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Abstract. We present new algorithms to compute the Syntactic Closure
and the Minimal Cover of a set of functional dependencies, using strategic
port graph rewriting. We specify a Visual Domain Specific Language
to model relational database schemata as port graphs, and provide an
extension to port graph rewriting rules. Using these rules we implement
strategies to compute a syntactic closure, analyse it and find minimal
covers, essential for schema normalisation. The graph program provides a
visual description of the computation steps coupled with analysis features
not available in other approaches. We prove soundness and completeness
of the computed closure. This methodology is implemented in PORGY.

Keywords: relational databases, database design, port graph, graph
transformation, functional dependency, minimal cover

1 Introduction

Relational database design includes conceptual and logical modelling, as well as
physical modelling. The theory behind these steps is well-understood (it is part
of the syllabus of many databases courses [16]), and highlights the advantages of
developing normalised database designs. Yet, database professionals often con-
sider normalisation too cumbersome and do not apply normalisation theory, due
to the lack of adequate tools to support logical modelling [6].

Formal, graph-based approaches to database design have used labelled graphs
or hypergraphs [1l5l7]. We advocate a new approach to database modelling us-
ing attributed port graphs, which are graphs where edges are connected to nodes
at specific points, called ports. Attributes of nodes, edges and ports are used
to represent properties of the system modelled. Port graphs were introduced
in [2] to model biochemical systems and have been used in various domains [I4].
Port graphs are a good data structure to store and to visualise relational schema:
ports provide additional visual information about the design. We propose to rep-
resent relational attributes and functional dependencies as nodes, and use edges
to link attributes and dependencies; ports indicate the role of the attribute in
the dependency. This representation has advantages when computing properties
of the schema, such as syntactic closure of the set of dependencies, a crucial step
in producing a normalised schema. We specify an algorithm to compute closures
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2 Fernandez, Pinaud and Varga

using port graph rewriting rules controlled by strategies. Our system has been
implemented in PORGY [3] — a visual, interactive modelling tool. PORGY pro-
vides a graphical interface to specify an initial model, port graph rewriting rules
and strategies. It displays the set of rewrite derivations (a derivation tree) and
includes features such as cycle detection, to facilitate debugging.

Summarising, our main contributions are:

1. a Visual Domain Specific Language (VDSL) specifically tailored to model
relational database schemata (Section ;

2. a new visual representation of Armstrong’s axioms to infer functional de-
pendencies, using the port graph VDSL mentioned above (Section ;

3. a sound and complete strategic graph program to compute the syntactic
closure of a set of functional dependencies, with examples (Sections [4.2]4.3));

4. an implementatiorﬁ in PORGY, together with a set of techniques to query
the relational database design, using PORGY’s derivation tree and graphical
interface to analyse properties of the model: In particular, we show how to
solve the membership problem (Section ;

5. a strategy and a set of transformation rules to simplify sets of dependencies,
as required to compute a minimal cover (Section .

Related Work. Hypergraphs are used for relational database design in [7I13].
Using directed graphs candidate keys of a relation are computed in polynomial
time [24]. A special family of labelled graphs, FD-graphs, were introduced in [5]
to obtain closures of functional dependencies. In terms of graph transformations
for database modelling we highlight two works. Hypergraph rewriting was used
for the representation of functional dependencies [7] and Triple Graph Grammars
were used to optimise a database schema [I7].

Our contribution and main difference with respect to these works is the de-
sign of a domain-specific visual language with emphasis on interactive modelling,
including strategies to control the application of rules, and the use of the deriva-
tion tree as part of the visualisation framework, giving the modeller access to all
the sequences of transformation steps, to facilitate the analysis of the system.
Port graphs were used to compute transitive closures in [27]. Here we compute
the full Armstrong closure (not just transitive closure), and show how to use
the derivation tree to analyse closures and answer queries about the database
model, such as whether a given functional dependency is in the closure of a set
of dependencies (the membership problem), and compute minimal covers.

PoORGY’s strategy language is strongly inspired by PROGRES [25], GP [23]
and by strategy languages developed for term rewriting [I1IT9]. None of the
available graph rewriting tools permits users to visualise the derivation tree, as
in PORGY, where users can interactively visualise alternative derivations, fol-
low the development of specific redexes, etc. When computing the closure of
a set of dependencies, the derivation tree permits to see how each dependency
is generated, offering a direct visualisation of the inference steps according to
Armstrong’s axioms.

3 lgithub.com/janos-varga/Porgy
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Port Graph Rewriting for Database Modelling 3

2 Background

2.1 Relational Databases

We assume that the reader is familiar with the theory of logical design of rela-
tional databases [22], in particular, the definitions of: relation schema, attribute,
candidate key and functional dependency (FD). We refer to a single attribute
with letters from the beginning of the alphabet A, B,... and to attribute sets
with letters from the end of the alphabet W, XY, Z. Let R(A) = {R1,..., Ry}
be a set of relation schemata over a set A of attributes. Let FD = {X,..., X%}
be the respective sets of functional dependencies and CK = {C4,...,Ci} be
the respective sets of candidate keys. A relational database schema is a tuple
DB = (R(A),FD,CK).

We assume familiarity with the inference rules known as Armstrong’s Ax-
ioms: Reflexivity (or Trivial Dependency), Augmentation, Transitivity, Union,
Decomposition, Pseudotransitivity. These rules are sound and complete [419].
From now on, by syntactic closure we will mean Amstrong’s syntactic closure,
that is, the set X1 of all FDs that can be inferred from X using Armstrong’s
Axioms, or equivalently, using the sound and complete subset consisting of Re-
flexivity, Transitivity and Augmentation, stated below following Beeri et al. [9].

(A1) Reflexivity: if Y C X then X — Y.
(A2) Augmentation: if Z C W and X — Y then XW — Y Z.
(A3) Transitivity: if X - Y and Y — Z then X — Z.

Syntactic closures are used to compute minimal covers of sets of FDs. The
minimal cover X, of X is a set of dependencies that fully represent X and
satisfy the following three conditions [21]:

1. all the FDs in X,,;, have singleton right sides;

2. Ymin is left-reduced: if one attribute is removed from any left side then X
can no longer be inferred from X,,;y;

3. XYpin is nonredundant: if any FD is removed from X,,,;,, then 3’ can no longer
be inferred from it.

Our goal is to provide visual algorithms to compute syntactic closures and
minimal covers. This work assumes that a) FDs have singleton right sides and b)
there are no cyclical dependencies. Assumption (a) is standard in the relational
database literature, without loss of generality, under Armstrong’s Decomposition
rule. The problem of cyclical dependencies reduces to kernel search in a directed
graph which is NP-complete.

2.2 Port Graph Rewriting and Porgy

We recall the notion of attributed port graph rewriting (see [I4] for more details).

Definition 1 (Attributed port graph). An attributed port graph
G=(V,P,E,D)x is a tuple (V, P, E, D) of pairwise disjoint sets where:
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4 Fernandez, Pinaud and Varga

— V is a finite set of nodes; n,nq,... range over nodes;
— P is a finite set of ports; p,p1, ... range over ports;
— FE is a finite set of edges between ports; e, ey, ... range over edges; two ports

may be connected by more than one edge;
— D is a set of records, which are sets of pairs attribute-value;

and a set F of functions Connect, Attach and Label such that:

— for each edge e € E, Connect(e) is the pair (p1,p2) of ports connected by e;

— for each port p € P, Attach(p) is the node n to which the port belongs;

— Label : VUPUE — D is a labelling function that returns a record for each
element in VUPUFE.

For each node n € V, Label(n) contains an attribute Interface whose value is
the list of names of its ports.

A port graph rewrite rule is itself a port graph L =¢ R consisting of two sub-
graphs L and R, called left-hand side and right-hand side, respectively, together
with an arrow node that links them. Each rule is characterised by its arrow
node, which has a unique name (the rule’s label), an optional attribute Where
defining a Boolean condition C' that restricts the rule’s matching, and ports to
control the rewiring operations when rewriting steps are computed. Each port in
the arrow node has an attribute T'ype that can have one of three different values:
bridge, wire and blackhole. A port of type bridge must have edges connecting it
to L and to R (one edge to L and one or more to R): it thus connects a port
from L to ports in R. A port of type blackhole must have edges connecting it
only to L (one edge or more). A port of type wire must have exactly two edges
connecting to L and no edge connecting to R.

The ports and edges associated with the arrow node specify a mapping be-
tween ports in the left and right-hand sides of the rule, following the Single-
PushOut approach [20]. This mapping is used during rewriting, to redirect the
edges that connect the redex to the rest of the graph once the redex is rewritten
(as explained below).

For examples of rewrite rules, we refer the reader to Section 4] It is possible
to specify a rule condition requiring that a particular edge does NOT exist in
the graph to be rewritten. In PORGY such conditions are graphically represented
as a double line grey edge with an X, which is called an anti-edge [I5].

A match g(L) of the left-hand side is found in G if there is a total port
graph morphism g from L to G such that if the arrow node has an attribute
Where with value C, then g(C) is true in G. C' is of the form saturated(p;) A ... A
saturated(pn) A B, and saturated(g(p;)) holds if there are no edges between g(p;)
and ports outside g(L) in G — this ensures that no edges will be left dangling in
rewriting steps. B is a Boolean expression such that all its variables occur in L.

Let G be a port graph. A rewrite step G = H via the port graph rewrite
rule L =¢ R is obtained by replacing in G a subgraph g(L) by g(R), where
g is a morphism from L to G satisfying C, and connecting g(R) to the rest of
the graph as indicated by the arrow-node edges in the rule: Any edges arriving
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Port Graph Rewriting for Database Modelling 5

to a port in g(L) connected by a bridge arrow port to R are transferred to the
corresponding ports in g(R); edges connecting to ports in g(L) that are connected
to a blackhole port in the arrow node are deleted. Wire ports in the arrow node
trigger a rewiring: the ports in G that connect to the ports in g(L) associated
to a wire port in the arrow node are linked by an edge in the rewritten graph.

A sequence of rewriting steps is called a derivation. A derivation tree is a
collection of rewriting derivations with a common root.

Porcy [I4] includes functionality to create port graphs and port graph
rewrite rules, and to apply rules to graphs according to user-defined strategies.
The functions Connect and Attach (see Definition (1) are represented as at-
tributes in records (i.e., records contain data attributes, visualisation attributes
such as colour or shape, and structural attributes such as Connect and Attach).
Rules are displayed as graphs, and edges that run between ports of L, R and the
arrow node are coloured red to distinguish them from normal edges. PORGY also
provides a visual representation of the rewriting derivations, which can be used
to analyse the rewriting system. PORGY’s strategy language allows us to control
the way derivations are generated. We can specify not only the rule to be used
in a rewriting step, but also the position where the rule should (or should not)
be applied. Formally, the rewriting engine works with graph programs.

Definition 2 (Graph Program). A graph program consists of a located port
graph, a set of port graph rewriting rules, and a strategy expression. A located
port graph is a port graph with two distinguished subgraphs: a position subgraph
and a banned subgraph, denoted Gg. Rewrite rules can only be applied to G if
they match a subgraph which superposes P and does not superpose Q).

We briefly describe below the strategy constructs that we use in our programs
(see [14] for more details). The keywords crtGraph, crtPos, crtBan denote,
respectively, the current graph being rewritten and its Position and Banned
subgraphs. For example, the strategy expression setPos(crtGraph) sets the
position graph as the full current graph. If T is a rule, then the strategy one(T)
randomly selects one possible redex for rule T in the current graph G, which
should superpose the position subgraph P and not overlap the banned subgraph
Q. This strategy fails if the rule cannot be applied. Constants id and fail denote
success and failure, respectively. while(S)[(n)]do(S’) executes strategy S’ (not
exceeding n iterations if the optional parameter n is specified) while S succeeds.
repeat(S)[maz n| repeatedly executes a strategy S, not exceeding n times. It
can never fail (when S fails, it returns id).

3 Port Graphs for Database Modelling

First, we define a visual domain specific language (VDSL) for logical design of
relational databases. It includes a class of attributed port graphs to represent
objects of a relational database, and a language to specify rewrite rules and
strategies for those graphs. We also define Database Port Graphs, to represent
a relational database schema DB = (R(A), FD,CK) (see section 2.1).
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6 Fernandez, Pinaud and Varga

3.1 A Visual Domain Specific Language for Database Modelling

The visual building blocks of the language correspond to those of relational
databases. Port graph nodes will have an attribute DbType whose value indicates
the role of the node. To avoid confusion, we will use Proper Case for relational
database concepts (e.g., Attribute) and lower case for port graph concepts (e.g.,
attributed port graph).

We note here that an Attribute can occur in multiple relations. To this end,
we can define a conceptual attribute node. Then we can define an attribute
occurrence node to distinguish between appearances in different Relations. In
this work, from now on, we only use occurrences and we call them Attribute.

Definition 3 (Relational Database Port Graph VDSL, RDPG-VDSL).
A Relational Database Port Graph VDSL is an attributed port graph Grpp =
(V,P,E,D)x, such that V includes the following disjoint sets of nodes (as well
as application specific nodes):

— Vg: relation nodes (DbType = REL);

— Va: attribute nodes (DbType = ATTR);

— VEep: functional dependency nodes (DbType = FD);
— Veok o candidate key nodes (DbType = CK).

P includes the following disjoint sets of ports:

— Parr: contained attribute ports pATT;

— Pgrpr: parent relation ports pREL;

— Ppa: dependency attribute ports pFD;

— Prp: functional dependency ports pFDLHS and pFDRHS;
— Peg: relation candidate key ports pCK;

— Pxpy: (candidate) key attribute ports pKEY.

and the functions Attach and Connect are such that:

— if p € Parr, Attach(p) € {VR U Vek};

— if p € Prgyr, Attach(p) € {Va U Vek};

— if p € Ppa, Attach(p) € Va;

— if p € Ppp, Attach(p) € Vep; each node in Vrp has two ports, pFDLHS
and pFDRHS;

— if p € Pok, Attach(p) € Vg;

— if p € Pkgy, Attach(p) € V4.

Connect includes the following pairs of ports (and associated edges):

— Functional Dependency: (pFD, pFDLHS) and (pFDRHS, pFD), where pFD
€ Ppa and pFDLHS, pFDRHS € Prp. Given a dependency ¢ : X — A the
pED port of every attribute node corresponding to X will be connected to the
pFDLHS port of the dependency node corresponding to ¢ and the pFDRHS
port of the FD node representing @ will be connected to the pFD port of the
attribute node representing A.
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— Attribute in relation: (pATT, pREL), where pATT € P4 and pREL € Prgy.
Given a relation R; and its attribute A, the pATT port of the node repre-
senting R; will be connected to the pREL port of the node representing A.

— Attribute in candidate key: (pATT, pKEY), where pATT € P4 and pKEY €
Pco. Given a candidate key CK; and every attribute A; € CK;, the pKEY
port of the node corresponding to A; will be connected to the pATT port of
the node corresponding to CK;.

— Candidate Key of Relation: (pREL, pCK), where pREL € Prpr and pCK
€ Pcok. Given a relation R; and its candidate key CK;, the pCK port of
the node representing R; will be connected to the pREL port of the node
representing C K.

As a particular case of the above defined class, we now define the Database
Port Graph (DBPG) that represents DB = (R(A), FD,CK). Most importantly,
we constrain that one Relation is represented by only one relation node and
similarly, one FD is represented by only one FD node. Also, each Attribute
occurrence is represented by one attribute node. This design decision is based
on the separation of concerns principle.

Definition 4 (Database Port Graph, DBPG). A Database Port Graph is
an RDPG such that the following constraints are satisfied:

— Vg: one node DbType = REL per Relation schema in R;

— V4: one node DbType = ATTR per Attribute occurrence in any of the R;;
— Vpp: one node DbType = FD per Functional Dependency in FD;

— Vek: one node DbType = CK per Candidate Key in CK.

The Functional Dependency Port Graph (FDPGs) [27] is a particular case
of the above defined Database Port Graph, with Attribute and FD nodes only.
An example FDPG is given in Figure [I0] in Appendix [E]

3.2 Variadic Rewriting Rules

To deal with functional dependencies of various arities, previous works used
multiple rules [27] or internal data structures (e.g. compound node in [5]). Here,
we present an extension to the port graph rewriting rule language, called variadic
rewriting rules (VRRs), inspired by Variadic Interaction Nets [I§]. A variadic
rule represents a family of rules that differ only in the number of times a subgraph
is repeated. First, we propose a container structure that clearly identifies in a
port graph the subgraph that will be repeated.

Definition 5 (Pattern Container). A pattern container is a subgraph within
a port graph such that if an edge links two ports that belong to the container, the
edge also belongs to the container.

A pattern container has two attributes: a name, and a multiplicity that spec-
ifies the maximum number of times the encapsulated pattern will be repeated.

Edges that connect a port in a pattern container and a port in the outside
graph are called variadic edges. Variadic edges also have an attribute multiplicity
to control the number of repetitions.
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Definition 6 (Variadic Port Graph Rewrite Rule, VRR). A variadic port
graph rewrite rule, denoted L =Y R, is a port graph rewrite rule with at least
one pattern container on the LHS. Multiple pattern containers must not overlap.
Pattern container names must be unique on the LHS.

Given a VRR, we obtain its family of rules by running the Expansion algo-
rithm defined below.

Definition 7 (Variadic Pattern Expansion). For each pattern container, we
generate i copies, where i is the value of the multiplicity attribute, as follows:

1. Synchronized Expansion:
If a pattern container is present on both sides of a VRR (i.e. their names are
identical), then the pattern is expanded in an iterative way on both sides of
the rule until © number of copies of the encapsulated subgraph are generated. If
variables are used in attributes then a different variable should be used in each
copy. The expansion iterator works pairwise; that is, not all combinations of
expansions are generated on LHS and RHS, but only the same number of
repetitions on the two sides.

2. LHS-only Expansion:
If the pattern container is defined on LHS only, the expansion happens on
LHS only, in the same iterative way.

If multiple patterns are defined, they are expanded independently, i.e. all com-
binations are generated, by nested iteration. Generally, the order in which the
combinations are generated, does not matter.

A variadic edge is expanded based on the value j of its multiplicity attribute. If
it equals the multiplicity i of the container it belongs to, then it is fully expanded,
i.e. it is created in all i instances of the container. A partially expanded variadic
edge (j < i) is only created in the first 1...j instances. In other words, in the
nth iteration of the expansion of the pattern container the variadic edge belongs
to, if n < j then n copies are created; otherwise j copies are created.

In Poray, which does not have a mechanism to define variadic rules, Def-
inition [7] can be implemented as a macro expansion. The pattern container is
visually represented by an enclosing rectangle (a metanode): attributes name
and i are displayed at the top of the rectangle; and, on the LHS, a 4 sign in
its upper-right corner as shown in the example below (Figures [1] and [2). Fully
expanded variadic edges are also marked with a + sign over them and partially
expanded variadic edges have the attribute value j displayed over them.

In this example, because the pattern appears in both sides, the expansion
will generate a rule version with one node Y, another with 2 and another with
3, we show in the picture just the version corresponding to 3. If the node Y has
an attribute a whose value is an expression containing variables, for example =z,
then each copy of the node Y will have attribute a with values x1, zs, 3.
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PATT1 [(3) +

Fig.2: VRR example expanded, i = 3

Fig.1: VRR example

4 Computing the Syntactic Closure of X

Given an FDPG representing set of functional dependencies X', we compute its
syntactic closure by applying the rules Reflexivity, Augmentation and Transi-
tivity, defined below, controlled by Strategy [I} Syntactic Closure. From now on,
we colour-code nodes, as a visual aid. Attribute nodes are green, FD nodes are
purple and ports are dark blue. We use other colours for highlighting purposes.

4.1 Rewriting Rules

In the rules below, x,y,... represent name variables for attribute nodes, and
f1, f2,... are name variables for FD nodes.

Augmentation. The Augmentation rule (see Figure [3) finds every attribute
node y that doesn’t have an edge into the FDLHS port of f1, regardless of what
other attributes are connected there already. We find all non-connected attribute
nodes by using the anti-edge feature [26] of PORGY. An anti-edge is represented
by a grey double line in the rule editor. The matching algorithm deems the
candidate sub-graph isomorphic if no edge is to be found between the two ports
connected by the anti-edge.

IsTrivial=f1.IsTrivial
FDLHS.FunctionalArity=

£1.FDLHS.FunctionalArity+1
FDRHS.FunctionalArity=

FDLHS.FunctionalArity>=1
FDRHS .FunctionalArity=1

Fig. 3: Augmentation rule.

The rule creates a new FD node and assigns all pre-existing attributes and
y to the left side of f1. The original f1 dependency node is also kept. We use
bridge ports (red edges) to keep and copy the already existing edges into the
FDLHS ports of f1 and NEW. If f1 was trivial then the new dependency will
also be marked trivial. The rule also increases the FunctionalArity counter by 1
indicating that a new attribute is connected to the FDLHS port.
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Reflexivity. The Reflexivity rule (Figure [4)
applies to a node representing the attribute
x and generates a trivial dependency = — =.
Then the attribute node z is banned so the
rule cannot apply again on the same attribute.

The red edges in the arrow node indicate ‘
that when applying the rule, any edges con- \ TRIV)

nected to the pFD port of x in the left-hand
side should be transferred to the correspond- Fig. 4: Reflexivity rule.

ing pFD port of z in the right-hand side.

Transitivity. A family of Transitivity rules was described in [27] to detect
transitive functional dependency chains f; : X — Y and fy : Y — A. Instead,
here we provide a compact representation of the transitivity axiom in the form of
a variadic rule, shown in Figure 5] This rule subsumes the family of Transitivity
rules used in previous work.

As mentioned in Section |Y| = k£ > 1 means that f; turns into a set of
dependencies fi ... fF. The connections between the pFD ports of X attribute
nodes and the pFDLHS ports of f] ... fF nodes have to be preserved as well
as copied onto the pFDLHS port of the newly created FD node (called NEW
in Figure . We achieve this without needing to include the attribute nodes
representing X in the rule, thanks to the bridge ports of the arrow node and the
connecting red edges, as explained in Definition [f] Then, to cover all cases, we
define a VRR pattern over f; and Y, with ¢ = 1...k. By definition the bridge
ports, red edges and the normal edges into y;.pFD, ..., yx.pFD will be repeated
during the expansion.

PATT_LHS_CARD

PATT_LHS CARD @)+

Fig. 5: Variadic Transitivity rule.

We show an example expansion of the Transitivity VRR to Transitivity-
3, i.e. with 3 repetitions, on Figure in Appendix FD nodes are labelled
by records containing an attribute UID that uniquely identifies the Functional
Dependency, except for trivial dependencies that are all given UID = 1. Nodes
representing non-trivial FDs are given a prime number as UID. This offers extra,
domain-specific backtracking functionality for dependencies, as explained below.

Note that the Reflexivity, Augmentation and Transitivity rules never remove
the matching subgraph. Therefore, these rules could run for ever. To prevent
this, we use conditional rules and focusing constructs in Section to define
the Syntactic Closure strategy. To ensure that the iteration of the Transitivity
rule terminates when no new transitive dependencies can be inferred, we use
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the UID attribute of FD nodes. When the Transitivity rule creates a transitive
dependency node, it multiplies the UIDs of the contributing FDs and assigns
the result as UID of the new FD node. We forbid the application of the rule if
a node already exists with that UID (using NotNode() in the rule condition).

4.2 Syntactic Closure Strategy

The Strategy [I} Syntactic Closure applies first the Reflexivity rule as much as
possible in the current graph. Each application bans an Attribute node, which
ensures termination since matching is not allowed on banned nodes.

In lines 5-6, we set the Position subgraph to be the whole graph and the
Banned subgraph to empty. Then, while there is at least one FD node the Aug-
mentation rule hasn’t visited and iterated, one(AuglterOn) sets Auglter and
AugVisit flags to true on a randomly selected FD node. The Augmentation rule
will be applied on this FD node and all attribute nodes that are not connected
to the FDLHS port of said FD node. Every attribute node used by this rule is
banned to prevent re-application. Once all possible applications are processed,
Auglter flag is set to false and the Banned subgraph to empty. The iteration
proceeds to the next, not yet visited, FD node. All new FD nodes, created by
the Augmentation rule, are assigned a unique UID using the update() construct
to call the function, GenerateNextPrime (), using PORGY’s Python APIL.

Strategy 1: Syntactic Closure

1 //——— Reflexivity ——

2 setPos(all(crtGraph));

3 repeat(one(Reflexivity));

//——— Augmentation

setPos(all(crtGraph));

setBan(all([emptySet]));

while(match(AuglterOn))do(
one(AuglterOn);
repeat(one(Augmentation));

10 one(AuglterOff);

11 setBan(all([emptySet]))

© 0 N o Gk

12 );
13 update(” GenerateNextPrime” {result : UID});
14 //——— Transitivity

15 while(match(IterOn))do(

16  one(lterOn);

17 repeat(one(Transitivity); #Augmentation#);
18  update(”GenerateNextPrime”{result : UID});
19 one(lterOff)

20 );
21 repeat(one(ResetVisitedFlags));
22 //—— Cleanup ——

23 repeat(one(Cleanup))
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Next, we compute transitive dependencies (lines 15-21), calling the Augmen-
tation strategy (lines 5-12) after each application of the Transitivity variadic
rewriting rule in line 17.

Since the rewrite rules may generate functional dependencies that already ex-
ist in the graph (despite the condition in the Transitivity rule), we add CleanUp
rules to remove duplicates: see the Cleanup VRR in Figure [12] and an example
expansion in Figure [I3] both in Appendix [E}

4.3 Example of application

Our strategy computed the syntactic closure of ¥ = {AB — C,ABC — D};
the resulting FDPG can be seen on Figure [6]

2,

‘ S5

\a K ‘/\\

PN JSEOREE G

PR
0% SROSRS

Fig. 6: Syntactic closure of ¥ = {AB — C, ABC — D}.

Attributes A, B,C and D and their trivial dependencies can be seen in the
four corners of the graph. As an example, we highlighted two FD nodes. The first
one, in orange on the right hand side of the image, represents the dependency
ABD — C which was created by augmenting AB — C with D. The second one
represents AB — D. This FD, shown on the left side of Figure [f] in yellow, was
found by the Transitivity rule, matching on dependencies A — A, B — B, AB —
C and ABC — D.
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4.4 Visual Analysis of the Closure

We now turn our attention to usual questions about Y. For example, using
the derivation tree in PORGY, it is possible to track how and when a particular
dependency was generated: If we alter the colour of any FD node in a leaf node
of the derivation tree, PORGY will back-propagate this change up the tree. This
way, we can identify the exact step where the FD was created, and by zooming
on the edges of the derivation tree we can see which of Armstrong’s axioms
generated the dependency.

Strategy 2: Membership Problem

setPos(all(
property(crtGraph, port,DbType == "FDLHS” && FunctionalArity == 3)
N ngb(property(crtGraph,node,DbType == "ATTR”
&& viewLabel == "A”), edge,DbType == "L”)
N ngb(property(crtGraph, node,DbType == "ATTR”
&& viewLabel == ”B”), edge,DbType == "L”)
N ngb(property(crtGraph, node,DbType == "ATTR”
&& viewLabel == ”D”), edge,DbType == "L”)
N ngb(property(crtGraph, node,DbType == "ATTR”
&& viewLabel == ”C”), edge, DbType == "R”) ) ); //end setPos
(isEmpty(crtPos))orelse(repeat(one(Highlight)))

© ® N O Uk W N

[
[ )

Another important question in database design is the Membership Prob-
lem [8]: given a set of FDs X, and an FD, ¢, determine if ¢ € 2. Two groups
of algorithms were developed to solve the membership problem: 1. generate a
syntactic closure and check if ¢ : X — A is in it, or 2. compute the closure
of X, XT and check if A is in it. Following the first approach, we can solve
the problem by running a strategy to find and highlight the FD node that
represents ¢ in the syntactic closure, if it exists, and fail if ¢ ¢ Y. For ex-
ample, Strategy [2| was used to find the dependency ABD — C, highlighted
in Figure |§| (due to space constraints, we refer the reader to [14] for explana-
tions of the constructs used). Following the second approach, we can simply
use Strategy [I] but focusing on the set X of attributes. We only need to re-
place the expression setPos(all(crtGraph)) with one that describes X, then
the rewriting steps will apply on the attribute set in question. For example, if
X = B, we write setPos(all(property(crtGraph,node, DbType =="ATTR”
&& viewLabel=="B"))).

4.5 Correctness

The strategic program Cl = [F,closure] consisting of an initial port graph
F representing a set of functional dependencies X, and the syntactic closure
strategy defined in Strategy [1| correctly computes the syntactic closure X+.
Proofs of the propositions stated below are given in the Appendix.
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Proposition 1 (Termination). For any initial FDPG F, the strategic pro-
gram Cl = [F, closure] terminates.

To prove the correctness of our program, we first show that the three rules
Reflexivity, Augmentation and Transitivity are sound and complete, that is,
given X, we can compute X by using these three rules.

Proposition 2 (Soundness and Completeness of the Rules). The Reflez-
wity, Augmentation and Transitivity rules stated below are sound and complete:

1. Reflexivity: for any attribute A, A — A.

2. Augmentation: If X — A then XY — A for any attribute A and sets X,Y
of attributes.

3. Transitwity: If X — A; (1<i<n)and Ay,...,A, — B then X — B.

Since the Reflexivity, Augmentation and Transitivity port graph rewriting
rules implement the rules stated in Proposition 2] to prove that C1 is sound and
complete it suffices to show that any sequence of applications of these three rules
can be transformed into a sequence in the order defined by the closure strategy.

Definition 8 (Canonical Form). A sequence of applications of Reflexivity,
Augmentation and Transitivity is in canonical form if it consists of applications
of Reflexivity, followed by Augmentation, followed by Transitivity and Augmen-
tation: (Reflexivity)*(Augmentation)*(Transitivity; Augmentation®)*

Proposition 3 (Soundness and Completeness of the Strategy). Canon-
ical sequences are sound and complete.

5 Finding a Minimal Cover

To generate a Minimal Cover (see Sectionfor the definition) we have to ensure
that there are no extraneous attributes on FD left sides and there are no re-
dundant FDs (we already have singleton right sides). Standard algorithms check
this by running the Membership algorithm on an altered X: remove X — A and
replace it with X \ B — A. If this still yields the same Xt then B is extrane-
ous in X. Instead, since we have Xt at hand, it suffices to check if there exists
Z C X — A, for all proper subsets Z. We use a variadic rewriting rule (Sec-
tion to specify a family of rules for every possible subset pair (n, k), where
n = |X| and k = |Z]. Since Z C X, we make use of the partially expanded
variadic edge feature by restricting one variadic edge to only k expansions. We
show the variadic rule (parameterised already with n = 3,k = 2) in Figure
(and an expansion in Figure [14] in Appendix [E).

Next, we have to remove redundant FDs. A functional dependency ¢ : X — A
is redundant, if (X'\ p)* = X [21]. Previously published algorithms detected
this by running a Membership check on (X'\ ¢) to see if it yields ¢. We note
that in an FDPG representing (X \ ¢)T there is an FDPG-Path from X to A.
This path exists as an FD node created by the Syntactic Closure strategy, and
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PATT1 (3) +
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—
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Fig.8: Nonredundancy VRR.

Fig.9: Nonredundancy rule,
i1 = 3,00 = 2.

if a dependency can be inferred in multiple ways, it is present multiple times.
Since | X| > 1, we use a VRR to detect and remove the redundant FD nodes.
We present the rule and an expansion in Figures [§ and [0}

Using the Extraneous and Nonredundancy rules, Strategy [3] computes a Min-
imal Cover. We reuse the Syntactic Closure strategy, but without the Clean Up
rules. The Nonredundancy rule gets rid of duplicates. Lastly, we remove trivial
dependencies (FD nodes where UID = 1), as they are not in the minimal cover.

Strategy 3: Minimal Cover

1 #Syntactic Closure without Cleanup#

2 setPos(all(crtGraph)); setBan(all([emptySet]));

3 repeat(one(FExtrancous)); repeat(one(Nonredundancy));
4 repeat(one(RemoveI'rivial));

6 Conclusion and Future Work

We introduced variadic rewriting rules and used these rules to define strategies
that compute and analyse the syntactic closure of a set of Functional Dependen-
cies. We have shown that these strategies are terminating, sound and complete.
We have also defined additional rules and a strategy to compute Minimal Cov-
ers. A minimal cover is the input of algorithms to find candidate keys [24] and
of Bernstein’s 3NF Synthesis Algorithm [10]. The strategies that find these will
make use of the already defined CK and Relation nodes. Furthermore, 3NF
Relations will require the introduction of the notion of Foreign Key.
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Appendix A Proof of Proposition

Proposition (Termination). For any initial FDPG F, the strategic program
Cl = [F,closure] terminates.

Proof. Since the strategy applies three strategies sequentially (Reflexivity, Aug-
mentation and Transitivity), it is sufficient to show that each of them terminates.
For this, we show that for each of them there is a measure which is strictly de-
creasing with respect to a well-founded ordering.

Reflexivity Strategy: The measure in this case is the number of non-banned
nodes in the graph. Each application of the reflexivity rule (Figure 4| strictly
decreases the number of non-banned nodes. Since the rule can only apply to non-
banned nodes, the iteration defined in line 3 of the closure strategy terminates.

Augmentation Strategy: Two looping constructs are used in this strategy,
a while-loop starting in line 7 and a repeat-loop in line 9. The while-loop is
controlled by a condition match(AuglterOn), which requires a non-visited node
to succeed. The rule AuglterOn applied in line 8 sets the Auglter and AugVisit
flags to true on a randomly selected FD node that has AugVisit flag = False.
Each application of the Augmentation rule in the loop in line 9 bans the attribute
node used, so the the repeat loop terminates, and afterwards the Auglter flag
is set to false but the AugVisit flag remains untouched. This means that each
iteration of the while loop in line 7 decreases the number of non-visited nodes,
thus the strategy terminates.

Transitivity Strategy: This strategy, without the calls to the Augmentation
strategy in line 17 and line 23, was shown to be terminating in [27]. We use
the same measures, since they are not affected by the call to the Augmenta-
tion strategy: For repeat(one(Transitivityy); #Augmentation#), the measure
is the number of possible matches of the LHS subgraph of f1. This is a good
measure because a) the Rule Condition on UID in Transitivityy prevents re-
application of the rule to the same nodes and b) even though the NEW node is
added in the right-hand side, it is not part of the LHS subgraph of f1. Similarly,
the nodes added by Augmentation are not connected to f1. By the time we call
the Augmentation strategy from Transitivity, f1 will have been augmented and
its AugVisit flag is permanently set to True. The only FD node Augmentation
will be able to touch at this point is NEW.

For while(match(IterOn))do(...) the measure is |[Vrplgo + |XT| — |Vrp|Gi-
That is, the number of FD nodes in the initial graph plus the size of the closure
less the number of FD nodes after the i-th application of the loop. With one
successful application of the Transitivity rule, the number of FD nodes increases
therefore the measure decreases.

Termination of the CleanUp rule iteration is straightforward, since these rules
decrease the size of the graph. O
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Appendix B Proof of Proposition

Proposition (Soundness and Completeness of the Rules). The Reflexivity, Aug-
mentation and Transitivity rules stated below are a sound and complete:

1. Reflexivity: for any attribute A, A — A.

2. Augmentation: If X — A then XY — A for any attribute A and sets X,Y
of attributes.

3. Transitwvity: If X — A; (1<i<n)and Ay,..., A, — B then X — B.

Proof. First, we observe that the rules are sound: they are particular cases of
the axioms A1-A3 given in Section [2] which are sound and complete. Hence, it
is sufficient to prove that the rules permit us to derive the axioms A1-A3.

Remark. Our rules assume that right sides of functional dependencies consist
of only one attribute. Since the Union and Decomposition Axioms can be derived
from A1-A3 and by them one can infer X — Y Z from X — Y and X — Z, and
reciprocally, from X — Y Z one can infer X — Y and X — Z, it is sufficient to
consider single attributes in right-hand sides of dependencies.

Axiom A1 can be derived as follows: Let Y = {A4; ... A, } and assume Y C X.
Using the Reflexivity rule, we can derive A; — A; and using Augmentation, we
derive A; X — A; for each A; € Y. This is sufficient as explained in the remark
above.

Axiom A2 can be derived as follows: Let
Y ={A,... A},

Z={A,,Apt1,... Ay} and

W ={A,,Ans1,.. - Ap, Apy1, ..., Ai}

and assume X — Y, that is, X — A; for each A; € Y as explained in the remark
above. By repeated applications of the Augmentation rule, we derive XW — A;
for each A; € Y. Note that by Reflexivity, we can derive A; — A; for any
Aj € Z and by repeated applications of Augmentation, we obtain XW — A;,
since A; € W. Therefore XW — A; for each A; € Y Z, as required.

Axiom A3 is derived using the Transitivity rule: Assume X — Y, that is,
X — A; for each A; € Y, and Y — B; for each B; € Z. Using the Transitivity
rule, we derive X — B;, as required. O
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Appendix C Proof of Proposition

Proposition (Soundness and Completeness of the Strategy). Canonical se-
quences are sound and complete.

Proof. By Proposition [2] Reflexivity, Augmentation and Transitivity are sound
and complete. Assume a set X of functional dependencies is inferred using a
non-canonical sequence S of applications of Reflexivity, Augmentation and Tran-
sitivity rules. We show that the steps of application of the rules can be reorder
to obtain a canonical sequence that derives the same set of dependencies. Since
applications of Reflexivity are independent of other rules, we can reorder the
steps, to move all applications of Reflexivity to the start of the sequence, obtain-
ing a sequence S = SgepS’ that derives X' and such that Sgey; contains only
applications of the Reflexivity rule, and S’ has no applications of Reflexivity.

Similarly, any application of Augmentation in S’ on a dependency that exists
in X or has been obtained by Reflexivity or by a previous Augmentation step
can be moved towards the start of S, obtaining a sequence Sa,4S” where S4,4
consists only of Augmentation steps and all the applications of Augmentation
in S” use a dependency obtained by transitivity.

The sequence SgefiSAugS” is therefore canonical and derives the same set
of functional dependencies as S. It follows that canonical sequences are sound
and complete. O

Appendix D DBPG and FDPG Examples

The functional dependency graph X' = {AB — C,ABC — D}:

DbType ="ATTR"
DbType ="FD"

DbType ="ATTR" FDLHS port:
DbType ="FDLHS"
FunctionalArity=3
FDRHS port:
DbType ="FDRHS"
FunctionalArity=1

Fig. 10: The functional dependency graph ¥ = {AB — C, ABC — D}.
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Appendix E Variadic Rewriting Rule Expansion
Examples

Example expansion of Transitivity VRR to Transitivity-3, where ¢ = 3.

Fig. 11: An example expansion: Transitivity-3 rule.

The Cleanup variadic rewriting rule:

PATTO1 _ (3) +

Fig.12: Cleanup VRR.
Example expansion of Cleanup VRR to ¢ = 3:

21

Fig. 13: An expansion of Cleanup VRR: Cleanup-3.
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Example expansion of Extraneous VRR to i = 2,5 = 1:

-

y e

Ve ™
I

A J

Fig. 14: Expanded extraneous rule, ¢ = 2,5 = 1.
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