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Abstract—Polypharmacy is a potential strategy for managing
such intricate disorders, encompassing conditions like cancer,
diabetes, and age-related issues in older individuals. Nonetheless,
when a medication is combined with one or more drugs that
either enhance, diminish, or counteract its intended effects, it
can lead to undesired adverse reactions. In severe cases, these
interactions can cause serious morbidity and increased mortality
rates globally. In this study, we collected a Drug-Drug interaction
dataset from the DrugBank database. Various chemical features
were then extracted from the Simplified Molecular-Input Line-
Entry System of interacting drug pairs. Our emphasis was on
representing the Molecular Access System fingerprints of these
drug pairs. Molecular Access System fingerprints signify the
presence or absence of specific substructures in the molecule and
were generated using the RDKit Open-Source Cheminformatics
Software. Furthermore, we incorporated Anatomical Therapeutic
Chemical classifications into our analysis. Finally, we employed
various machine learning algorithms, using K-Nearest Neighbor,
Random Forest, Logistic Regression, Support Vector Machine,
and XGBoost for learning the extracted features and predict
large-scale Drug-Drug interactions among various drug pairs.
Among these models, the XGBoost model exhibited superior
performance across most measurement metrics.

Index Terms—Drug-Drug interactions, Simplified Molecular-
Input Line-Entry System, Anatomical Therapeutic Chemical
features, Molecular Access System

I. INTRODUCTION

Drug-drug interactions (DDIs) are a critical health and
safety concern that receives much attention from both
academia and business [1]. DDIs may Enhance the likelihood
of unexpected negative consequences and unidentified toxicity,
bringing humans at threat. [2]. It is expensive and takes a
while to recognize DDIs and Adverse Reactions(ARs) among
several medication pairings, both in vivo and in vitro [3].
Most diseases in patients are brought on by intricate biological
mechanisms that cannot be cured by one particular medication
and often require multiple medications. It is unrealistic and
difficult to locate every potential DDI for medicine in the
initial manufacturing stages [4].

DDIs are usually assessed throughout medicinal chemistry,
but most interactions remain unnoticed and produce many
medications and pairings [5]. DDIs are more common among

older people who have to receive ongoing therapy for one
or more chronic conditions. Many ADRs are not discovered
during clinical investigations before the medicine is given
government approval. Analyzing DDIs by Researchers can an-
ticipate potential, previously unidentified DDIs and investigate
their correlations to pharmacodynamics and pharmacokinetic
drug properties [6].

The possibility of interaction among prescribed drugs
rapidly grows as the number of approved medicines grows.
In general, several drugs are given to aged people and cancer
survivors, putting them at a significant risk for harmful DDIs
[7]. Detecting and identifying DDIs not only helps clinicians
avoid chronic but will also encourage the co-prescription of
safe drugs for more effective therapies. When a medicine
is already on the market or in a clinic, most DDIs are
unexpectedly discovered, so it is urgent before medicine is
put on the market that people should be aware of any potential
dangers [1].

Different types of drug interactions include pharmaceutical
interactions, pharmacodynamics (PD) interactions, and phar-
macokinetics (PK) interactions. Pharmaceutical interactions
occur due to chemical reactions caused by improper dispensing
before drugs are administered. For example, mixing tetracy-
cline and calcium salt injection can lead to precipitation due
to chelate formation in specific conditions. PD interactions
happen when two drugs share the same receptor, altering each
other’s pharmacological effects. For instance, the combination
of atropine and tubocurarine blocks the action of acetylcholine
by binding to receptors. PK interactions take place since
multiple medications are utilized together, influencing how
they’re absorbed, dispersed, metabolized, and eradicated in the
human organism. These interactions can either improve the
effectiveness of the drugs or lead to adverse reactions. Unlike
PD interactions PK interactions primarily affect the blood
concentration of the drugs involved. For instance, combining
warfarin with nonsteroidal anti-inflammatory drugs can result
in PK interactions [8].

The Simplified Molecular Input Line Entry System
(SMILES) is a method used in chemistry to represent the



structure of a chemical compound in a compact, textual format
using a standardized set of ASCII characters. This method
allows for the concise representation of molecular structures,
enabling efficient storage, transmission, and processing of
chemical data. It provides a compact and human-readable
way to encode molecular structures, making it easier to store,
search, and manipulate chemical information computationally.
SMILES incorporates certain rules and conventions to ensure
consistency and accuracy in representing molecular structures.
SMILES provides a standardized and versatile method for
encoding molecular structures, facilitating their representation
and analysis in various computational applications within the
field of chemistry. Molecular Access System (MACCS) keys
are a set of structural keys used for chemical similarity
searching and structure-activity relationship analysis. They’re
used in cheminformatics to encode molecular structures into
a series of binary fingerprints.

Anatomical Therapeutic Chemicals (ATC-Code) is struc-
tured into seven fragments, with each fragment representing
a specific level of classification and denoted by a letter as
follows: The Simplified Molecular Input Line Entry System
(SMILES) is a method used in chemistry to represent the
structure of a chemical compound in a compact, textual format
using a standardized set of ASCII characters, enabling efficient
storage, transmission, and processing of chemical data. ATC
classification system is a widely used system for categoriz-
ing pharmaceutical drugs, with main drug classes including
Alimentary Tract and Metabolism, Blood and Blood-Forming
Organs, Cardiovascular System, Dermatologicals, Genitouri-
nary System and Sex Hormones, Systemic Hormonal Prepa-
rations, Anti-infectives for Systemic Uses, Antineoplastic and
Immunomodulating Agents, Musculoskeletal System, Nervous
System, Antiparasitic Products, Insecticides, Repellents, Res-
piratory System, Sensory Organs, and Various [9].

This study presents an enhanced method for predicting DDIs
by utilizing a suggested combination of features and Machine
learning techniques. Our feature set is extracted from two drug
representation schemes: MACCS fingerprints and ATC-Code.
The paper is structured as follows: first, Section II provides
a literature survey that addresses the issue of drug-drug
interactions (DDIs); next, Section III outlines the materials
and methods used in the study, including a description of the
techniques employed for feature extraction, representation, and
the application of various machine learning techniques to the
embedded drug features; the methodology is then presented in
Section IV; the experimental results are reported in Section V;
and finally, the paper concludes in Section VI with a summary
of the overall methodology.

II. LITERATURE SURVEY

When it comes to predicting drug-drug interactions (DDIs),
there are multiple primary approaches, each employing a dif-
ferent set of methodologies and techniques. These approaches
can be categorized as follows:

A. Literature-Based Approach

Text-mining tools leverage natural language processing
techniques to identify meaningful associations among medica-
tions. These tools utilize text-mining methodologies to explore
and compile documented DDIs sourced from diverse databases
such as procurement claims, the FDA Adverse Event Report,
and electronic medical records [2]. An alternative approach
centers on identifying and categorizing pharmacologic sub-
stances, including drug names, brand names, group names, and
active substances not approved for human use. This method
extracts DDIs from sources like DrugBank and MedLine
abstracts corpus using non-linear kernel techniques [10]. The
researchers have evaluated the efficiency of various machine
learning classifiers, including Logistic Regression (LR), Sup-
port Vector Machines (SVM), and discriminatory analysis,
to identify relevant abstracts and PubMed articles that con-
firm the existence of chemical drug-drug interactions (DDIs)
[11]. Moreover, their methodology enables the connection of
causal processes to potential DDIs. In this methodology, the
researchers leverage a parsing tree structure to extract various
types of interactions between drugs. Building upon this, they
then apply a set of logical rules to predict potential interactions
between novel drugs and existing drugs based on the identified
interaction patterns [12].

B. Similarity-Based Approach

The similarity-based approach is a widely used framework
that aims to measure the degree of similarity or distance
between data points, with the assumption that similar data
points will have similar outcomes. In the context of DDIs,
this approach operates on the idea that medications with
similar chemical properties or structures are likely to have
similar interaction patterns with other drugs. By considering
the chemical similarities between drugs, this method can be
used to identify potential DDIs and better understand the
effects of drug combinations [6]. To measure the similarity
between medications, common substructures are potentially
used instead of entire chemical structures [4]. If medications
both A and B interact to generate a particular response, then
medications similar to drug A (or drug B) are probable to
generate an identical impact as drug B (or drug A). In terms
of medication similarity, interactions among novel drugs can
be predicted by combining similar properties among various
drugs [13].

C. Classification-Based Approach

In the traditional approach, the problem of predicting drug-
drug interactions (DDIs) is framed as a binary classifica-
tion task, where the objective is to classify each drug pair
as either ”interacting” or ”non-interacting”. To enhance the
accuracy and reliability of predicting drug pairs using both
molecular and pharmacological features, researchers have de-
veloped a probability ensemble method [14]. Additionally,
the conventional approach of leveraging similarity-based and
classification-based techniques can be employed to predict



unknown drug-drug interactions. However, when solely re-
lying on these approaches, the features of drugs and their
interactions may not effectively collaborate with the known
interactions, leading to inaccurate predictions. Therefore, more
advanced computational techniques are needed to improve the
prediction of unknown drug interactions [15].

D. Graph-Based Approach

The primary goal of graph embedding techniques is to
represent a graph, with all its structural details, in a compact
low-dimensional vector form. This allows the rich information
captured in the graph structure to be effectively encoded
and utilized for various downstream applications. The graph-
based encoding of the drugs and their relationships appears
to capture important information that enables more accurate
DDI predictions compared to approaches that do not leverage
the graph structure [15]. Deep learning techniques have proven
effective in extracting drug features from datasets and conduct-
ing self-training through multiple layers of the neural network
to predict previously unidentified DDIs. It proposed a DNN-
based approach that constructs an architecture utilizing various
types of drug data. By encoding SMILES as low-dimensional
vectors using one-hot encoding and incorporating topological
features acquired from a knowledge graph (using GNN, they
achieved an accurate prediction of unidentified DDIs [16].

E. Ensemble-Based Approach

An ensemble-based approach is utilized for drug-drug in-
teraction prediction by integrating predictions obtained from
various independent models to enhance the overall accuracy
as well as the resilience of the predictions. For multiple-label
DDI prediction, three key processes are included. The first
step is the creation of a knowledge graph using the four
knowledge graphs that are established in Bio2RDF (Drug-
Bank, KEGG, PharmaGKB, and Comparative Toxicogenomics
Database). Secondly, in addition to the drug KG, biologi-
cal DDI text which is composed of DDI documents from
DrugBank and MEDLINE, Abstracts were embedded into a
Low-Dimensional vector. Third, DDI prediction is effectively
computed using the learned embedding as a link prediction
methodology [17].

III. MATERIALS AND METHODS

A. Dataset

DrugBank is the primary data source used in this study, as
our dataset was obtained from DrugBank (version 5.0, released
on August 1, 2017). DrugBank 5.0 offers extensive data on a
broad spectrum of drugs involving both approved medications
and exploratory compounds, as well as the most recent drug-
related data. It additionally provides detailed information
concerning the binding proteins, enzymes, and receptors in
the body, associated pathways and biological functions, and
additional molecular targets with which drugs interact. The
DrugBank dataset, which includes more than 4,100 drug en-
tries, provides comprehensive information on drug interactions
and includes data on pharmacokinetic and pharmacodynamic

interactions. Additionally, the dataset includes 365,984 direct
interactions among these drugs [18].

B. Feature Extraction and Representation

We use two schemes for drug representations to build up our
feature set: MACCS fingerprints and ATC-Code. In MACCS
fingerprints, drugs are represented based on the presence or
absence of particular sub-structures in the chemical molecule.
We calculated MACCS fingerprints using the RDKit package
in Python [19]. The inputs to the RDKit are SMILES strings
of drugs extracted from PubChem [20]. This step results in
166-dimensional MACCS fingerprints.

ATC-Code is a one-of-a-kind code assigned to each
medicine based on the organ or system it works on and how it
works. ATC-Code was extracted from the WHO Collaborating
Centre for Drug Statistics Methodology (WHOCC). ATC-
Code is structured into seven fragments; the first fragment,
known as the anatomical main group, represents the broadest
category. It classifies drugs based on their primary anatom-
ical or therapeutic area of action. The second fragment, the
therapeutic subgroup, is represented by a numeric value. This
fragment provides more specific information about the phar-
macological or therapeutic properties of the drug. The third
fragment, the pharmacological subgroup, is represented by an
alphanumeric code and describes the drug’s pharmacological
characteristics. The fourth fragment, the chemical subgroup,
is also represented by an alphanumeric code and provides
information on the drug’s chemical structure or chemical
class. The fifth fragment, the chemical substance, designates
a specific drug or active ingredient. It is represented by an
alphanumeric code, often derived from the drug’s generic
name. The sixth fragment, the formulation level, indicates
the drug’s formulation or presentation. The seventh and final
fragment is used for additional classification purposes or to
provide more specific information about the particular drug
formulation.

Using one-hot encoding, a method for encoding categorical
variables into binary vectors, the ATC-Code can be expressed.
A category is any ATC-Code fragment represented by a letter
or numerical code. In this vector, each position represents a
unique category, and the value 1 indicates the presence of that
category in the ATC-Code. The encodings of chemical features
described by the MACCS fingerprints and the ATC-Code one
hot encoding features are then concatenated to construct the
final feature vector for the modeling phase [21].

C. Data Preparation

Many drugs in commonly utilized pharmaceutical databases
do not have ATC-Codes. In this study, we chose drugs that
have SMILES and ATC-Codes, but some drugs do not have
an ATC-Code, so we eliminated such records from the entire
dataset, ending up with 207,096 Drug-Drug interactions with
both SMILES and ATC-Codes. The statistics of our dataset
are as follows: it consists of 207,096 drug-drug interactions
(DDIs) with both SMILES and ATC-Codes available. Out of
these interactions, there are 127,220 positive labels indicating



the presence of DDIs, while there are 26,009 negative labels
indicating the absence of DDIs. Data imbalance is a common
issue in modeling problems, where the imbalance in the input
classes makes predictive categorization in machine learning
difficult.

D. Balancing Dataset Classes

Data imbalance occurs when the proportion of classes or
categories inside a dataset is unequal or skewed. This signifies
that several classes had more or substantially fewer instances
than others. This imbalance can cause problems with various
data-driven activities, such as categorization, prediction, and
model-based machine learning training. To address the class
imbalance issue, Over-sampling was employed as a technique
to balance the positive and negative classes. The Synthetic
Minority Oversampling Technique (SMOTE) technique tackles
class imbalance by generating synthetic examples for the
minority class, thereby enhancing the performance of machine
learning algorithms when dealing with imbalanced datasets
[8]. SMOTE technique randomly chooses a sample from the
minority class and determines its nearest neighbors. It then
generates synthetic examples by filling in the gaps along the
line segments connecting the selected sample to its neighbors.
This is done by interpolating the feature values based on
the existing samples. In simpler terms, SMOTE creates new
minority class examples by blending the characteristics of
existing samples. This approach allows for a more equitable
representation of positive and negative instances, potentially
leading to improved outcomes in predicting DDIs accurately
[22].

E. Feature Selection

In the process of building a predictive model, it is essential
to carefully choose the most important features from a given
set. Recursive Feature Selection (RFE) is a commonly used
technique in machine learning for this purpose. Its goal is
to identify the most relevant features in a dataset [13]. In our
study, we utilized the RFE-DT algorithm, which can be divided
into four stages. Initially, a Decision Tree (DT) is trained using
the training set. Then, the features are ranked based on the
weights derived from the resulting classifier. Subsequently,
the features with the smallest weights are removed. Finally,
the process is repeated on the training set with the remaining
features [23]. To optimize the modeling process and improve
overall performance, we utilized the RFE-DT algorithm to
extract a subset of features from the initial pool of 768
features. This feature selection technique aimed to identify the
most relevant and informative features that would contribute
significantly to the predictive modeling task. By narrowing
down the feature set, we aimed to streamline the analysis and
enhance the efficiency and accuracy of our models.

IV. METHODOLOGY

The DDI prediction process in our study revolves around
two input features: SMILES and ATC-Code. These features
represent the molecular structure and therapeutic classification

of the two interacting drugs, respectively. The goal is to
generate a binary output prediction indicating whether there
is an interaction between the drug pairs or not.
As shown in the Fig. 1, Our Proposed Contribution includes
the following steps:

• Extracting the Simplified Molecular Input Line-Entry
System of drug pairs from PubChem.

• SMILES is a string-based depiction of a chemical com-
pound’s molecular structure. It is tight and understandable
by humans which enables the special encoding of molec-
ular structures. SMILES syntax enables the representation
of molecular structures distinctly.

• Calculating MACCS fingerprints (166 bits): Each bit
position represents the presence or absence of structural
fragments encoded by RDKit. The bit vector is a string of
one (1) and zero (0) characters, with each character rep-
resenting the state of a single bit. The figure above shows
how to use RDKit to represent a molecular structure to a
MACCS fingerprint.

• Extracting the anatomical therapeutic chemical code,
which was extracted from the WHO Collaborating Centre
for Drug Statistics Methodology.

• Representing ATC-Codes of Drug pairs as low-
dimensional vectors via one-hot encoding. The methodol-
ogy of one-hot encoding has been employed for express-
ing categorical parameters just like binary vectors.

• One-Hot-Encode function accepts the category just like
an input and creates a binary vector of zeros. If a
particular category is found in the terms, it recognizes its
associated index and initiates the vector’s value at that
position to 1.

• The encodings of chemical features represented by the
MACCS fingerprints in addition to ATC-Code one hot
encoding features are then concatenated to construct the
final feature vector for the modeling phase.

• Applying Recursive Feature Selection with Decision Tree
to the training dataset.

• Developing various machine learning models that predict
Drug-Drug interactions.

A. Development of Machine Learning Models

In our study, we employed various machine learning meth-
ods to predict DDIs, including Support Vector Machines [24],
k-Nearest Neighbors [4], Logistic Regression [16], Random
Forest [6], and Extreme Gradient Boosting [25]. In order to
train and evaluate the models, the input data was divided into
a training set and a test set. The training set comprised 70% of
the data, which was used to train the models. The remaining
30% of the data was reserved as the test dataset, which was
used to assess the performance of the trained models.

• Random Forest
Random Forest is an ensemble-based learning method-
ology that is widely used for a variety of tasks, includ-
ing classification, regression, and others [16]. our study
utilized Random Forest for binary classification tasks,



Fig. 1. Architecture of the Proposed Framework for DDIs Prediction through ML Models

specifically in predicting drug-drug interactions (DDIs).
Positive and negative DDI pairs were used as inputs to
construct the classification model, primarily relying on
known interactions between drug pairs [15].

• K-Nearest Neighbors
The K-Nearest Neighbors (KNN) algorithm is a super-
vised machine learning technique that can be used for
both classification and prediction tasks. It is a versatile
algorithm that classifies new data points based on their
similarity to existing data [4]. The key idea behind
KNN is that similar data points tend to be located
in close proximity to each other. The algorithm stores
the available training data and calculates the distances
between the new data point and the existing data points.
It then identifies the K nearest neighbors, where K is a
predetermined parameter. The majority class among these
K nearest neighbors is used to determine the classification
of the new data point. By relying on the proximity and
similarity of data points, the KNN algorithm is able to
effectively classify and predict new samples based on the
characteristics of the nearest known data points. [24].

• XGBoost
In drug-drug interaction (DDI) prediction, XGBoost,
along with decision trees and random forests, plays a
significant role in classifying positive and negative DDI
pairs. It can enhance weak models and improve predictive
performance, making it valuable for DDI prediction [16].

• Support Vector Machine
The Support Vector Machine (SVM) algorithm is a super-

vised machine learning technique that can be applied to
both classification and regression problems. SVM assigns
each training vector to a class based on its position
relative to the hyperplane. The optimal hyperplane is the
one that maximizes the margin between classes, even
though there may be multiple hyperplanes that correctly
classify all elements in the feature set [24].

• Logistic Regression
Logistic regression is a supervised machine learning al-
gorithm used for binary classification tasks. In our study,
logistic regression was employed to predict drug inter-
actions. By utilizing an input dataset, logistic regression
calculates the probability of DDIs [16].

To identify the optimal values for the model hyper-
parameters, we conducted parameter tuning for each machine-
learning method. The optimal parameter values for each
method are presented in Table I. To ensure robust evaluation,
we employed the Cross-Validation technique with k-fold val-
idation. In this approach, we divided the preprocessed data
into k equal-sized subsets, with k set to 10 in our study.
This allowed us to perform training and evaluation iteratively,
ensuring a comprehensive assessment of the model’s perfor-
mance.

B. Evaluation

To assess the effectiveness of the machine learning model in
the training dataset, we utilized 10-fold cross-validation (10-
CV). Equal-sized subsets of the retrieved features from known
DDIs were chosen at random. Our models’ performance is



TABLE I
HYPERPARAMETER SEARCH GRID AND THE OPTIMAL VALUE OF

XGBOOST ALGORITHM

Algorithm Hyperparameter Grid search range Optimal value

XGBoost

n-estimators 20,40,60,80,100,200,500,1000,1500 1500
Max-depth 10,20,30,40,50,None 30

gamma 0.5,1,1.5,2,5 2
min-child-weight 10,15,20,25 20

evaluated using various performance metrics, including Accu-
racy, F1-Score, Precision, and Recall.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

In the context of the evaluation metrics used in this study,
the following definitions apply: True Positive (TP): The
number of drug-drug interactions (DDIs) that were correctly
predicted as positive. True Negative (TN): The number of
non-interacting drug pairs that were correctly predicted as
negative. False Positive (FP): The number of non-interacting
drug pairs that were incorrectly predicted as positive. False
Negative (FN): The number of actual DDIs that were incor-
rectly predicted as negative.

Recall is defined as the fraction of correctly predicted
DDIs (true positives) divided by the total number of true
DDIs. It measures the model’s ability to correctly identify
positive instances, indicating how many of the actual DDIs
were predicted correctly.

Precision is defined as the fraction of correctly predicted
DDIs (true positives) divided by the total number of predicted
DDIs (true positives + false positives). It measures the accu-
racy of the positive predictions, indicating how many of the
predicted DDIs were true.

The F1-score is the harmonic mean of precision and recall.
It provides a balanced measure of the model’s performance by
considering both precision and recall. The F1-score is often
used to evaluate the overall effectiveness of the prediction
outcomes.

V. RESULTS

We conducted experiments on training and testing datasets
to evaluate the impact of these algorithms on the results. Based
on the results shown in Table II, it can be observed that
XGBoost achieves superior performance when applied to the
selected features of the combined SMILES and ATC-Codes
dataset. These results indicate that XGBoost outperforms other
algorithms across various measurement metrics.

TABLE II
RESULTS OF DIFFERENT ML ALGORITHMS

Algorithm Accuracy Precision Recall F1-Score
Logistic Regression 0.813 0.806 0.809 0.811
k-Nearest Neighbors 0.861 0.856 0.860 0.858

Support Vector Machine 0.909 0.916 0.907 0.905
Random Forest 0.916 0.920 0.919 0.908

XGBoost 0.945 0.940 0.941 0.939

A comprehensive comparison of different machine learning
algorithms is presented in Fig. 2, demonstrating their perfor-
mance on the combined SMILES and ATC-Code datasets.
The results indicate that XGBoost outperforms the other
algorithms, exhibiting superior performance.

Fig. 2. XGBoosting Model Superior Compared to other ML Models

The experiment was conducted using only the features of
SMILES and ATC-Code individually, as well as by combin-
ing the two features. The best outcome was achieved when
the experiment was run using both features together. These
combined features are presented in Table III, along with the
corresponding measurement metrics.

TABLE III
RESULTS OF DIFFERENT ML ALGORITHMS

Algorithm Accuracy Precision Recall F1-Score
SMILES 0.907 0.909 0.901 0.906

ATC-Code 0.928 0.920 0.919 0.907
Our Study 0.945 0.940 0.941 0.939

We carried out a comparison between the results of the
XGBoost model and other methods presented in Table IV,
including Vilar’s methods, the label propagation method, and
Stacked RF-XGBoost. Vilar’s methods utilized drug interac-
tion profile fingerprints (IPFs) to predict DDIs [26] [27]. These
methods employ similarity measurements and classify input
from known DDIs to previously unknown nodes by calculating
drug similarity. This approach produces weight values for



edges on the DDI network. The label propagation method
focuses on predicting DDIs by using similarity measurements.
It classifies input from known DDIs to unknown nodes by
calculating drug similarity and determining the weight values
of edges on the DDI network [1]. Stacked RF-XGBoost
is a method specifically designed to predict DDIs between
osteoporosis and Paget’s disease [24]. This method focuses
solely on the SMILES representations of drugs to predict
DDIs.

TABLE IV
PERFORMANCE COMPARISON ON DRUGBANK DATASET

Method Accuracy Precision Recall F1-Score
Vilar 1 [26] 0.719 0.253 0.495 0.334
Vilar 2 [27] 0.862 0.515 0.569 0.540

LP [1] 0.809 0.729 0.685 0.706
Stacked RF-XGBoost [24] 0.740 0.730 0.730 0.730

Our Study 0.945 0.940 0.941 0.939

The comparison results illustrate the superior performance
of our model across multiple evaluation metrics including
Accuracy, Precision, Recall, and F1-Score, which is depicted
in Fig. 3.

Fig. 3. Comparison Results of Different Studies on DrugBank Dataset

The DrugBank interaction checker is a valuable tool that
allows users to evaluate potential interactions between multiple
drugs. By utilizing a comprehensive drug database, the Drug-
Bank interaction checker provides information on the severity
of each interaction, categorizing them as minor, moderate, or
severe. Additionally, it offers recommendations on how to
manage these interactions effectively. Table V displays the
most recent predictions of the top 20 Drug-Drug Interactions
(DDIs) generated using our methodology. Out of these predic-
tions, 15 have been validated using the DrugBank interaction
checker website [18].

VI. CONCLUSION

In our study, we proposed an efficient methodology for
predicting DDIs by leveraging drug information from different
sources. To achieve this, we collected the Simplified Molec-
ular Input Line Entry System representations of drug pairs
from PubChem. Furthermore, we acquired the Anatomical

TABLE V
NEW PREDICTED DDIS (CONFIRMED INTERACTIONS SHOWN IN BOLD)

Rank Drug1-ID Drug1-Name Drug2-ID Drug2-Name
1 DB01013 Clobetasol propionate DB01072 Atazanavir
2 DB00699 Nicergoline DB00813 Fentanyl
3 DB00745 Modafinil DB01050 Ibuprofen
4 DB00193 Tramadol DB00423 Methocarbamol
5 DB00433 Prochlorperazine DB00962 Zaleplon
6 DB01028 Methoxyflurane DB01351 Amobarbital
7 DB00641 Simvastatin DB08815 Lurasidone
8 DB00353 Methylergometrine DB08810 Cinitapride
9 DB01179 Podofilox DB01320 Fosphenytoin

10 DB00292 Etomidate DB01576 Dextroamphetamine
11 DB00863 Ranitidine DB01242 Clomipramine
12 DB06153 Pizotifen DB06237 Avanafil
13 DB04573 Estriol DB09213 Dexibuprofen
14 DB00227 Lovastatin DB00883 Isosorbide Dinitrate
15 DB00496 Darifenacin DB00611 Butorphanol
16 DB00218 Moxifloxacin DB00687 Fludrocortisone
17 DB00502 Haloperidol DB01623 Thiothixene
18 DB01241 Gemfibrozil DB06403 Ambrisentan
19 DB00246 Ziprasidone DB09038 Empagliflozin
20 DB00996 Gabapentin DB09031 Miltefosine

Therapeutic Chemical from the WHO Collaborating Centre
for Drug Statistics Methodology. For the SMILES of drugs,
we utilized the MACCS fingerprint to create binary vectors.
The MACCS fingerprint indicates the presence or absence
of specific substructures in a molecule, and we employed
RDKit to generate these fingerprints for the drug pairs. As for
encoding the ATC-Codes, we employed One-Hot Encoding
to convert them into binary vectors. The resulting binary
vectors for each drug in a pair are then concatenated into
a single vector, combining the representations of both drugs.
For the prediction task, we employed various machine learning
algorithms, including Random Forest, XGBoosting, K-Nearest
Neighbor, Support Vector Machine, and Logistic Regression.
These algorithms were trained on the extracted features ob-
tained from the MACCS fingerprints and ATC-Code one hot
encoding features, using cross-validation to ensure robustness.
After evaluating the performance of the different models, we
found that the XGBoosting model outperformed the others in
terms of most measurement metrics. This indicates that the
XGBoosting algorithm was particularly effective in predicting
DDIs among various drug pairs.
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