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Abstract  

This paper examines the use of digital video in public safety and surveillance 

systems. Traditionally video recordings are used by law enforcement to review 

events retrospectively and for evidential purposes in the pursuance of criminal 

prosecution.  We also examine how, due to the proliferation of cameras around cities, 

human operators are challenged to monitor these data feeds in real-time and how the 

emergence of AI and computer vision solutions can process this data. Computer 

vision can enable the move from a purely reactive to a predictive, real-time analysis 

platform. As camera numbers and the resolution and framerate of cameras grow, 

existing network infrastructure frequently causes challenges provisioning low 

latency, high bandwidth networking to private or public cloud infrastructure for 

evidential storage. These technical challenges can provide issues for law enforcement 

providing a data chain of custody to ensure its admissibility during court proceedings. 

Emerging technologies offer solutions to overcome these challenges: the use of 

emerging edge compute capabilities, including the use of on-camera and mobile edge 

compute nodes providing compute capabilities closer to the data source and new 

software paradigms, including CI/CD methodologies, and the use of micro-services 

and containerization to manage and deliver applications across the portfolio of 

devices, at the edge of the network.  

1 Introduction 

The use of closed-circuit television systems (CCTV) has its roots in the 1940s, with the first 

documented use of CCTV systems in Durham, UK, in 1956 [1]. This system enabled a police officer 

to monitor and operate traffic lights. The use of cameras in law enforcement has been, to date, 

mainly for evidential purposes, with data stored and then manually reviewed post-incident by 

CCTV operators. The migration from magnetic tape recordings to digital media stored on 

centralized computer systems has enabled the deployment of surveillance cameras at a much higher 

density than would have been possible previously.  

The challenges of transporting data to the cloud for processing have long been acknowledged 

as problematic, especially for large datasets such as streaming video. On cloud platforms, Network 

latency is the primary challenge to processing streaming data in real-time [2]. Numerous methods 

of moving compute closer to the data source have been proposed to alleviate this latency, including 
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Fog[3], Cloudlets [4] and Edge computing. Lin, et al. [5] discuss the difference between edge and 

fog computing: "edge computing builds the architecture of computing at the edge, while fog 

computing uses edge computing and further defines the network connection over edge devices, edge 

servers, and the cloud." These edge devices can provide traditional CPU and accelerator compute 

capabilities to enable computer vision code to run on resource-constrained edge devices. On-camera 

compute already provides significant bandwidth reductions in several use cases including motion 

detection and automatic number plate recognition[6].  The camera then only returns metadata, along 

with an evidential photograph of a speeding car, rather than a full video stream from the cameras 

to be processed in the cloud. By processing on the camera, both network traffic and the amount of 

storage required in the system[7] are reduced compared to traditional evidential recording 

platforms. To deliver timely, predictive and proactive computer vision analytics platforms, the 

design of conventional evidential recording systems needs to be reviewed to move the compute 

capabilities closer to the source of the data. 

 

  
 

Figure 1: Evidential Recording Infrastructure 

2 Evidential Recording Platforms 

To provide evidence for law enforcement agencies after an incident and provide a chain of 

custody of video footage to be used in prosecutions, Digital (DVR) or Network (NVR) video 

recording systems provide a platform to deploy and manage the cameras and storage of the data 

they create. The systems also include management structures for the stored data to ensure storing, 

access and deletion according to legal data governance requirements. Centrally managed digital 

surveillance systems have several key platform components, described in Figure 1 above. 

2.1 Cameras 

The first digital IP cameras became commercially available in 1996, with the release of Axis 

Communications Neteye 200 camera [8], which supported a resolution of 352x288 pixels at a frame 

rate of 1 frame per second (FPS)  in JPEG format [9]. Currently, the most popular resolution for 

digital surveillance systems is full HD (1920x1080), producing uncompressed data streams of up 

to 1.5Gbit/S[10]. Using H.264/AVC compression reduces this data stream by up to 70%. As 

H.264/AVC is an asymmetric process, with more compute required at the encoder than at the 

decoder [11], onboard microprocessors in cameras have evolved in parallel with the image sensor 

capabilities, with CPU, GPU & FGPA capabilities or by a specialist Digital Signal Processor 

(DSPs) [12]. Alongside compression, the compute capabilities also provide remote management 

capabilities, essential for large suites of cameras. The ONVIF [13] specification for camera 

management is included in published standards, such as IEC 62676, for Video Surveillance 

Systems.  



2.2 Network 

Digital surveillance cameras have standardized TCP/IP over ethernet and generally use IEEE 

standard 802.3u (Fast Ethernet/ 100Base-T). As TCP/IP is bi-directional, it also enables the 

management and manipulation of Point, Tilt & Zoom (PTZ) cameras movement controls [14] 

without the need for secondary cabling.   Cameras connect to local area network (LAN) switches, 

which can also act as power sourcing equipment to provide power and data to cameras via one 

cable, using IEEE 802.3a(x) standards [15]. The use of Wi-Fi for surveillance systems to connect 

static cameras, using IEEE 802.11 is used in limited circumstances but provides range, reliability, 

and security challenges for critical systems. [16], but Wi-Fi and 4G cellular connectivity are widely 

utilized for body-worn and mobile/vehicle cameras[17]; however, these devices frequently have 

localized storage to overcome connectivity issues and limited recording periods due to battery 

charge longevity[18]. Backhaul to the datacenter is dependent upon each installation, with fully 

private fiber networks utilized in very high-security environments or built upon virtual private 

networks (VPN) provided by 3rd party telecom providers, with networking and security capabilities 

such as NAT, Firewalls, and VPN Tunnels used to protect the transmission of the data.[19]  The 

ESTI standard for TErrestrial Trunked RAdio (TETRA) provides a data carrier protocol, with up 

to 600mbps throughput, to provide fully encrypted, secure communications but requires a separate 

infrastructure for broadcasting capabilities, aside from regular telco operated environments. One of 

the significant examples of the use of TETRA in surveillance was its use at the Athens Olympics, 

where feeds from live CCTV cameras were broadcast via Tetra to security/law enforcement officers 

handsets on the ground [20].  

2.3 Datacenter 

The core of all video surveillance systems is the network video recording (NVR) system, with 

leading providers including Milestone Systems, Avigilon, Bosch, Huawei and Genetec [21]. The 

NVR provides a range of features,  including management of the cameras, storage management, 

including writing data to storage, and managing data, ensuring timely deletion, the chain of custody 

reporting, and access for users to review the recorded footage. 

 

 
Figure 2: NVR Architecture 

Servers are predominantly Intel x86 platforms, with many NVR providers using Microsoft 

Windows© Server or Linux operating systems. Depending on the scale of requirements, storage 

may be anything from a single hard disk to a complete server & storage area network configuration, 

as shown in Figure 2 above. Storage Area Networks (SAN) provide network-attached storage, using 

iSCSI, or Fiber-channel over IP connectivity with Redundant Array of Inexpensive Disks (RAID) 

offering fault-tolerant, highly scalable storage platforms for storage and data throughput 

capabilities[22]. Disk configuration is dependent on several factors from the dataflow: the number 

of cameras, frame resolution & speed; motion detection; compression algorithms; the number of 

days storage, expected activity levels in the cameras[23, 24] and the hardware in the SAN, including 

the number of disks, IOPs for each disk, RAID or other redundancy/data protection systems and 

SAN processor speed.  



2.4 Users 

Users require a method of accessing the stored data, either from individual cameras or in 

Command & Control walls with multiple screens, with thumbnail streaming video images of 

multiple cameras displaying concurrently, with the ability for the user to click into one of the 

thumbnails and maximize screens of interest. The NVR software also provides the user with 

methods to view historical material and protect the material of interest against overwriting by the 

NVR storage management schedule. User feeds are delivered to a proprietary application running 

on a personal computer or via HTTP/s web browser. NVR Manufacturers recommend that the user 

workstation provide substantial processing power, both from the CPU and Graphics Processing 

Unit (GPU), with 8GB RAM and a 64-bit Windows operating system, to deliver a satisfactory user 

experience significant numbers of camera feeds on screen [25, 26]. 

3 Video Analysis Platforms 

The UK has led the global growth of surveillance [27], with over 500,000 cameras in London 

and 15,000 on the Underground alone. Research shows that video surveillance was useful to 

investigators in some 29% of crimes committed on the British transport systems [28]. With the 

proliferation of cameras for surveillance purposes, it is impossible to monitor video feeds in real-

time. Alongside the growth of surveillance systems, the rise of computer vision technologies built 

upon research in artificial intelligence (AI) has provided the building blocks for video analysis. 

Using large previously labelled sets of data to train the convolutional neural networks (CNN) [29, 

30] built upon deep neural networks (DNN) [31] before deployment to analyze real-time video 

feeds. AI-enabled video analysis provides evidential data and provides opportunities for law 

enforcement to offer proactive capabilities using motion detection, facial recognition, individual 

and crowd behavior analysis. 

The software stack must provide the ability to allow developers to build scalable, manageable 

software platforms that can be remotely managed. Microservices container-based platforms such 

as Docker, Openstack and container management such as Kubernetes [32] and K3S [33] for 

resource-constrained hardware provide the infrastructure and management layers. Open-source 

toolkits such as YoLo provide a convolutional network framework for image recognition, [34] and 

Edge-X from the Linux Foundation provides an IIoT platform framework, to enable this scalability.  

One of the challenges called out by Sada, et al. [35] in edge video analysis is the fragmentation 

of the original inference model across edge devices. They propose a federated learning platform for 

CNN across edge devices. Li, et al. [36] describe federated analytics as "decentralized privacy-

preserving technology to overcome challenges of data silos and data sensibility." Deng, et al. [37] 

propose a federated system using Neural networks spanning from the video cameras to mobile edge 

compute capabilities and an edge optimization capability, thereby optimizing latency and accuracy 

of queries to a video analytics system.  

As camera resolution increases, H.264/AVC becomes less efficient, and H.265/HEVC provides 

a decrease the size of the bitstream by at least 50% compared to H.264/AVC, whilst supporting 

resolutions up to  8192x4320 with equivalent quality to H.264 [38, 39]. Tan, et al. [40] report up to 

64% H.265/HEVC Bitrate deduction vs H.264/AVC for the same resolutions. H.265/HEVC does 

come with increased computational overheads. Sullivan, et al. [39] estimate that with more modern 

computing capabilities, the 40% increase in processing requirements over H.264/AVC for encoding 

is not a significant constraint for new equipment, but the existing install base of cameras will 

continue to use H.264/AVC due to compute constraints of the hardware[41]   

3.1 Cloud video analytics 

Alam, et al. [42] discusses the benefits of cloud computing and its ability to deliver platform, 

software, and infrastructure as a service to users. Research has identified several areas of challenges 

to processing streaming video analysis in the cloud. Three of the major industries using computer 



vision are autonomous vehicles, manufacturing and sport [43]. Mach and Becvar [44] identify some 

challenges of cloud computing. These technical challenges can be aligned into three main areas: 

connectivity, latency and security [45]. They are well documented in different vertical industries, 

as identified in Table 1 below. 
Table 1 Cloud Computing Challenges 

Connectivity Sporadically connected devices and the use of streaming video data (along with lidar and 

radar)  in autonomous vehicles to enable object detection[46], platooning [47], or to enable 

parking in cities [48] require reliable connectivity to the cloud. Environments with high 

levels of radio interference, such as manufacturing facilities [49] provide challenges to 

connect to cloud infrastructures.  

Latency Autonomous vehicles are highly dependent on reliable, low-latency communication, with 

round trip response times of under 100ms required due to the high speeds of the vehicles, 

especially in the realms of object detection and avoidance,  and in interaction with other 

vehicles, such as intersection management[50].  The use of cloud analysis in the area of 

sports analysis, to provide statistics that can be used for presentation purposes [51] is well 

established. The framerate required by cameras to enable Goal Line monitoring requires 

localized compute to provide the referee with timely and accurate analysis and information 

[52]. Wireless connectivity using LTE and Wi-Fi [53] to the cloud also presents challenges 

where sub 100ms response times are required. 

Security The security of data flowing to the cloud, both in transit and at the final location are 

concerns for many cloud-based platforms. In Healthcare, patient confidentiality and 

protection of Individually Identifiable Health information is enshrined in standards (HIPPA, 

GDPR etc.) [54]. Liu, et al. [55] discusses the security requirements in vehicle to everything 

(V2X) autonomous vehicles in the realm of safety as the backbone to all autonomous 

vehicle systems. 

 

Research from the challenges associated with cloud processing of data has focused on moving 

compute closer to the data source and has resulted in the emergence of edge computing capabilities. 

Sunyaev [56] reviews the emergence of edge computing and identifies the key goals these platforms 

aim to provide, overcoming the challenges posed by processing workloads in the cloud. Areas of 

focus for edge computing are around the hardware platforms, connectivity, and management of 

software to these remote devices, and the use of artificial intelligence algorithms within the software 

to undertake computer vision workloads. With emerging connectivity capabilities offered by 5G 

and the evolution of Mobile Edge Compute (MEC),  new workload management platforms for edge 

compute such as Docker (with Kubernetes management for large deployments across edge devices), 

the ability to process streaming data at the edge is moving forward. Zhou, et al. [57] review the 

capabilities of edge platforms for AI Models to run at the edge: "hardware acceleration 

technologies, such as field-programmable gate arrays (FPGAs), graphical processing units 

(GPUs)".  Research by Najafi, et al. [58] suggests Application-specific integrated circuits (ASICs) 

offer significant promise for accelerating video analysis edge computing, and the use of smart 

network interface cards (SmartNiC) enables the offload of tasks from the computing platform. 

Emerging technologies, such as neuromorphic computing, look to overcome some challenges 

traditional edge hardware platforms are constrained by[59].  

3.2 Edge video analytics 

Moving the analytical processing of the image closer to the camera, or even onto it, can increase 

the performance of a system.  This is especially evident where connectivity is limited or unreliable, 

or information from the processed data is deemed to be time-sensitive and is to be consumed at the 

edge, for example, real-time management of relays for complex traffic light systems. Processing 

can be either on the camera, Mobile Edge Compute platforms, or the cloud. The hardware required 

to enable a computer vision system has several separate components, outlined in table 2 below, 

from the compute on the camera delivering specific tasks such as ANPR or motion detection using  

CNNs, or edge compute devices, the use of MEC to analyze data from multiple local cameras, 

backend cloud platform compute capabilities, with access to historical data sets for deep learning 



WAN Latency

algorithms to process, the latency of the networks, and the compute capacity, in terms of memory 

and processor capabilities at each node in the infrastructure all play a role in identifying where the 

most efficient location to undertake the compute.  

 

Characteristics Edge LTE/5G MEC WAN Cloud 

 

 

 

 

 

 

     

Network Latency  100ms+  75ms  

GPU Cores 240  5120  20,480 

Data set Scale GB  TB  PB 
Table 2: Processing Matrix in Machine Vision Systems 

3.3 On Camera 

Shi and Lichman [60] discuss cameras with "Application Specific Information Processing". The 

inbuilt microprocessors used to run code for specific purposes, such as motion and object detection, 

provide data to automated control systems. The benefits of onboard processing can reduce the 

bandwidth required to transmit the data from many megabits to several bytes, denoting motion or 

object detected. The first use of onboard compute within a camera was in the area of Motion 

detection. Whilst compression algorithms identify activity for prediction purposes, motion 

detection is used to determine the movement within the camera's view and trigger an action when 

identified. Sehairi, et al. [61] identified three separate categories of motion detection: Background 

Subtraction, Temporal Difference and Optical flow techniques, and evaluated the effectiveness of 

the differing algorithms. Challenges such as bad weather, thermal changes, vibration etc.[62] can 

cause difficulties for motion detection. Large bodies of work exist exploring the areas of false 

positive and false negative identification of motion detection.[63]  As part of the processing of 

motion detection, cameras also allow for the masking of images. Masking allows regions of the 

image not of interest to the operator to be eliminated from processing, saving time and compute.[64]  

Automatic Numberplate Recognition (ANPR) or License Plate Recognition (LPR) have been in use 

extensively since the early 2000s [65]. They are based on Optical Character Recognition performed 

on video captured and streamed to a central video management system. Jeffrey, et al. [66] discuss 

the use of ARM-based processors and FPGAs to undertake ANPR on-camera analysis. With the 

increasing compute power on the camera, ANPR enabled camera algorithms can now provide 

descriptive feedback across the network (i.e. the number plate details), rather than just the video 

stream that would have to be further processed. Farhat, et al. [67] demonstrated that a Zynq-7000 

programmable system on a chip (SoC) within a camera could provide ANPR recognition with a 

success rate of 99.5%, and with a power consumption rate 80% less than that of a Intel PC based 

platform undertaking the same calculations. 

  



3.4 Mobile Edge Compute 

Processing IoT data closer to the data source was first discussed in 2009 [68], using virtual 

machines to provide 'Cloudlets' close to a 'thin' or mobile client which has limited computing 

capabilities [4]. The evolution of Edge computing led to ETSI launching a Mobile Edge Compute 

(MEC) working group in 2015 [69] with a goal to "…enable ultra-low-latency requirements as well 

as a rich computing environment for value-added services closer to end users." [70] MEC is a key 

component in the promise of high speed, low latency Massive IoT (MIOT) platforms described in 

3GPP 5G Release 16 [71]. Baek, et al. [72] discuss 3GPP R16 and the use of mmWave [73] and 

MEC to provide ultra-reliable and low-latency communications (URLLC) and massive-input, 

massive-output (MIMO) capabilities, enabling sensor densities of up to one million sensors per 

square kilometer. This low latency, high-speed connectivity [74] is critical for the effective delivery 

of emerging technologies such as traffic management and collision avoidance systems in robotic 

and autonomous systems. Interlinked with the platform and communications, research into the real 

time processing of video streams has developed, and the emerging use of artificial intelligence (AI) 

for the extraction of information from streaming video. Xu, et al. [75] discuss the challenges of 

running AI-based video analytics on resource-constrained edge devices, such as CCTV cameras. 

Research into the use of deep learning algorithms [76] and federated analytics [77] are currently at 

the forefront of computing research. Deploying these models to the edge requires significant 

computing power [35]. Edge computing devices are evolving in terms of CPU, accelerators [58] 

and SmartNiC providing offload of networking functions [78], are enabling more complex 

workloads to run on edge compute platforms.  

 

 
Figure 3: edge compute 

 

Figure 3 above demonstrates the locations of the compute aspects of a surveillance system, 

including the on-camera, localized edge compute and MEC in 5G environments, but also the 

analytics backend platform, providing meta-analysis across the system, but also uses the combined 

datasets to train the algorithms for use at the edge, improving accuracy and ensuring that federated 

systems do not become fragmented, due to differing datasets flowing through the DNN. 

4 Conclusions 

The use of edge compute capabilities, combined with modern coding and management 

capabilities, can overcome challenges with network latency and enable real-time, preventative 

surveillance solutions for law enforcement. The reduction in compute cost and the emergence of 

lightweight neural network algorithms for computer vision can allow resource-constrained edge 

compute nodes to deliver an accurate analysis of streaming data in a timely manner.  

 

 The emergence of data-focused wireless technologies such as 5G, with mobile edge compute 

capabilities built into the core design of the networks to provide ultra-low latency analysis of the 



video data, will drive more analysis out of the central and cloud data centers. Moving these compute 

capabilities closer to the source of the data on edge devices will provide benefits to deliver 

surveillance solutions. The removal of latency due to network backhaul to cloud platforms will 

improve decision making processes locally in time-critical applications, such as autonomous 

vehicles. Emerging technologies provide the capability to analyze the video stream at the edge using 

autonomous decision making provided by neural network algorithms to decide when data should 

be transmitted.  These capabilities can enable proactive interaction and intervention by users or for 

evidential purposes. 
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