGs can serve as game-theoretic models for a blockchain pro-
tocol, so that they faithfully represent the protocol itself and adequately capture
its security properties. While modeling protocols, we are therefore making some
assumptions and design choices (see Section 3.3) that allow us to construct one
such finite model of a possibly infinite protocol. These design choices and as-
sumptions have to be thoroughly documented to ensure transparency of the
model’s limitations with regard to how accurately it corresponds to the protocol
(and its potential implementation).

In this section, we present our guidelines towards faithful game-theoretic
modeling of (blockchain) protocols. Our modeling principles yield a possible
approach that was feasible to construct sufficient models for the CheckMate
framework. To ensure faithful representations of protocols that are also aligned
with the presuppositions on the CheckMate inputs, our models have the fol-
lowing three properties:

1. Relative Utilities. The utilities awarded to each player are relative to what
they were assumed to have initially.

2. Ghosting. At every internal node of the game tree, it is possible to do
nothing, i.e., to not respond in any way. It is crucial to account for such
behavior, as it can easily happen in the decentralized and pseudonymous
setting.

Game Modeling of Blockchain Protocols 7

3. Actual Choice. At every internal node, there have to be at least two actions
available. It is not possible to have just one, as this player does not have an
actual choice.

Example 5 (Model Properties). In Example 2, relative utility means that player
A in Routing Unlocking does not receive utility −m in the honest case, even
though A’s balance is decreased by a value of m; instead, they receive an in-
finitesimal but positive utility ρ. This is due to our assumption that there is a
fair trade of an asset in some form for Bitcoin, giving A some form of benefit.
Otherwise, A would not route the money to the player B.

Next, ghosting means that at every internal node in the game tree, there has
to be an "ignore" action that corresponds to inaction. For readability, it is useful
to specify what task the current player is ignoring. In Routing Unlocking, players
can "ignore to unlock" their HTLC (action I) or choose not to share their secrets
with others, which we call "ignore the option to share a secret" (action S∅). In
the Closing game players also have an "ignore" action, signifying doing nothing.

At every point in time in Routing Unlocking and in Closing game, there
are always at least two available choices, doing something or ignoring to do
something, ensuring actual choice.

3.1 Game Modeling – Setup

We next summarize the setup we propose and use for modeling (blockchain)
protocols as games. Our modeling principles listed below form instructions on
how to model a decentralized protocol as an EFG, which we further translate
into a modeling template as discussed next; for concrete design/implementation
details on our template we refer to [22].

Define Players. Fix the number and names of players. Each agent who can
make active choices in the protocol or impact it through their choices should be
represented as a player.

Example 6 (Modeling Players). In Example 2 of Lightning’s routing, we consid-
ered the player who wants to route money to another one, called A; the one
who is supposed to receive the routed value, called B; and we chose to study
the case where we have 3 intermediaries, named I1, I2 and I3. In our modeling
implementation, this is defined as

PLAYERS = players('A', 'I1', 'I2', 'I3', 'B')

In the Closing game of Example 3, we have two players, A and B, who share a
channel.

We note that, within a protocol, there is potentially an unspecified number of
players. It is then possible to create a model for each number instance of players.
For example, the routing protocol of Example 2 has three intermediaries, but
could have also just had one, two, or even more players (four, five, etc.). A
good representation of players, therefore, depends on the protocol itself, and
the number of players should be documented as an explicit assumption on the
model.

8 Rain et al.

Exhaust Parameter Options. One has to pay attention to the parameters in a
protocol and vary them in all combinations exhaustively. Within CheckMate,
all possible real values in players’ utilities can be considered by construction, as
CheckMate supports symbolic utilities. In addition to symbolic utilities, other
parameters also need to be varied. For example, in our routing protocol from
Example 2, relevant parameters include time (and time-outs), secret sharing,
wrong addresses, wrong amounts, and all other possible ways of acting, including
locking funds using a wrong secret hash.

Further, one also has to separate which model parameters can be tackled
through symbolic utilities and which have to be studied as distinct actions that
players can take. For instance, locking the wrong amount will introduce a new
symbol for the utilities to the model (the amount to lock), but also a different
action from locking the correct amount. In the closing protocol of Example 3,
closing dishonestly also introduces a new symbol: the proposed cheating factor.
Note that some parameters require additional constraints and assumptions, such
as the symbol representing the wrong amount locked being different from the
correct one, see Section 3.3.

Define a State. It is necessary to identify the values, storage slots, and facts
about previous choices that suffice to compute utility in each EFG leaf. Con-
structing a state to keep track of these values/facts throughout the game tree
generation is equally important. A state, then, usually includes at least all the
varied parameters mentioned before. We define the initial values in the state and
define a deep copy function. Note that during the design of EFG tree genera-
tion, the state might need to be refined with more information to ease the tree
generation process.

Example 7 (Modeling States). For Routing unlocking in Example 2, our state
contains the following information for each player: whether the contract they
can possibly unlock is locked, unlocked, or expired, the amount locked in
this contract amountToUnlock, whether they know the secret to unlock the con-
tract secret, and with whom they have decided not to share the secret with
(ignoreshare). Additionally, we keep track of whether player B has ever shared
the secret (BShared), as any participation from player B requires them to send
the goods to A. In our modeling template, we store the Routing unlocking state
as a Python dictionary as follows:

initial_state = {"B_shared": False}
for player in PLAYERS:

initial_state[player] = {}
initial_state[player]["contract"] = "locked"
initial_state[player]["amount_to_unlock"] =

m + (len(PLAYERS)-PLAYERS.index(player)-1)*f
initial_state[player]["secret"] = False
initial_state[player]["ignoreshare"] = {p: False for p in PLAYERS}

initial_state[PLAYERS[-1]]["secret"] = True

Game Modeling of Blockchain Protocols 9

initial_state[PLAYERS[0]]["contract"] = "null"
initial_state[PLAYERS[0]]["amount_to_unlock"] = None

For the Closing game of Example 3, the model state contains for each player
whether they closed unilateraly (if yes, then value by which they tried to enrich
themselves, 0 if honest), published a revocation transaction, made a collaborative
attempt (if yes, then value by which they tried to enrich themselves, 0 if honest),
signed a collaborative closing, proposed an update (if yes, then value by which
current balance of player changes), or agreed to an update. We also keep their
current balance.

3.2 Generate the Game Tree of the Model

Define Final States. We fix the criteria under which an EFG is over, that is,
when a final state is reached. In the routing phase of Example 2, this is when no
contract is locked anymore, i.e., when all contracts are either expired or unlocked.
Our model template uses a isFinal function to decide this, as follows

def is_final(state):
for p in PLAYERS:

if state[p]["contract"] == "locked":
return False

return True

Define the Utility Function. For every final state, that is, at each EFG leaf,
the utility for each player has to be defined. The information in the state should
suffice for this step. In the Routing unlocking protocol of Example 2, an interme-
diate player (I1 - I3) gets the utility of the amount in the contract they unlocked
minus what they locked in their contract and the previous player unlocked. Play-
ers A and B are expected to make a fair trade of money and goods, which, in case
it goes through (when B participates in the unlocking through either unlocking
I3’s contract or sharing the secret), leads to a small positive utility ρ for both A
and B. Our modeling template suggests a function compute_utility(state).

Collect Actions. We collect all possible actions in the protocol and decide in
which scenarios they are possible. Note that often variations of parameters can
be grouped into a small set of actions depending on what impact choosing a
specific value for a variable has. In our model template, the actions are collected
in ACTIONS and the tree is produced by a generate_tree function.

Example 8 (Model Actions). In the Routing unlocking protocol of Example 2,
besides the always-present action of ignoring (I), there is also unlocking (U)
when the player knows the hashed secret, and sharing said secret with other
players. For simplicity, we model secret sharing by each player choosing a subset
of other players, who do not know the secret yet, and with whom they share it.
An empty subset thus corresponds to ignoring sharing the secret.

For the Closing protocol of Example 3, the actions are listed in Example 3.

10 Rain et al.

Fix Player Precedence. Next, an ordering of players has to be fixed, such that we
can decide which player’s turn it is at every point in the game. That means their
precedence has to be established. In Example 2, we decided to give precedence
according to the following three criteria:

– Priority 1: The next player is the one with the next time-out (= right-most
in Figure 1) who knows the secret and whose current state of the contract
is locked.

– Priority 2: The next player is the one with the earliest time out who can
share the secret.

– Priority 3: If there is no such player, all locked contracts expire.

Our modeling template suggests defining the next player in a dedicated function
NextPlayer, given below.

def next_player(state):
prio1:
for p in PLAYERS[::-1]:

if state[p]["secret"] and state[p]["contract"] == "locked":
return p, state

prio2:
for p in PLAYERS[::-1]:

if state[p]["secret"]:
for share_with in PLAYERS:

if (not state[p]["ignoreshare"][share_with] and
not state[share_with]["secret"]):

return p, state

prio3:
state1 = copy_state(state)
for p in PLAYERS:

if state1[p]["contract"] == "locked":
state1[p]["contract"] = "expired"

return None, state1

3.3 Declare Assumptions and Design Choices

Some of the modeling steps from Sections 3.1–3.2 require making assumptions.
One has to pay special attention to such assumptions and document them thor-
oughly. Some assumptions only need to be documented, such as choosing to
require player B in the Routing game of Example 2 to send the goods in case
they share the secret. Others, like assumptions on utility variables (e.g. f > 0),
have to be explicitly listed as an INITIAL CONSTRAINT. Design choices usually
also influence the shape and the size of the game tree: in the Routing unlocking
of Example 2 the choice of how we set priorities for the player precedence en-
ables us to model a protocol where in practice simultaneous actions are possible

Game Modeling of Blockchain Protocols 11

(sharing secrets could in principle happen at the same time), but the EFG does
not allow for it.

4 Domain Specific Language for Game Modeling

Section 3 summarizes our guidelines to model protocols as EFGs. Our modeling
template is designed such that the resulting (EFG) model is parsable by our
CheckMate tool, which takes a ‘.json‘ file as input. To ease the process of model
generation in a suitable format, we designed a simple domain-specific language
(DSL), written in Python, that enables game tree generation. The usage of this
DSL is discussed next and exemplified in the modeling template available [22].

To handle real-valued expressions in the utilities of the EFG players, appear-
ing in the leaves of the game trees, and the constraints imposed on the symbols,
our DSL introduces a class of expressions Expr, which includes a NameExpr to
handle the symbols. The class overloads the usual arithmetic operators (+, -,
*, /) and establishes their precedence. Further, the DSL defines a class of con-
straints, with subclasses for disequation constraints, conjunctions, and disjunc-
tions, and defines their string representations. For convenience, the comparison
operators (<, >, =) are also overloaded. Dedicated functions define constants
and infinitesimals, and turn them into expressions. Similarly, players and
actions turn them into a list of members of classes Player and Action, respec-
tively. The class of trees is defined, with subclasses Leaf (containing a dictionary
of utilities) and Branch (containing the player and a dictionary mapping actions
to trees); and a dedicated json method, which produces a tree representation
suitable to serve as CheckMate input. Finally, a function finish can be called
to output the data into an appropriate ‘.json‘ file that can be piped directly to
CheckMate.

5 Examples of Generated Game Models

Using the modeling principles specified in Section 3, the DSL of Section 4, and
our modeling template available in [22], we generated game-theoretic models in
the form of an EFG for the protocols listed in Table 1.

The Closing and Routing protocols listed in Table 1 are described in Exam-
ples 2–3 and explained in Section 2.1. A short description of the fAsset protocol
can be found in Section 7. The other game-theoretic models of Table 1 are not
modeling blockchain protocols, but rather simpler games, illustrating the vari-
ety to which our modeling principles apply. Here we give a short explanation of
those models and refer to [22] for the full implementation.

The Auction model represents a simple auction with 4 players involved - an
auctioneer and three bidders. The auctioneer sets an initial price for the item
5 The model of the fAsset protocol uses conditional actions defined in Section 7. The

model implementation is currently not public, as the security analysis is still in
process, but it will be made available once the analysis is terminated.

12 Rain et al.

Game Nodes Players Honest histories LOC
Closing 2131 2 (H), (Ch, S) 265

Routing 21688 3 (SH , L, L, U, U) 487
144342306 4 (SH , L, L, L, U, U, U) 487

Routing Unlocking 18707 5 (U,U, U, U) 271
fAsset5 1805409 6 (CRTc+pp) 4300
Auction 81 4 (L,E, I, I) 131
EBOS 31 4 (Mine, Mine, Mine, Mine) 123

Tic-Tac-Toe 549946 2 (CM,RU,LU,RD,RM, 126
LM,CU,CD,LD)

Tic-Tac-Toe 58748 2 (CM,LU,RU,LD,LM, 182(concise) RM,CU,CD,RD)

Pirate 161 4 (y, y), (y, n, y) 193

Table 1. Examples of game-theoretic models. The full implementation of the models
can be found at [22]. Columns 2–3 list respectively the number of EFG nodes and
players of the games listed in Column 1. Column 4 specifies the intended honest history
of the EFG, whereas Column 5 gives the lines of code (LOC) in our model templates.

to be sold. This can be less than what the item is worth in the auctioneer’s
opinion, exactly what they think it is worth, or more than what they think it is
worth. As usual, the auctioneer also has the choice not to put it up for auction.
Then the three bidders have the option to – one after the other – bid a price
that is higher than the previous one, which can be lower than what they think
the item is worth; exactly what the item is worth; or higher than what it is
worth. In this model, each player can bid at most once. Their utility depends on
whether they received the item or not. If the item was sold, the bidder who buys
it receives what they think it is worth minus what they paid; the other bidders
receive a very small (infinitesimal) negative utility for not getting an item they
wanted; the auctioneer receives what they sold it for minus what they think it
was worth. If the item was not bought, everyone receives a small (infinitesimal)
negative utility, because it is assumed they wanted to sell/buy the item. Finally,
if the auctioneer never put it up for auction, everyone receives utility 0.

The EBOS game is an extended version of the game-theoretic problem known
as the battle of the sexes. In the Extended Battle Of the Sexes (EBOS), there
are 4 players, which model two couples. Each player can choose between two
activities: one they like but their partner does not, and one they do not like but
their partner does. Their utility depends on whether they do the activity they
prefer and with whom they do it.

The Tic-Tac-Toe game is enhanced with an end utility for each player: the
player that wins receives a reward w > 0, reduced by the penalty s for every
move required. The constraint w > 9s is an initial constraint of the model. The
player who loses the game is compensated by the utility k · s − w, where k is
the number of moves played. In the case of a draw, both players get utility 0.
The concise version identifies equivalent actions and thus reduces the size of the
model by breaking the symmetry. For example, the first player making a move

Game Modeling of Blockchain Protocols 13

can choose to pick a corner, but it does not matter whether it is the top left, top
right, bottom left, or bottom right. These 4 actions are equivalent. Both versions
of the model are faithful representations of a Tic-Tac-Toe game and hence also
bear the same game-theoretic properties.

The Pirate game is an adapted version of the “puzzle for pirates” introduced
in [23]. It follows a voting scenario: there are 4 players (A, B, C, and D) and each
player proposes a distribution of a joint utility g. First, the players vote whether
to accept A’s proposed distribution, in alphabetical order. If the majority of
players are in favor of the proposal (indicated by taking action y when it is their
turn), the game ends with the proposed utilities. Otherwise, i.e., if the majority
votes no (action n), player A is eliminated from the game, which results in the
utility −d for player A when the game ends, with d > 0. The process repeats
with the joint utility proposed by player B, and then C. In case of a tie, the
decision of the proposing player is the casting vote.

6 Evaluation of Modeling Principles

Comparison to Manual Games. The Closing and the Routing protocol, as ex-
plained in Section 2.1, have previously been modeled manually [25,20]. We now
compare the game models generated in Section 5 to their manually modeled
counterparts. We note that in the related approach of [25], the Closing proto-
col is modeled as a Normal form game (NFG) with two players rather than an
EFG. That means that in [25], both players only get to choose an action once
and simultaneously, which drastically simplifies the protocol. The manual model
of the Closing protocol in [20], which is modeled as an EFG with 221 nodes,
provides a more thorough view when compared to [25]. However, compared to
our generated model with 2131 nodes, the approach of [20] still misses several
possible sequences of choices, such as player B proposing their own collaborative
closing (actions Cc and Ch after player A chose Cc or Ch in Figure 3). While
these additional choices arose naturally when following the modeling template,
since player B as well has the option to close the channel at any point in time,
they were overlooked in [20]. Nonetheless, the manual model of [20] and the
one generated using our modeling principles yield the same security result when
analyzed by CheckMate.

Similar observations and improvements are also true for the Routing protocol
(see Section 2.1). This protocol is modeled as an EFG with 3 players in [25],
where each player only ever has 2 options: to lock the money or to not lock
the money in the locking phase of the protocol (steps 1–5 in Figure 1); and to
unlock the money or to not unlock the money in the unlocking phase (steps 6–9
in Figure 1), thereby ignoring all possible deviations such as sharing secrets or
locking the wrong amount of money. The work of [20] aimed to consider these
deviations in an EFG model of the Routing protocol with 5 players; however,
due to the sheer size of the resulting game tree, the method of [20] only presents
a partial manual model of the Routing protocol.

14 Rain et al.

Assumptions. The fact that we need to make assumptions is not specific to the
introduced modeling principles, but a natural consequence of abstraction. We
work with two kinds of assumptions:

1. Assumptions on the occurring variables, listed as INITIAL CONSTRAINTS.
These assumptions are typically driven either by (i) the protocol itself: ex-
cluding impossible values for variables, such as routing a negative amount in
the routing protocol, Section 2.1; or by (ii) the modeling as an EFG: restric-
tions on values may be necessary to ensure all the given choices are possible
for all allowed values of the variables.

2. Assumptions that are just documented in words, but are not part of the
generated EFG. These assumptions usually stem from two considerations: (i)
to decrease the size of the game tree, without violating the faithfulness of the
generated model; or (are necessary) (ii) to accommodate the community’s
choice to use EFGs for game-theoretic security analyses, as discussed in
Section 7.

Example 9 (Game Modeling Assumption). As an example of an assumption of
the kind of (2i) discussed above, we study secret sharing in our model of the
routing protocol (Figure 2). We allow each player P to share the secret (actions
SS in Figure 2) once with a subset of players S. Player P can never, in the
future, share the secret with further players. Sharing the secret at most once
and with a set of players, rather than with one player at a time, significantly
reduces the size of the game tree, while arguably not impacting its faithfulness:
a player should, in principle, not share the secret. However, if another one does
so while refusing to unlock (e.g., to perform a Wormhole attack [15], where an
intermediary’s participation fee f is stolen), our approach allows the others to
rectify the situation by sharing the secret with the deceived intermediary.

Required Domain Knowledge. Even when following our modeling principles, con-
structing game models still requires extensive domain knowledge. For example,
the choice of parameters and the encoding of constraints need to be designed in
a faithful way, and expertise is required for this. However, the manual effort is
now semi-automated, reducing the errors during modeling and scaling. It further
allows the user to focus on the technicalities of the protocol to be modeled rather
than on defining their own modeling strategy.

7 Limitations of EFGs as Game-Theoretic Models

When considering EFGs as game-theoretic models of blockchain protocols, there
are certain limitations, which also imply limitations on the modeling principles
from Section 3. First of all, we consider deterministic models, rather than prob-
abilistic ones - for security analysis, we ask whether the honest players could
lose money, which depends on all possibilities of the other players’ behavior and
is fundamentally deterministic, thereby circumventing probabilistic effects. We
assume that at every given point, full information about which previous actions

Game Modeling of Blockchain Protocols 15

were taken is known to the current player. Further, no simultaneous actions or
choices of different players are permitted in the model. While in the protocol,
it is often the case that any player could take action, an EFG model has to
pose some assumptions on the order in which players act. Thus, the modeling
principles require the user to define the player precedence (also in the model-
ing template), which affects the assumptions and the tree generation. Similarly,
EFGs model finite games, and the modeling principles reflect that by checking
whether a final state has been reached or the tree generation continues.

In an EFG with symbolic utilities, the actions available to the players cannot
depend on the actual values of symbolic expressions and parameters. Further,
there could be outside – possibly stochastic – effects from the environment that
influence players’ choices, but have no agenda on their own. Examples of such
an effect would be time or price changes of the currencies, assuming players in
the protocol are not moving the market. Modeling such effects as another player
would compromise the definition of game-theoretic security as defined in [20].
In the modeling principles, this limitation is reflected in exhausting parameter
options, where more actions are necessary to distinguish available choices. To
enable more leeway in modeling, we propose the following extension to EFGs.

7.1 Extending EFGs to Conditional Actions

In this section, we introduce a generalization to EFGs to allow for actions that
can only be taken if some (uncontrollable by the players, possibly probabilistic)
condition is met. We call such actions conditional actions.

Definition 2 (EFGs with Conditional Actions). An extensive form game
with conditional actions is an EFG with the following adaptations:

– every non-terminal history h is assigned a set of constraints CA(h) called
conditions;

– every action a from an internal node belonging to history h is assigned one
condition c(a) from CA(h);

– let h = (a1, a2, . . . , ak) be a non-terminal history. Then the following holds:
1. the conditions in CA(h) are mutually exclusive:(∨

c∈CA(h)

c ∧ (∀c, c′ ∈ CA(h).c ̸= c′
)

=⇒ ¬(c ∧ c′);

2. the conditions are collectively exhaustive (i.e. span the whole subspace):

(c(a1)∧ c(a2)∧ . . .∧ c(ak)) ⇐⇒
(∨
c∈CA(h)

c∧ c(a1)∧ c(a2)∧ . . .∧ c(ak)
)
;

3. conditions along h are non-contradictory: (c(a1)∧c(a2)∧. . .∧c(ak)) ̸= ⊥.
– honest behavior is captured by an honest subtree: At the root node, one action

is chosen for every condition. Then, recursively, at every node that belongs
to a chosen action, for every condition, one action is chosen.

16 Rain et al.

A

B
P (r = 0)

I (r = 0)
P (r = 1)

I (r = 1)

Ch

H

D

Cc

I

Fig. 4. Sketch of Lightning’s Closing phase with conditional actions. Tree icons by
Freepik - Flaticon.

Example 10 (Closing Game as an EFG with Conditional Actions). Let us revisit
the Closing game from Example 3, but this time suppose that proving dishonest
behavior is additionally rewarded by the system. If a player behaves dishonestly
(chooses action D), and the other player proves it on chain (action P), the
system will not require the transaction fee f for this proof for every other such
player. The players have no control over whether the system will pardon the fee
or not. We model this behavior by introducing a new symbolic value r, requiring
in the initial constraints that r = 0 ∨ r = 1 and in the utility multiplying the
transaction fee by this factor, so r · f . After a dishonest action D, we encounter
conditional actions, as depicted in Figure 4. There are two conditions (r = 0
depicted with teal actions and r = 1 depicted with blue actions), each having
two actions possible (proving dishonest behavior P , or ignoring to prove I).
These conditions are mutually exclusive and exhaustive. They are also non-
contradictory when paired with the additional initial constraint. Note that in
the nodes that do not require a conditional split of actions, we can assign the
trivial condition ⊤.

The requirements on the conditions (mutually exclusive, exhaustive, non-
contradictory) are, in practice, not difficult to meet and are relevant for sub-
sequent security analysis: the definitions of the security properties need to be
adapted for these extended models.

Our main motivation for defining EFGs with conditional actions is modeling
the fAsset protocol on the Flare network. This decentralized finance platform
enables communication of different blockchains through wrapped tokens: the
assets (like Bitcoin, XRP, Eth, Dodgecoin, etc.) can be represented as fAssets
on the Flare ecosystem and can be redeemed to reclaim the original assets. Such
representation is sensitive to the price changes on the market, so the fAssets are
collateralized during minting to ensure the redemption can always be performed
for the original assets or for collateral. If the collateral drops below a certain
threshold due to market fluctuations or misbehavior of the agents, a so-called
liquidation phase is entered, where users are encouraged to redeem the fAssets
in exchange for the collateral. The conditional actions in an EFG model play a

Game Modeling of Blockchain Protocols 17

natural role here, representing the changes in the market that can either trigger
the liquidation of fAssets or not.

8 Conclusion

The modeling principles introduced in this paper rely on the definition of an
EFG as a suitable model for the game-theoretic security analysis and can be au-
tomatically processed by game-theoretic security checks in CheckMate [2,21].
While previous work [20,25] introduced manually made models, to the best of
our knowledge, our work provides the first semi-automated approach in generat-
ing games modeling protocols. Our approach enables exhausting all parameter
options systematically in a machine-supported manner, thereby refining existing
models, while also making fewer assumptions along the modeling process.

The modeling support presented in this paper makes automated game-theore-
tic security analyses much more accessible, as it eases the modeling process and
automates the mechanical part of error-prone game tree generation. While the
semi-automatic approach described here is already quite beneficial, (automati-
cally) synthesizing game models from the protocol’s specification, respectively
source code in the case of smart contracts, is a challenge we aim to address in
the future, in addition to the extension to conditional actions.

Acknowledgments. The work on extensive form games with conditional actions
in Section 7 involved joint work with Ivana Bocevska during her master thesis project
at TU Wien. The model of the fAsset protocol was developed in collaboration with
Filip Koprivec. The research presented in this paper was funded in whole or in part by
the ERC Consolidator Grant ARTIST 101002685, the Austrian Science Fund (FWF)
SPyCoDe Grant 10.55776/F85, the WWTF Grant ForSmart 10.47379/ICT22007, the
TU Wien Doctoral College SecInt, the Amazon Research Award 2023 QuAT, and a
Netidee Fellowship 2022.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Blanchet, B.: Automatic Verification of Security Protocols in the Symbolic Model:
The Verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) Foundations of
Security Analysis and Design VII: FOSAD 2012/2013 Tutorial Lectures. pp. 54–
87. Springer International Publishing, Cham (2014). https://doi.org/10.1007/
978-3-319-10082-1_3, https://doi.org/10.1007/978-3-319-10082-1_3

2. Brugger, L.S., Kovács, L., Petkovic Komel, A., Rain, S., Rawson, M.: Check-
Mate: Automated Game-Theoretic Security Reasoning. In: Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security.
p. 1407–1421. CCS ’23, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3576915.3623183, https://doi.org/10.
1145/3576915.3623183

https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3576915.3623183

18 Rain et al.

3. Capucci, M., Ghani, N., Ledent, J., Nordvall Forsberg, F.: Translating extensive
form games to open games with agency. Electronic Proceedings in Theoretical
Computer Science 372, 221–234 (Nov 2022). https://doi.org/10.4204/eptcs.
372.16, http://dx.doi.org/10.4204/EPTCS.372.16

4. Chandrakana Nandi, Mooly Sagiv, D.J.: Certora Technology White Paper: Unveil-
ing the Power and Limitations of Certora’s Smart Contract Verification Technology,
https://www.certora.com/blog/white-paper

5. Cheung, Y.K., Leonardos, S., Piliouras, G., Sridhar, S.: From griefing to stability
in blockchain mining economies (2021), https://arxiv.org/abs/2106.12332

6. Dxo, Soos, M., Paraskevopoulou, Z., Lundfall, M., Brockman, M.: Hevm, a fast
symbolic execution framework for evm bytecode. In: Gurfinkel, A., Ganesh, V.
(eds.) Computer Aided Verification. pp. 453–465. Springer Nature Switzerland,
Cham (2024)

7. FAssets, https://dev.flare.network/fassets/overview/
8. Flare: The Blockchain for Data, https://flare.network/
9. Fooladgar, M., Manshaei, M.H., Jadliwala, M., Rahman, M.A.: On incentive

compatible role-based reward distribution in algorand. In: 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). pp. 452–463 (2020). https://doi.org/10.1109/DSN48063.2020.00059

10. Ghani, N., Hedges, J., Winschel, V., Zahn, P.: Compositional game theory. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence. p. 472–481. LICS ’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3209108.3209165, https://doi.org/10.
1145/3209108.3209165

11. Ghani, N., Kupke, C., Lambert, A., Nordvall Forsberg, F.: Compositional
game theory with mixed strategies: Probabilistic open games using a distribu-
tive law. Electronic Proceedings in Theoretical Computer Science 323, 95–105
(Sep 2020). https://doi.org/10.4204/eptcs.323.7, http://dx.doi.org/10.
4204/EPTCS.323.7

12. Holler, S., Biewer, S., Schneidewind, C.: Horstify: Sound security analysis of
smart contracts. In: 36th IEEE Computer Security Foundations Symposium, CSF
2023, Dubrovnik, Croatia, July 10-14, 2023. pp. 245–260. IEEE (2023). https://
doi.org/10.1109/CSF57540.2023.00023, https://doi.org/10.1109/CSF57540.
2023.00023

13. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: Cryptographic protocol analysis
for the real world. In: Proceedings of the 2020 ACM SIGSAC Conference on
Cloud Computing Security Workshop. p. 159. CCSW’20, Association for Comput-
ing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3411495.
3421365, https://doi.org/10.1145/3411495.3421365

14. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic Game Verification with Concurrency, Equilibria and Time. In: CAV. pp. 475–
487. Springer International Publishing, Cham (2020)

15. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In: Network
and Distributed System Security Symposium. The Internet Society, San Diego, CA,
USA (2019)

16. Manshaei, M.H., Jadliwala, M., Maiti, A., Fooladgar, M.: A game-theoretic analysis
of shard-based permissionless blockchains. IEEE Access 6, 78100–78112 (2018).
https://doi.org/10.1109/ACCESS.2018.2884764

https://doi.org/10.4204/eptcs.372.16
https://doi.org/10.4204/eptcs.372.16
https://doi.org/10.4204/eptcs.372.16
https://doi.org/10.4204/eptcs.372.16
http://dx.doi.org/10.4204/EPTCS.372.16
https://www.certora.com/blog/white-paper
https://arxiv.org/abs/2106.12332
https://dev.flare.network/fassets/overview/
https://flare.network/
https://doi.org/10.1109/DSN48063.2020.00059
https://doi.org/10.1109/DSN48063.2020.00059
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.4204/eptcs.323.7
https://doi.org/10.4204/eptcs.323.7
http://dx.doi.org/10.4204/EPTCS.323.7
http://dx.doi.org/10.4204/EPTCS.323.7
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1109/ACCESS.2018.2884764
https://doi.org/10.1109/ACCESS.2018.2884764

Game Modeling of Blockchain Protocols 19

17. Mazumdar, S., Banerjee, P., Sinha, A., Ruj, S., Roy, B.K.: Strategic analysis of
griefing attack in lightning network. IEEE Transactions on Network and Ser-
vice Management 20(2), 1790–1803 (Jun 2023). https://doi.org/10.1109/tnsm.
2022.3230768, http://dx.doi.org/10.1109/TNSM.2022.3230768

18. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the Sym-
bolic Analysis of Security Protocols. In: Computer Aided Verification. pp. 696–701.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39799-8_48, https://doi.org/10.1007/978-3-642-39799-8_48

19. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments. white paper (2016), https://lightning.network/
lightning-network-paper.pdf

20. Rain, S., Avarikioti, G., Kovács, L., Maffei, M.: Towards a game-theoretic security
analysis of off-chain protocols. In: 2023 IEEE 36th Computer Security Foundations
Symposium (CSF). pp. 107–122. IEEE Computer Society, Los Alamitos, CA, USA
(2023). https://doi.org/10.1109/CSF57540.2023.00003, https://doi.org/10.
1109/CSF57540.2023.00003

21. Rain, S., Brugger, L.S., Komel, A.P., Kovács, L., Rawson, M.: Scaling checkmate
for game-theoretic security. In: Bjørner, N., Heule, M., Voronkov, A. (eds.) Pro-
ceedings of 25th Conference on Logic for Programming, Artificial Intelligence and
Reasoning. EPiC Series in Computing, vol. 100, pp. 222–231. EasyChair, Stock-
port, UK (2024). https://doi.org/10.29007/llnq, /publications/paper/6ZDH

22. Rain, S., Komel, A.P., Rawson, M., Kovács, L.: Game Modeling of Blockchain
Protocols – Artifact. https://zenodo.org/records/16925288 (2025)

23. Stewart, I.: A puzzle for pirates. Scientific American 280(5), 98–99 (1999)
24. Wang, T., Bai, X., Wang, H., Liew, S.C., Zhang, S.: Game-theoretical analysis of

mining strategy for bitcoin-ng blockchain protocol. IEEE Systems Journal 15(2),
2708–2719 (2021). https://doi.org/10.1109/JSYST.2020.3004468

25. Zappalà, P., Belotti, M., Potop-Butucaru, M.G., Secci, S.: Game theoretical frame-
work for analyzing Blockchains Robustness. IACR Cryptol. ePrint Arch. 2020
(2020), https://api.semanticscholar.org/CorpusID:219616790

https://doi.org/10.1109/tnsm.2022.3230768
https://doi.org/10.1109/tnsm.2022.3230768
https://doi.org/10.1109/tnsm.2022.3230768
https://doi.org/10.1109/tnsm.2022.3230768
http://dx.doi.org/10.1109/TNSM.2022.3230768
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.29007/llnq
https://doi.org/10.29007/llnq
/publications/paper/6ZDH
https://zenodo.org/records/16925288
https://doi.org/10.1109/JSYST.2020.3004468
https://doi.org/10.1109/JSYST.2020.3004468
https://api.semanticscholar.org/CorpusID:219616790

	Game Modeling of Blockchain Protocols

