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Abstract

Network scanning is a common task in cybersecurity. For instance, penetration testers
often scan a target system during the initial stage of their vulnerability detection process,
e.g., for profiling machines and services. On the other hand, attacker scan remote systems
looking for exploitation opportunities. Network scans are generally considered harmless
for the victim, as they only consist of a few requests that cause no service interruption or
degradation. Nevertheless, as shown in [19], scanning is risky for its author.

In this paper, we present a general attack framework that takes advantage of network
scans for injecting remote systems. In particular, our proposal leverages the widely adopted
scanner Nmap [15] for transmitting attack payloads through the scan responses. If the
output of Nmap is processed by an injectable application, e.g., a web browser of a SQL
DBMS, our payloads are executed and the scanning system gets compromised.

1 Introduction

Roughly, network scanning amounts to testing whether a target system accepts connections to
certain ports. For instance, a web server might accept requests on ports 80 (HTTP) and 443
(HTTPS), while a mail server could use ports 25 (SMTP) and 143 (IMAP). The list of available
services is extremely important for security-related activities. As a matter of fact, services that
listen to incoming connections are part of the perimeter that, e.g., an attacker might want to
penetrate. Scanning the active ports of a remote system is thus fundamental for collecting
crucial information such as the type and version of the running services.

The most famous and adopted scanning tool is Nmap [15]. Analysts/attackers can rely on
various scanning strategies. A common one is based on establishing a TCP connection with
the target service. Briefly, every TCP connection starts with the notorious 3-way handshaking.
Upon completion of the handshake, most services send some banner message containing infor-
mation about the service type and version. This message is thus processed by Nmap to identify
the scanned service. For instance, connecting to ftp.gnu.org one gets the banner message
"220 GNU FTP server ready".

Clearly, when establishing a direct connection, the target server can read the client’s IP
address, which might be useful for attribution purposes. However, to avoid it, scan authors
can resort to various techniques, depicted in Figure 1. The first scenario consists of a client
performing a scan through a proxy server running Nmap. For instance, the client may resort to
one among many network scanning web applications such as https://nmap.online/. Also, an
attacker might have gained control over a remote server where she can install and run tools. In
both cases, the target would attribute the scan operation to the proxy server, rather than the
actual author. An alternative approach consists of scanning through the TOR network. Since
the traffic goes through a number of relay nodes, the target can only observe the last, exit relay.
Under these scenarios, attributing a Nmap scan to its author is, in general, undoable.

https://nmap.online/
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Figure 1: Nmap TCP scanning scenarios.

For the reasons stated above and since they generate a negligible amount of traffic, network
scans are usually tolerated. Nevertheless, banner grabbing is part of the attackers’ kill chain
and it should be considered a risky operation. In [19], the authors showed that this is not only
true for scan victims, but also for their authors. Under their attacker model, they demonstrated
that HTTP service banners may contain cross-site scripting payloads that the scan target uses
to inject the authors’ browser. The reason is that the service banner is processed by Nmap
to find critical information, e.g., service name and version. In many cases, Nmap is used as a
component in some exploitation frameworks. Thus, returned details may be integrated into a
HTML report without a proper sanitization.

In this paper, we present an extension of the attack scenario presented in [19]. Starting from
the same attacker model, we extend it by generalizing (i) the set of injectable protocols and (ii)
the family of code injection payloads. The first generalization is based on a reverse engineering
of the Nmap service reconnaissance method. In particular, we develop a payload generation
technique that returns injected banners following the exact syntax expected by Nmap. This
ensures that Nmap propagates our payloads to the upper level, i.e., the attack or penetration
testing framework, if it exists. On the other hand, our attack strategy introduces a generic
and configurable set of attack payloads. As a matter of fact, analysts can provide their attack
payloads via configuration files. For instance, a set of payloads may consist of SQL injections,
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Figure 2: Abstract workflow of NIF.

while another may be for cross-site scripting. Our methodology is then demonstrated through a
prototype implementation. The prototype is released as an open source project for the security
community.

The rest of this paper is structured as follows. Section 2 illustrates our framework. In
Section 3 we discuss a usage scenario of NIF. Finally, we survey the related literature in Section
4 and conclude the paper in Section 5.

2 Framework

In this section, we describe our attack framework and its implementation details.

2.1 Overview

The abstract workflow of our framework is depicted in Figure 2. The scanning platform appears
on the left. Briefly, it consists of Nmap and some reporting systems. The reporting system
can belong to various categories. For instance, it can be an HTML report or a PDF document.
Possibly, the scan result may even be stored in a database.

On the other hand, the NIF platform exposes a frontend service. When a Nmap scan occurs
on port P, the NIF service triggers a response generation utility that uses the Nmap service
probes (see Section 2.2) and a collection of payloads, e.g., stored in a database. The generated
response resembles a legal service banner, but it carries the injection payload. When Nmap
processes the injected banner message, the payload is eventually returned to the reporting
system.

2.2 Reversing Nmap Probes

Nmap service recognition relies on a list of service probes. Each probe amounts to a rule for
parsing a service banner. In this way, even if a service is not running on its usual port (e.g.,
SSH on port 22) Nmap can correctly identify it. For instance, consider the following service
probe rule.

3



NIF: Reactive Injection Attack via Nmap Piggybacking Bonfiglio, Costa and De Francisci

match ssh m|^SSH-([\d.]+)-OpenSSH[_-]([\w.]+)\r?\n|

p/OpenSSH/ v/$2/ i/protocol $1/ cpe:/a:openbsd:openssh:$2/

The rule states that the received banner message matches an SSH service if it follows the syntax
between m|. . . |. The syntax is given through a Perl-compatible regular expression (PCRE). For
instance, we can observe that the string SSH-1.2-OpenSSH_v5 matches the PCRE. The second
part of the rule tells Nmap how to interpret a successful match. Every segment refers to specific
information that Nmap infers from the banner message. In this case, for instance, p/OpenSSH/
is for the product name. More interestingly, v/$2/ tells Nmap that the service version is taken
directly from the banner content. In particular, $2 identifies the second capture group parsed by
the regular expression, i.e., the part of the string that matches the expression inside the second
pair of rounded parentheses. In the previous example, this value is v5. Finally, segments i/. . . /
and cpe:/. . . / are for info and platform (e.g., OS and hardware) identification, respectively.

Since Nmap extracts the information matching capture groups and includes it in its out-
put, we can expect these details to be propagated to the reporting system. Hence, they rep-
resent the ideal target for placing a malicious payload. For instance, consider the banner
SSH-1.2-OpenSSH_PAYLOAD. Nmap would extract from it the product version PAYLOAD.

Clearly, not every capture group is a suitable candidate for placing a payload. As a matter
of fact, the payload must match the regular expression between parentheses. As an example,
consider the first capture group in the previous rule, i.e., ([\d.]+). Since only digits and the
’.’ symbol can appear there, we cannot use it for any meaningful injection. Nevertheless, since
all the matching rules and capture groups are listed in the source code of Nmap, we can easily
filter those that admit payload injection.

2.3 Payload Management

As stated above, the first step is finding capture groups that we can instantiate with payloads.
For instance, we might look for (.*), i.e., the capture group matching any finite sequence of
characters. Performing this search on the Nmap service probe file returns 89 entries such as
the following one.

match ftp m|^220 vsFTPd (.*) ready\.\.\.\r\n| p/vsftpd/ v/$1/

Nevertheless, other regular expressions can be used as well. For instance, we might search
for (.* and .*), i.e., capture group admitting a preamble or a trail (respectively) made of any
sequence of chars. This results in rules such as this one.

match ssh m|^SSH-([\d.]+)-OpenSSH_([\w._-]+)[ -]{1,2}Debian[ -_](.*ubuntu.*)\r\n|

In this case, the capture group (.*ubuntu.*) can be used for our purposes.
With this approach, we can already identify 153 injectable probes. Nevertheless, more

refined searches may be implemented. The basic idea is that one might use different charsets
for each payload category. For instance, the character ’/’ may be necessary for XSS payloads,
but irrelevant for SQLi ones. Thus, we may test each capture group against the charset of a
specific injection attack for checking whether it can be injected.

Independently from the used method, NIF is eventually provided with a list of injectable
probes. For each probe, the NIF service exposes a service on the corresponding port. When
a scan occurs on port P, the payload generation proceeds in the following way. First, a probe
PCRE is selected among those that (i) corresponds to a service running on port P (e.g., FTP if
P = 21), and (ii) contains at least an injectable capture group. Briefly, filter (i) is implemented
by using the predefined service mapping included in the source code of Nmap. In particular,
the configuration file nmap-services consists of a finite list following the syntax below.

4



NIF: Reactive Injection Attack via Nmap Piggybacking Bonfiglio, Costa and De Francisci

Figure 3: NIF response generation flow example.

service port/protocol frequency # comment

There, service identifies the service, e.g., ftp, port/protocol is for the service port and
protocol type, e.g., 21/tcp, frequency denotes the service likelihood, i.e., how often Nmap
expects to find the service running on the given port, and comment is free text. Instead, filter
(ii) is implemented by considering the specific type of injection attack (given as an input).
To check whether a capture group is injectable with a payload for a certain attack, e.g., XSS,
we compute the intersection between PCRE of the capture group and a signature PCRE for
the attack. Briefly, the signature PCRE is .*C.* where C is the payload charset described in
Section 2.2. If the intersection between the two PCRE is not empty, we consider the probe
injectable. As an example, consider again the capture group (.*ubuntu.*) discussed above
and imagine that C = <>()alert/""123, i.e., a simplified charset for XSS. When comput-
ing .*ubuntu.* ∩ .*<>()alert/""123.* we find that, for instance, it includes the string
<>()alert/""123ubuntu.

Once the injectable probe is selected, an actual response message that both (i) follows its
syntax and (ii) contains an attack payload must be generated. This is achieved by means
of a PCRE generator that, given a regular expression, returns a random string belonging
to its language. In particular, the PCRE used is that of the selected probe, where the in-
jectable capture groups are modified as follows. Imagine the capture group PCRE is E and
the selected payload is P, we replace E with the intersection E ∩ .*P.*. Again, if we con-
sider the example above, if E = .*ubuntu.* and P = <script>alert(1)</script>, we ob-
tain [[.*ubuntu.*]&&[.*<script>alert(1)</script>.*]]1. The overall response genera-
tion flow described above is exemplified in Figure 3.

3 NIF Demonstration

In this section, we present our implementation, called NIF. Furthermore, we demonstrate NIF
through an attack scenario where the adversary establishes remote control over the victim’s

1Different implementations of PCRE may use different operators for intersection. Here we refer to the Java
implementation using [[ . . . ]&&[ . . . ]].
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Figure 4: Output generated by the filter utility.

browser. All the material presented below is available at https://github.com/iAleKira/

Nmap-Injection-Framework.

3.1 Implementation

NIF is available as an open-source, Java-implemented project consisting of a few components.
We briefly describe them below.

Payloads. This package contains a collection of injection payloads. Payloads are stored
in each row of text files. Text files are organized according to their type. For instance,
xss payloads.txt contains a collection of XSS payloads. New injection attacks can be imple-
mented by adding payloads’ files to this package. NIF retrieves these payloads when generating
malicious responses to Nmap scans.

Filter. The filter utility is a stand-alone Java executable used to extract reversible Nmap
probes, as explained in Section 2.2. Filtered probes are stored in a text file that NIF Server
can access. Figure 4 shows the output generated by the following command.

java -jar filter.jar "<script>alert(1)</script>"

In Figure 4, we report four rules for FTP and one for POP3 (out of 37 total rules).

Server. This component is in charge for delivering the attack payloads once receiving a Nmap
scan. Briefly, it implements the NIF service and the response generator described in Section 2.
The NIF Server instantiates Java sockets listening on the ports associated with the injectable
probes, e.g., port 25 for the FTP service.

Limitations. The general approach discussed in Section 2 and the current implementation
of NIF mainly differ for a single aspect, i.e., the payload injection strategy. As discussed in
Section 2.3, the general strategy is based on computing the intersection between two regular
languages, i.e., one for the service probe and one for the injection payload. However, for the
time being, NIF only generates payloads belonging to the regular language of the probe. For
instance, consider the case where the probe’s regular expression is .*ubuntu.* and the payload
is <script>alert(1)</script>. The approach described in Section 2.3 would allow generating,
e.g., the response <script>alert(1)</script>ubuntu. However, the current implementation
of NIF cannot find this match. Although this reduces the number of potential injection vectors,
NIF can already identify several injectable probes for most payloads. We plan to extend NIF
with this functionality as part of our future work.
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Figure 5: Remote browser takeover scenario with NIF and BeEF.

Figure 6: NIF startup and delivering BeEF’s XSS hook.

3.2 Demonstration: Injecting BeEF’s XSS Hook

In this demonstration, we show how NIF can be used to inject the victim with a XSS payload
to hijack the target browser. The scenario is depicted in Figure 5. The attacker controls
both the NIF server and a BeEF Command and Control (C&C) server. Briefly, BeEF [3] is a
browser exploitation framework that relies on XSS injection to install a control module on a
target browser. The control module is configured to periodically connect to the C&C server
and retrieve commands to be executed. Since the victim’s browser does active polling, BeEF
can effectively bypass firewall controls in most cases.

The attacker configures NIF to inject the payload

<script src="HTTP://[IP]:3000/hook.js"></script>

where [IP] is the IP address of the BeEF C&C server (exposed on port 3000). NIF identifies
four injectable service probes and configures a listening port for each of them. When the victim’s
machine scans one of these ports, it receives the payload. If the Nmap report is then flushed
into an HTML report, the victim’s browser connects to the C&C server, as discussed above.
Figure 6 shows the output of NIF when injecting Nmap under our scenario.
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4 Related Work

To the best of our knowledge, RevOk [19] was the first and only proposal exploiting scan oper-
ations to perform injection attacks. In detail, RevOk uses a malicious web application in order
to attack whoever scans it, injecting malicious payloads into the browser of the scan author.
Injection payloads are embedded in HTTP response headers that Nmap parses to fingerprint
the web server. Our work extends RevOk by using a general strategy that applies to every
injectable protocol, rather than HTTP only. In the following three sections, we briefly revise
the state-of-the-art of active defense techniques, security scanner weaknesses, and injection at-
tacks on web applications. Although these works are not alternatives to our proposal, they are
relevant w.r.t. the technologies involved in our reference attacker model.

4.1 Active Defense

Active defense refers to a set of cybersecurity measures that involve actively identifying, pre-
venting, and responding to cyber threats. For a detailed review of the different types of active
defense and related possible actions, we refer the interested reader to Glosson [8].

De Gaspari et al. [6] present AHEAD, an active defense approach based on deception.
AHEAD allows redirecting back traffic received on a port, thanks to Rubberglue [1], generating
attractive files that, once opened, permit the Web Bug Server [2] to reveal the attacker’s identity
and obtain the IP address of her machine. Unlike ours, this approach relies on analyzing the
attacker’s strategy and counterstriking. Similarly, Rana et al. [16] exploit rely on a honeypot
to obtain attacker information. In particular, they consider the possibility of the attacker using
a VPN and propose a method that can bypass it and get accurate information.

Another method is to directly identify and exploit vulnerabilities in the attacker’s tool suite.
For instance, Dereszowski [7] discovered a vulnerability in the Poison Ivy RAT. He built a buffer
designed to overwrite the return address of the function and then drive the function back to a
RET instruction. Thus, when the attacker uses this tool to spy on the victim, the manipulated
buffer causes a buffer overflow and the execution of arbitrary shellcode.

4.2 Security Scanners

Reports about scanner vulnerabilities are not frequent in the literature. Yet, some authors have
considered the security weaknesses of scanners. These works focus on issues such as incomplete
scanning, which can leave some vulnerabilities undetected; false positives, which are reported
vulnerabilities that do not exist; or performance issues.

For instance, Holm et al. [11] present a quantitative analysis of seven of the most used
vulnerability scanners. Vieria et al. [20] perform an experimental evaluation of security vulner-
abilities in 300 web services, demonstrating the advantages and limitations of these scanners.
Along the same line, Bau et al. [5] investigate the effectiveness as well as the relevance of the
discovered vulnerabilities. Idrissi et al. [12] compare the performance and efficiency of several
commercial and free scanners. Nevertheless, none of the previous works consider whether a
security scanner can convey injection attacks toward the scan author.

4.3 Injection Attacks on Web Applications

Web applications may be vulnerable to several types of injection attacks. One is the command
injection attack that involves injecting malicious command-line code. The first formal defini-
tion of command injection attacks in the context of web applications is provided by Su and
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Wassermann [18]. The XML injection attack involves injecting malicious XML code, which can
be used to manipulate or access data stored in an XML file, as discussed in [9]. The LDAP
injection attack is analyzed in depth by Alonso et al. [4]. This technique allows obtaining
direct access to the hierarchical database underlying an LDAP tree. Another attack is SQL
injection, among the most used techniques to violate web applications. Several authors survey
these attacks, e.g., see [17, 14]. In particular, Halfond et al. [10] not only classify SQL injec-
tion attacks but compare techniques for detecting and preventing them. Similarly, Kumar and
Pateriya [13] survey attacks and defense techniques for injection scenarios. All the injection at-
tacks discussed above are compatible with our approach. As a matter of fact, our methodology
treats injection payloads agnostically and an attacker can pick the specific payloads targeting
the victim’s infrastructure.

5 Conclusion

In this paper, we presented a general methodology for embedding injection attacks in Nmap
scan responses. Our attack targets systems, e.g., penetration testing frameworks and reporting
tools, that import the output of Nmap without proper sanitization. Although a systematic
assessment of the impact of our attack strategy is yet to be carried out, we believe that many
developers might excessively trust the output of Nmap when it is locally executed. In future
work, we plan to experimentally validate this hypothesis by exploiting the tool presented in this
paper for implementing a vulnerability detection campaign. Furthermore, such a campaign will
be used to measure the impact of our methodology.
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