
EasyChair Preprint
№ 5910

Advanced Driver Assistant Systems

Varun Goel and Harmandeep Singh Paul

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 24, 2021

Advanced Driver Assistant Systems

Varun Goel

Assistant Professor

Department of Information Technology

Maharaja Agrasen Institute of Technology (IPU), Delhi,

India

Harmandeep Singh Paul

Department of Information Technology

Maharaja Agrasen Institute of Technology (IPU), Delhi,

India

ABSTRACT

In recent years, traffic is increasing exponentially.

The queueing of the vehicles on the road or

intersection has risen sharply and the this increase

in traffic flow has led to the traditional traffic lights

systems to failure resulting in widespread delays

and congestion, resulting in need for vehicle and

traffic sign detection. In this paper, a real – time

vehicle detection and traffic signs detection is

proposed to increase the safety on the roads and to

reduce the delays. A object detection model that

detects in real time and based on the deep

convolutional Neural Networks referred as you

only look once (YOLO). This paper is focused on

analyzing the costs and benefits of using YOLO as

an alternative model in detecting vehicles and

traffic signs.

Detecting data in a video stream is an object

detection problem. An object detection problem

can be approached as either a classification

problem or a regression problem. In the

classification approach, the image is divided into

small patches, each of which will be run through a

classifier to determine whether there are objects in

the patch. The bounding boxes will be assigned to

patches with positive classification results. This is

all is done using the YOLOv4 approach which is

combined with HOG and SVM approach. Linear

SVM classifier algorithm is used to classify the car

and traffic signs, Sliding Window and Heatmap

algorithm are used to make it more robust.

INTRODUCTION

Autonomous vehicles have sparked a lot of interest

in academics and industry during the last decade,

especially in urban contexts. Due to a variety of

difficulties, such as occlusion, color variation,

rotation, and skew caused by camera setup or

environmental impacts, detecting traffic signs and

vehicles are difficult. In many places, traffic

congestion is a severe issue, and fixed-cycle

controllers are failing to address the long wait times

at intersections. We frequently see a police officer

in charge of traffic instead of a traffic light. He

examines the state of the roads and determines the

length of time each direction is permitted to travel.

This human feat motivates us to develop a smart

traffic light control system that takes into account a

variety of factors. This human achievement

motivates us to develop a smart traffic signal

control system that takes into consideration real-

time traffic conditions and intelligently manages

the intersection. To put such a system in place, we'll

need two primary components: eye to monitor the

current road state and a mind to analyze it. We use

deep learning as well as YOLO, a new Real-Time

Object Detection method to gain from the

advancement of computer vision techniques to

complete objects of this paper.

In the traffic sign detection dataset, there are a total

of 13 classes with various shapes and colors, as

well as a "unlabeled" class for any sign that does

not fit into one of the 12 initial classes. Triangle

signs, red circle signs, blue circle signs, red and

blue circle signs, diamond signs, reverse triangle

signs, stop signs, forbidden signs, square signs,

vertical rectangle signs, horizontal rectangle signs,

other traffic signs, and an undefined class for all

other signs are among these classes.

This project is for object detection which can be

used in self-driving cars, Advanced Driver

Assistance System (ADAS). By this system we can

avoid the accident in collision with other vehicles,

detect traffic signals and other traffic road

indicators. We do not have to do everything

manually in nowadays, we can do it easily with the

help of advanced computers, which will be very

fast and easy to use in ADAS.

Rest of the paper is organized as follows: Section

II comprises of the methodology used and in

Section III the experimental results are analyzed. In

Section IV the paper is concluded and the future

scope is outlined.

METHODOLOGY

This section discusses the methodology used for

vehicle detection and in detection of traffic signs

and lights using the YOLO algorithm. Figure 1

shows the workflow diagram of our methodology.

Fig 1. Work-flow diagram for ADAS

A) Data Collection:

For the dataset to be in real-time, we have

captured the real-time traffic images and

recorded a sample of video for the

identification and classification of the

vehicles and traffic signs. For the traffic

sign recognition, we use the “German

Traffic Sign Recognition Benchmark

(GTSRB)” as our de-facto dataset.

B) Data-set preparation:

In this paper we use an approach that aims

to uncover the already known classes of

vehicles and traffic signs on the roads. For

this project we have downloaded the dataset

from Kaggle, The German Traffic Sign

Benchmark is a single-image classification

task with many classes that was held at the

International Joint Conference on Neural

Networks (IJCNN) in 2011. The images

and the videos downloaded were of

different dimensions and also of different

image quality. To accommodate these

images into our dataset, we had to

normalize the images using a python script

into the desired format of the shape (m, 608,

608, 3).

C) Dividing video into frames:

Furthermore, the video is then split into

frames using a python script and each frame

is interpolated as a single image and used to

feed into the YOLO model.

Model Details:

Inputs:

• The input is a collection of photos,

each of which has a unique shape

(m, 608, 608, 3).

Anchor Boxes:

• The anchor boxes are picked by

looking over the training data for

suitable height/width ratios that

represent the various classes.

• The dimension for anchor boxes is

the encoding's second-to-last

dimension: m, nH, nW, anchors,

and classes.

• IMAGE (m, 608, 608, 3) -> DEEP

CNN -> ENCODING is the YOLO

architecture (m, 19, 19, 5, 85).

Encoding Architecture for YOLO:

Fig 2.1 Encoding Architecture for YOLO

Data Collection

If an object's center/midpoint falls into a grid cell,

that grid cell is in charge of detecting that object.

Because we're employing five anchor boxes, each

of the 19 × 19 cells has information about five of

them. The width and height of an anchor box are

the only parameters that define it. We'll flatten the

last two dimensions of the shape encoding (19, 19,

5, 85) for simplicity's sake. As a result, the Deep

CNN's output is (19, 19, 425).

Fig 2.2 Flattening the last two dimensions

Class Score

Now we’ll compute the element-wise product for

each box (of each cell) and extract a probability that

the box has a specific class.

Score ci = p c * ci — the chance that an object exists

p c multiplied by the likelihood that the object

belongs to a specific class ci — is the class score.

Visualizing Classes

On an image, here’s one method to see what YOLO

is predicting:

Find the maximum probability score for each of the

19 × 19 grid cells (that is, a maximum across the 80

classes, one maximum for each of the 5 anchor

boxes).

Color that grid cell according to what it thinks is

the most likely object.

Fig 3 Highlighting the largest predicted

probability

Visualizing bounding boxes

Another way to visualize YOLO’s output is to plot

the bounding boxes that it outputs. Doing that

results in a visualization like this:

Fig 4. Image before Non-Max Suppression

Non-Max Suppression

We plotted just boxes for which the model gave a

high probability in the image above, but there are

still too many boxes. We'd like to reduce the

number of recognized objects in the algorithm's

output.

We'll employ non-max suppression to do this. We'll

take the following measures in particular:

• Get rid of low-scoring boxes. The box is not

confident in detecting a class, either

because of the low likelihood of any item or

because of the low likelihood of this

particular class.

• When numerous boxes overlap and detect

the same object, only one box should be

selected.

Experimental results:

This section discusses the experimental results

obtained after applying the real-time object

detection algorithm based on deep convolutional

neural network referred as YOLO on the created

dataset as explained in the previous section

Fig 5.1 Final result

Fig 5.2 Final result

The figure 5.1 and 5.2 gives us the real-time

output. The YOLO results in the creation of

bounding boxes over the objects that are detected

according to the particular dataset images.

The images containing the bounding boxes were

then filtered to identify the bounding boxes that do

not overlap, for this we use Non-Max Suppression

method and further it was filtered according to

class scores matching the threshold of 0.6.

The output is a list of bounding boxes together with

the classes that have been identified. Each

bounding box is represented by six numbers: pc,

bx, by, bh, bw, and c. Each bounding box is

represented by 85 values when c is expanded into

an 80-dimensional vector.

Conclusion and Future Scope:

This paper is for Advanced Driver Assistant

System which can be used in autonomous vehicles,

and self-driving cars. By this system we can reduce

our work. We do not have to do everything

manually in nowadays, we can do it easily with the

help of pcs, which will be very fast and easy to use.

A forward pass of an entire image through the

network is more expensive than extracting a feature

vector of an image patch and passing it through an

SVM. However, this operation needs to be done

exactly once for an entire image, as opposed to the

roughly 150 times in the SVM+HOG approach. A

linear SVM processes video at a measly 3FPS on

an i7 CPU. Yolo, a blazingly fast convolutional

neural network for object detection on a fast GPU

(GTX 1060) the video gets processed at about

65FPS. YOLO is more than 20x faster than the

SVM+HOG and at least as accurate.

The problem of implementing object detection and

classification on Indian roads is that Indian road

signs are not well organized and printed. There is

blurring and occlusion which lead to noise in

images. One model which works one foreign roads

necessarily may not work for Indian roads. This

project can be extended to many dimensions such

as self-driving vehicles, autonomous drones,

robotics, ADAS. For its enhancement it will need

more mathematical advancement and better

hardware.

References:

[1] Guide to Car Detection using YOLO | by Bryan

Tan | Towards Data Science

[2] Yolo Framework | Object Detection Using Yolo

(analyticsvidhya.com)

[3] Joseph, R., Santosh, D., Ross, G., Ali, F.: You

Only Look Once: Unified, Real-Time Object

Detection. arXiv preprint arXiv:1506.02640

(2015)

[4] Joseph,R., Ali.,F.: YOLOv3: An Incremental

Improvement. arXiv preprint

arXiv:1804.02767 (2018)

[5] J. Greenhalgh and M. Mirmehdi, “Real-time

detection and recognition of road traffic

signs,” IEEE Transactions on Intelligent

Transportation Systems, vol. 13, no. 4, pp.

1498– 1506, 2012.

[6] The PASCAL Visual Object Classes (VOC)

Challenge Everingham, M., Van Gool, L.,

Williams, C. K. I., Winn, J. and Zisserman, A.

International Journal of Computer Vision,

88(2), 303-338, 2010.

[7] https://pjreddie.com/darknet/yolo/
[8] https://www.kaggle.com/andrewmvd/roa

d-sign-detection

[9] https://github.com/thtrieu/darkflow
[10] https://ieeexplore.ieee.org/abstra

ct/document/5010438

[11] https://www.kaggle.com/andrew

mvd/road-sign-detection\

[12] https://ieeexplore.ieee.org/abstra

ct/document/5010438

https://towardsdatascience.com/guide-to-car-detection-using-yolo-48caac8e4ded
https://towardsdatascience.com/guide-to-car-detection-using-yolo-48caac8e4ded
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://pjreddie.com/darknet/yolo/
https://github.com/thtrieu/darkflow
https://ieeexplore.ieee.org/abstract/document/5010438
https://ieeexplore.ieee.org/abstract/document/5010438
https://www.kaggle.com/andrewmvd/road-sign-detection/
https://www.kaggle.com/andrewmvd/road-sign-detection/
https://ieeexplore.ieee.org/abstract/document/5010438
https://ieeexplore.ieee.org/abstract/document/5010438

