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ABSTRACT 

In recent years, traffic is increasing exponentially. 

The queueing of the vehicles on the road or 

intersection has risen sharply and the this increase 

in traffic flow has led to the traditional traffic lights 

systems to failure resulting in widespread delays 

and congestion, resulting in need for vehicle and 

traffic sign detection. In this paper, a real – time 

vehicle detection and traffic signs detection is 

proposed to increase the safety on the roads and to 

reduce the delays. A object detection model that 

detects in real time and based on the deep 

convolutional Neural Networks referred as you 

only look once (YOLO). This paper is focused on 

analyzing the costs and benefits of using YOLO as 

an alternative model in detecting vehicles and 

traffic signs. 

 

Detecting data in a video stream is an object 

detection problem. An object detection problem 

can be approached as either a classification 

problem or a regression problem. In the 

classification approach, the image is divided into 

small patches, each of which will be run through a 

classifier to determine whether there are objects in 

the patch. The bounding boxes will be assigned to 

patches with positive classification results. This is 

all is done using the YOLOv4 approach which is 

combined with HOG and SVM approach. Linear 

SVM classifier algorithm is used to classify the car 

and traffic signs, Sliding Window and Heatmap 

algorithm are used to make it more robust. 

 

INTRODUCTION 

Autonomous vehicles have sparked a lot of interest 

in academics and industry during the last decade, 

especially in urban contexts. Due to a variety of 

difficulties, such as occlusion, color variation, 

rotation, and skew caused by camera setup or 

environmental impacts, detecting traffic signs and 

vehicles are difficult. In many places, traffic 

congestion is a severe issue, and fixed-cycle 

controllers are failing to address the long wait times 

at intersections. We frequently see a police officer 

in charge of traffic instead of a traffic light. He 

examines the state of the roads and determines the 

length of time each direction is permitted to travel. 

This human feat motivates us to develop a smart 

traffic light control system that takes into account a 

variety of factors. This human achievement 

motivates us to develop a smart traffic signal 

control system that takes into consideration real-

time traffic conditions and intelligently manages 

the intersection. To put such a system in place, we'll 

need two primary components: eye to monitor the 

current road state and a mind to analyze it. We use 

deep learning as well as YOLO, a new Real-Time 

Object Detection method to gain from the 

advancement of computer vision techniques to 

complete objects of this paper. 

In the traffic sign detection dataset, there are a total 

of 13 classes with various shapes and colors, as 

well as a "unlabeled" class for any sign that does 

not fit into one of the 12 initial classes. Triangle 

signs, red circle signs, blue circle signs, red and 

blue circle signs, diamond signs, reverse triangle 

signs, stop signs, forbidden signs, square signs, 

vertical rectangle signs, horizontal rectangle signs, 

other traffic signs, and an undefined class for all 

other signs are among these classes. 

This project is for object detection which can be 

used in self-driving cars, Advanced Driver 

Assistance System (ADAS). By this system we can 

avoid the accident in collision with other vehicles, 

detect traffic signals and other traffic road 

indicators. We do not have to do everything 

manually in nowadays, we can do it easily with the 

help of advanced computers, which will be very 

fast and easy to use in ADAS. 

Rest of the paper is organized as follows: Section 

II comprises of the methodology used and in 

Section III the experimental results are analyzed. In 



Section IV the paper is concluded and the future 

scope is outlined. 

 

METHODOLOGY 

This section discusses the methodology used for 

vehicle detection and in detection of traffic signs 

and lights using the YOLO algorithm. Figure 1 

shows the workflow diagram of our methodology.  

 

 

 

 

Fig 1. Work-flow diagram for ADAS 

 

A) Data Collection: 

For the dataset to be in real-time, we have 

captured the real-time traffic images and 

recorded a sample of video for the 

identification and classification of the 

vehicles and traffic signs. For the traffic 

sign recognition, we use the “German 

Traffic Sign Recognition Benchmark 

(GTSRB)” as our de-facto dataset.  

 

 

B) Data-set preparation: 

In this paper we use an approach that aims 

to uncover the already known classes of 

vehicles and traffic signs on the roads. For 

this project we have downloaded the dataset 

from Kaggle, The German Traffic Sign 

Benchmark is a single-image classification 

task with many classes that was held at the 

International Joint Conference on Neural 

Networks (IJCNN) in 2011. The images 

and the videos downloaded were of 

different dimensions and also of different 

image quality. To accommodate these 

images into our dataset, we had to 

normalize the images using a python script 

into the desired format of the shape (m, 608, 

608, 3). 

 

C) Dividing video into frames: 

Furthermore, the video is then split into 

frames using a python script and each frame 

is interpolated as a single image and used to 

feed into the YOLO model. 

 

 

Model Details:  

Inputs: 

• The input is a collection of photos, 

each of which has a unique shape 

(m, 608, 608, 3). 

Anchor Boxes:  

• The anchor boxes are picked by 

looking over the training data for 

suitable height/width ratios that 

represent the various classes. 

• The dimension for anchor boxes is 

the encoding's second-to-last 

dimension: m, nH, nW, anchors, 

and classes. 

• IMAGE (m, 608, 608, 3) -> DEEP 

CNN -> ENCODING is the YOLO 

architecture (m, 19, 19, 5, 85). 

 

Encoding Architecture for YOLO: 

 

Fig 2.1 Encoding Architecture for YOLO 

 

Data Collection 



If an object's center/midpoint falls into a grid cell, 

that grid cell is in charge of detecting that object. 

Because we're employing five anchor boxes, each 

of the 19 × 19 cells has information about five of 

them. The width and height of an anchor box are 

the only parameters that define it. We'll flatten the 

last two dimensions of the shape encoding (19, 19, 

5, 85) for simplicity's sake. As a result, the Deep 

CNN's output is (19, 19, 425). 

 

Fig 2.2 Flattening the last two dimensions 

 

Class Score 

Now we’ll compute the element-wise product for 

each box (of each cell) and extract a probability that 

the box has a specific class. 

Score ci = p c * ci — the chance that an object exists 

p c multiplied by the likelihood that the object 

belongs to a specific class ci — is the class score. 

 

Visualizing Classes 

On an image, here’s one method to see what YOLO 

is predicting: 

Find the maximum probability score for each of the 

19 × 19 grid cells (that is, a maximum across the 80 

classes, one maximum for each of the 5 anchor 

boxes). 

Color that grid cell according to what it thinks is 

the most likely object. 

 

Fig 3 Highlighting the largest predicted 

probability 

 

Visualizing bounding boxes 

Another way to visualize YOLO’s output is to plot 

the bounding boxes that it outputs. Doing that 

results in a visualization like this: 

 

Fig 4. Image before Non-Max Suppression 

 

Non-Max Suppression 

We plotted just boxes for which the model gave a 

high probability in the image above, but there are 

still too many boxes. We'd like to reduce the 

number of recognized objects in the algorithm's 

output. 

We'll employ non-max suppression to do this. We'll 

take the following measures in particular: 

• Get rid of low-scoring boxes. The box is not 

confident in detecting a class, either 



because of the low likelihood of any item or 

because of the low likelihood of this 

particular class. 

• When numerous boxes overlap and detect 

the same object, only one box should be 

selected. 

 

Experimental results: 

This section discusses the experimental results 

obtained after applying the real-time object 

detection algorithm based on deep convolutional 

neural network referred as YOLO on the created 

dataset as explained in the previous section 

 

 

Fig 5.1 Final result 

 

Fig 5.2 Final result 

 

The figure 5.1 and 5.2 gives us the real-time 

output. The YOLO results in the creation of 

bounding boxes over the objects that are detected 

according to the particular dataset images. 

The images containing the bounding boxes were 

then filtered to identify the bounding boxes that do 

not overlap, for this we use Non-Max Suppression 

method and further it was filtered according to 

class scores matching the threshold of 0.6. 

The output is a list of bounding boxes together with 

the classes that have been identified. Each 

bounding box is represented by six numbers: pc, 

bx, by, bh, bw, and c. Each bounding box is 

represented by 85 values when c is expanded into 

an 80-dimensional vector. 

 

Conclusion and Future Scope: 

This paper is for Advanced Driver Assistant 

System which can be used in autonomous vehicles, 

and self-driving cars. By this system we can reduce 

our work. We do not have to do everything 

manually in nowadays, we can do it easily with the 

help of pcs, which will be very fast and easy to use. 

A forward pass of an entire image through the 

network is more expensive than extracting a feature 

vector of an image patch and passing it through an 

SVM. However, this operation needs to be done 

exactly once for an entire image, as opposed to the 

roughly 150 times in the SVM+HOG approach. A 

linear SVM processes video at a measly 3FPS on 

an i7 CPU. Yolo, a blazingly fast convolutional 

neural network for object detection on a fast GPU 

(GTX 1060) the video gets processed at about 

65FPS. YOLO is more than 20x faster than the 

SVM+HOG and at least as accurate. 

The problem of implementing object detection and 

classification on Indian roads is that Indian road 

signs are not well organized and printed. There is 

blurring and occlusion which lead to noise in 

images. One model which works one foreign roads 

necessarily may not work for Indian roads. This 

project can be extended to many dimensions such 

as self-driving vehicles, autonomous drones, 

robotics, ADAS. For its enhancement it will need 

more mathematical advancement and better 

hardware. 

 

 



References:  

[1] Guide to Car Detection using YOLO | by Bryan 

Tan | Towards Data Science 

[2] Yolo Framework | Object Detection Using Yolo 

(analyticsvidhya.com) 

[3] Joseph, R., Santosh, D., Ross, G., Ali, F.: You 

Only Look Once: Unified, Real-Time Object 

Detection. arXiv preprint arXiv:1506.02640 

(2015) 

[4] Joseph,R., Ali.,F.: YOLOv3: An Incremental 

Improvement. arXiv preprint 

arXiv:1804.02767 (2018) 

[5] J. Greenhalgh and M. Mirmehdi, “Real-time 

detection and recognition of road traffic 

signs,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 13, no. 4, pp. 

1498– 1506, 2012. 

[6] The PASCAL Visual Object Classes (VOC) 

Challenge Everingham, M., Van Gool, L., 

Williams, C. K. I., Winn, J. and Zisserman, A. 

International Journal of Computer Vision, 

88(2), 303-338, 2010. 

[7] https://pjreddie.com/darknet/yolo/ 
[8] https://www.kaggle.com/andrewmvd/roa

d-sign-detection 

[9] https://github.com/thtrieu/darkflow 
[10] https://ieeexplore.ieee.org/abstra

ct/document/5010438 

[11] https://www.kaggle.com/andrew

mvd/road-sign-detection\ 

[12] https://ieeexplore.ieee.org/abstra

ct/document/5010438 

 

https://towardsdatascience.com/guide-to-car-detection-using-yolo-48caac8e4ded
https://towardsdatascience.com/guide-to-car-detection-using-yolo-48caac8e4ded
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://pjreddie.com/darknet/yolo/
https://github.com/thtrieu/darkflow
https://ieeexplore.ieee.org/abstract/document/5010438
https://ieeexplore.ieee.org/abstract/document/5010438
https://www.kaggle.com/andrewmvd/road-sign-detection/
https://www.kaggle.com/andrewmvd/road-sign-detection/
https://ieeexplore.ieee.org/abstract/document/5010438
https://ieeexplore.ieee.org/abstract/document/5010438

