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Abstract—Predicting load profiles is crucial for efficient elec-
tricity management, but traditional methods often struggle with
the complexity of real-world data. While deep learning models
have been explored for load forecasting, achieving high accuracy
remains challenging. This paper presents a streamlined ensemble
approach that combines bidirectional LSTM (BiLSTM), bidirec-
tional GRU (BiGRU), and temporal convolutional network (TCN)
layers to capture intricate temporal patterns in load profiles.
A self-attention mechanism enhances the model’s focus on the
most relevant features, improving overall representation. The
outputs of these components are combined using an XGBoost
regressor to produce the final prediction. In testing, this hybrid
model achieved notably higher accuracy up to 93% and faster
processing times than other advanced models, showing strong
promise for real-time load forecasting in smart grid systems.

Index Terms—Temporal Convolutional Network (TCN), Bidi-
rectional Gated Recurrent Unit (BiGRU), Bidirectional Long
Short-Term Memory (BiLSTM), Self Attention(SA), Hybrid,
Load-profile datasets.

I. INTRODUCTION

Accurate prediction of future load profiles is essential for
effective decision-making in energy management, impacting
everything from grid stability to resource planning. In the
realm of electricity consumption, precise load forecasting
enables better operational strategies and resource allocation.
However, traditional forecasting techniques often struggle to
capture the complexities and nuances present in real-world
load data. These methods can fall short when it comes to
understanding temporal patterns, non-linear behavior, and the
variability inherent in power consumption, highlighting the
need for more advanced approaches.

In this study, we present a new methodology for predicting
load profiles through a hybrid ensemble model. Unlike con-
ventional approaches that rely on a single forecasting model,
our proposed system combines multiple models to enhance
accuracy and robustness while making the predictions more in-
terpretable. Our model integrates BiLSTM networks, BiGRUs,
and TCNs as foundational elements and then uses extreme
gradient boosting (XGBoost) to consolidate their strengths.

Furthermore, our hybrid model includes a self-attention
mechanism within the combined layer, followed by dense
layers to refine the predictions. This approach is designed to
capture complex temporal patterns and learn from a variety

of data representations, improving overall predictive perfor-
mance.

The primary contributions of this paper are: 1. We propose
a hybrid ensemble model combining BiLSTM, BiGRU, TCN,
and XGBoost to achieve higher predictive accuracy in load
forecasting. 2. We integrate a self-attention mechanism to
capture complex temporal dependencies more effectively. 3.
We conduct extensive experiments on real-world load profile
datasets to demonstrate the effectiveness of our approach.
Additionally, we provide a detailed account of the model’s
structure, training process, and evaluation metrics, and offer
insights into overcoming challenges in load profile prediction.

The remainder of this paper is organized as follows: Section
II discusses related work in load forecasting and hybrid
modeling. Section III describes the architecture and method-
ology of our hybrid model in detail. Section IV presents
the experimental setup, datasets used, and evaluation metrics.
Finally, section V analyzes the results, comparing our model’s
performance with traditional and individual approaches, along
with the conclusion and future works.

II. RELATED WORK

Load profile prediction is essential for efficient energy man-
agement, allowing precise demand forecasting and maintaining
grid stability. It enhances resource allocation, reduces costs,
and guides infrastructure planning. Additionally, it facilitates
the integration of renewable energy sources, improving reli-
ability and supporting personalized services for consumers.
Effective load forecasting also helps achieve sustainability
targets and informs policy development. Numerous studies
by various researchers- Hippert [1], Sajjad [2], Brodowski
[3], Zuo [4] has been done on load profile prediction. In
this paper, we have considered the papers by Abumohsen
[5], Lindberg [6], [7], [8] etc. We have examined a few
cutting-edge models that outperformed all other conventional
or hybrid versions. Xiuyun [9] proposed a short-term load
forecasting model based on GRU. We found out by thorough
research that l2 regularised GRU does much better than the
traditional GRU. Therefore we continued our experiment on
l2 regularised GRU with other models. J Xu, P Zeng [10]have
a paper on Short-term Load Forecasting by BiLSTM Model.
Y. Tian [11]presented the hybrid model GRU-FCN, which is



built on a fully convolutional network and a gated recurrent
unit. It takes a very long time to execute and this performs
poorly on tiny datasets. Taking this much time has made it
impractical and also the poor performance in small datasets
has made it necessary to make a better model. For energy
load forecasting, Kumar [12] developed a hybrid model in
combination of LSTM and GRU that they said, performed
better than LSTM but about the same as GRU. Chiu [13]
proposed a hybrid model CNN-GRU that predicts better in
some small datasets but results worse than even conventional
models in large datasets. So we targeted these problems to
create a model that can capture both short-term and long-term
dependencies with better accuracy and in less time.

III. METHODOLOGY

In the proposed model we have used, LSTM units, GRU
units, and TCN units and combined these all along with
XGBRegressor. We have changed the sizes according to the
dataset’s size.

A. LSTM Cell

LSTM was introduced by Sepp Hochreiter and Jurgen
Schmidhuber in 1997 [14]. In this cell, we have used LSTM
with Bidirection. Suppose we have an input sequence x =
[x1, x2, ..., xn] of length n.

Input Gate:

it = σ(Wixxt +Wihht−1 + bi) (1)

Forget Gate:

ft = σ(Wfxxt +Wfhht−1 + bf ) (2)

Output Gate:

ot = σ(Woxxt +Wohht−1 + bo) (3)

Memory Cell Update:

C̃t = tanh(Wcxxt +Wchht−1 + bc) (4)

Where: xt is the input at time step t, ht−1 is the previous
hidden state, it, ft, and ot are the input, forget, and output
gate activations, Ct is the cell state, C̃t is the candidate cell
state, σ is the sigmoid activation function and W is the weight
matrix. We used LSTM units with sizes of 64 and 100, batch
sizes ranging from 128 to 3200 based on dataset size, and a
dropout rate of 0.2 to prevent overfitting.

B. GRU Cell

LSTM has separate memory cells, input, forget, and output
gates, whereas GRU has fewer gates, merging the forget and
input gates into a single update gate. Additionally, LSTM
maintains a separate cell state, allowing it to better control
the flow of information over time, whereas GRU combines
the cell state and hidden state into a single vector, potentially
simplifying the model architecture [15]. For a given time step
t,

Update Gate:

zft = σ
(
W f

zxxt +W f
zhht−1 + bfz

)
(5)

Reset Gate:

rft = σ
(
W f

rxxt +W f
rhht−1 + bfr

)
(6)

Candidate Hidden State:

h̃f
t = tanh

(
W f

hxxt + rft ⊙
(
W f

hhht−1

)
+ bfh

)
(7)

Hidden State Update:

hf
t =

(
1− zft

)
⊙ ht−1 + zft ⊙ h̃f

t (8)

Where: xt is the input, ht is the hidden state at time
step t, zft is the update gate activation, rft is the reset gate
activation, h̃f

t is the candidate hidden state, σ is the sigmoid
activation function, ⊙ represents element-wise multiplication,
and W and b are weight matrices and bias vectors, respectively,
for each gate and transformation, with appropriate subscripts
denoting forward (f ) or backward (b) direction. In the R.GRU
model, we configured the model with a learning rate of
0.001, a dropout rate of 0.2 to reduce overfitting, and an L2
regularization with 0.001 to enhance model generalization.

C. TCN Cell

TCNs are designed to handle both local and long-range
dependencies through dilated convolutions, which expand the
receptive field exponentially [16]. It is used in the proposed
model to efficiently capture dependencies with fewer param-
eters compared to recurrent networks, enhancing the model’s
ability to learn temporal patterns over extended periods. It
complements LSTM and GRU layers by providing a different
approach to sequence modeling, improving overall predic-
tive performance. Suppose we have a 1D input sequence
x = [x1, x2, ..., xn] of length n. The TCN convolutional layer
equation is:

zi =

k−1∑
j=0

wj · xi+dj
(9)

yi = LeakyReLU(zi + b) (10)

Where: Where: xi is the input sequence, wj are the con-
volutional filters, d is the dilation rate, b is the bias term,
and LeakyReLU is the rectified linear unit activation function.
We took tcn filters 64, kernel size 3, dilation rate 4,8, conv1D
with causal padding and relu activation layer. Then we applied
GlobalMaxPooling1D, Dense layers, and AdaBeliedOptimizer.

D. Combined Model

We developed three separate models, BiLSTM, BiGRU,
and TCN, configured to process the input data with identical
dimensions. These models were then executed in parallel,
each receiving the same input data and producing outputs
in a uniform shape. The outputs from the three models were
then fed into a combined model that integrates these outputs.
Each individual model applies its unique mechanism to capture
patterns and trends within the data, and by combining the
outputs, the model leverages multiple perspectives on the
same input. The combined model’s performance is refined by



comparing its output against actual data in the validation set,
allowing it to learn the degree and manner in which it should
follow the patterns identified by each individual model. That’s
why it can capture and perform better than the other models. In
the combined model after concatenating the models, the output
is then passed through self-attention, globalmaxpooling, and
then dense layers for further processing. Let hLSTM , hGRU ,

Fig. 1: Model Architecture

and hTCN represent the outputs of the combined, LSTM,
GRU, and TCN models respectively. After concatenation, we
get the combined output

concatOutput = [concat(hLSTM , hGRU , hTCN )]

Where [concat(·)] denotes concatenation operation. The shape
of concatOutput is (m, d), where m is the number of samples
and d is the combined feature dimensionality.

E. Attention Layer

The attention mechanism [17] in time series prediction
learns temporal dependencies by weighing the importance of
different time steps using queries, keys, and values derived
from the input sequence. This helps the model focus on the
most relevant past data points to improve forecasting accuracy.
In this case, we have used Temporal Multihead Attention
layer, which allows the model to focus on different time
steps within sequences. It uses separate linear transformations
to generate query, key, and value matrices, splits these into
multiple heads for parallel processing, and applies scaled dot-
product attention to capture temporal dependencies. Finally,
the outputs from all heads are concatenated, reshaped, and
passed through a dense layer to produce the final result.

attention = [(TempMultiHead(numHeads, dModel))]

attention = (GlobalMaxPooling1D()) · attention

Inside that TempMultiHead function we have applied dense
layers to query, key, and value to create wq, wk, and wv (linear

projections of query, key, and value), split each of wq, wk,
and wv into numHeads for parallel processing, reshaped the
tensors to separate numHeads and depth. Then,

score = query · key /
√

depth

weight = softmax(score, axis)

After this, we multiplied the attention weights with the value
for each head, concatenated and reshaped back to the original
dimensionality. We took number of heads as 4 and dimen-
sionality as 128 and changed this according to the dataset
size. We then created feature set using the combined models
and fit it into the XGBmodel. XGBoost is an ensemble learn-

Fig. 2: Attention Mechanism

ing method that combines multiple weak learners, typically
decision trees, to build a strong predictive model [18] The
XGBoostRegressor model learns a function F (x) that
maps input features x to the target variable y. At each iteration
t, the model fits a new weak learner (a decision tree) to the
negative gradient of the loss function L(y, F (x)) with respect
to the current prediction F (x). The final prediction is the sum
of predictions from all weak learners, weighted by a learning
rate η. Mathematically, the prediction at iteration t can be
represented as:

ŷ(t) =

K∑
k=1

η · hk(x) (11)

Where: ŷ(t) is the predicted value at iteration t, hk(x) is the
prediction of the k-th weak learner, K is the total number of
weak learners, η is the learning rate.

The final prediction is obtained by summing up all the
iterations. The XGBRegressor is trained on these combined
features, a new model is created and updated repeatedly, and
then predict the test data with that model.



F. Evaluation

After training the XGBoost model, it is evaluated using test
data. The predictions made by the model (ŷ) are compared
against the actual target values (y). The XGBoost model
combines predictions from multiple weak learners to make
a final prediction.

Evaluation metrics, such as Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE), are calculated to
assess the model’s performance. Mathematically, MAE and
RMSE are defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (12)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (13)

These metrics are commonly used to evaluate forecasting
model accuracy [19].

We have also calculated the Accuracy with the help of
sMAPE(symmetric Mean Absolute Percentage Error). While
comparing these RMSE, MAE, and Accuracy of different
models on different datasets, we have seen that the ’GRU-
FCN’ hybrid model’s RMSE and MAE were better in the
large(2M) datasets than the BiLSTM and R. GRU,

Fig. 3: prediction comparison of different models on Plastic
Industry Load Profile(1 Lakh)

But in small datasets(50k) they were resulting worse. The
main strategy of our model was the temporal multi-head
attention method applied to the combined model. It increases
the model’s performance drastically.

IV. EXPERIMENT

This section presents the performance comparison of the
proposed ensemble hybrid model experimental result with
other hybrid models CNN-GRU, GRU-FCN, and conventional
models BiLSTM, R.GRU.

A. Dataset

Here we have taken 6 datasets, from which 5 were real-
time data from UCI repository [7], the other one was taken
from UCI too but not realtime, household power consumption
dataset [20] that contains every minute’s power consumption
of several years, and it is about 2M data. The real-time load

profile data taken from the UCI repository contains every
15-minute load consumption of various industries. For each
dataset, we have taken the first 60% of the data for training,
20% for validation, and 20% for testing. We focused solely
on the feature that we are predicting, without considering any
other features or their correlations.

TABLE I: A part of Plastic industry Load Consumption dataset

Date Time Global Active Power (kW)
2012-01-01 00:00:00 37.98
2012-01-01 00:15:00 41.94
2012-01-01 00:30:00 38.16
2012-01-01 00:45:00 38.64
2012-01-01 01:00:00 39.00
2012-01-01 01:15:00 37.44

For this dataset, we considered the previous global active
power consumption rate, trained the model with its trends
and patterns, and predicted the future global active power
consumption for this industry.

Fig. 4: Epoch loss on plastic industry dataset

B. Preprocessing
At first, we removed the data that we were not considering

such as reactive powers, sub-metering, voltage, intensity etc
and only active powers were taken from the datasets. Outliers
were removed and the data was scaled by minmaxscaler to
normalize the feature. Kurtosis and Skewness of the normal
distribution are calculated to detect departures from normality.
Then we distributed the date time according to weekday,
month, year, quarter, etc to remove the ineffective data. We
have followed both short-term load forecasting [9] and long-
term load forecasting [6] [1]. As we are working on time
series data we are focusing on those features that are time
dependent so that the trend and pattern can be easily followed
to create the future prediction. We are using past records of
active power from the grids of these industries to predict future
values, without considering any additional features.

C. Experimental Settings
We have tried LSTM, BiLSTM, GRU, L2 regularised GRU,

BiGRU, TCN, GRUFCN, CNNGRU but out of all these exper-
iments we saw our hybrid model that is made in combination
of BiLstm-BiGRU-TCN-SA and XGBRegressor did the best.
LSTM, GRU and BiGRU were removed from the list since
their early results were too poor. Different hybrid models has
different experimental settings such as:



1) GRU-FCN: Y. Tian [11] proposed a hybrid model GRU-
FCN on industrial load data augmentation. We collected the
GRU-FCN code from github. Here they employs a GRU layer
with 8 units to capture temporal dependencies, it permutes the
input for the FCN component, applying three convolutional
layers with 128, 256, and 128 filters and kernel sizes of 8, 5,
and 3 respectively, each followed by batch normalization and
ReLU activation. The GRU and FCN outputs are concatenated
and passed through a dense layer to produce the final predic-
tions. The model is compiled with the Adam optimizer and
trained for 20 epochs with a batch size of 64.

2) CNN-GRU: We have followed this from some papers
[2] [13]. It starts with convolutional layers (e.g., Conv1D) to
capture local patterns and features from the input sequences,
followed by pooling layers (e.g., MaxPooling1D) to down-
sample and reduce dimensionality. Batch normalization and
dropout layers are employed to stabilize training and prevent
overfitting. The output from the CNN layers is fed into
GRU layers to capture temporal dependencies and long-term
relationships within the data. The model concludes with a
Dense layer with a sigmoid activation for the final prediction,
providing a robust architecture for modeling complex sequen-
tial data.

Fig. 5: prediction comparison of different models on Textile
Industry Load Consumption

Fig. 6: prediction comparison of different models on House-
hold power consumption

3) Proposed model: We have followed several papers to
generate this model. It involves creating and training three
separate neural network models LSTM, a GRU, and a TCN
each designed to capture different aspects of time-series data
parallelly. These models results are then combined using a
concatenation layer, followed by additional dense layers to
refine the integrated features. The combined model is trained
with the AdaBelief optimizer and a learning rate scheduler to
enhance performance. Finally, predictions from the combined

model are concatenated with the original features and fed
into an XGBoost regressor, which is trained to make the final
predictions.

Fig. 7: Scatter graph of predictions comparison of different
models on a dataset

D. Experimental Result

TABLE II: Test result of different methods on different
datasets

DataSets Method Accuracy RMSE MAE
Testing Training

Automotive A 85.72 88.71 2.67 1.93
Industry B 84.30 86.19 3.41 2.11
Dataset C 87.50 88.72 2.53 2.01

D 91.10 93.17 0.85 0.70
E 89.30 90.47 1.24 1.11

Non Metalic A 75.32 78.32 2 1.34
Mineral B 82.12 82.89 1.76 1.18
Industry C 72.88 73.41 2.17 1.4

LoadCons. D 89.22 91.31 1.19 0.79
E 73.11 76.02 2.12 1.34

Textile A 72.55 73.14 1.33 1.10
Industry B 80.31 81.95 1.11 0.80

Load C 72.19 73.85 1.45 1.10
Consumption D 82.65 83.77 1.10 0.83

E 70.10 70.32 1.70 1.2
Household A 90.96 92.55 0.221 0.079
Electricity B 89.82 91.04 0.220 0.078

Consumption C 85.91 86.23 0.258 0.095
D 93.24 93.10 0.207 0.076
E 91.23 92.13 0.100 0.070

Plastic A 68.43 70.41 15.01 10.86
Industry B 69.87 70.82 14.43 10.55

Load C 67.11 68.01 15.10 11.66
Consumption D 74.58 75.86 13.78 10.10

E 68.11 70.13 14.43 10.89
Paper A 87.10 89.31 6.56 4.73

Industry B 88.31 89.11 6.15 4.33
Load C 80.29 82.45 7.98 5.82

Consumption D 90.85 91.89 5.70 4.01
E 83.43 84.05 7.7 5.31

In this table, the method names are defined as follows:
A represents BiLSTM, B represents L2-regularized GRU, C
stands for GRU-FCN, D denotes the Proposed Model, and
E corresponds to CNN-GRU. We took a variety of datasets,
including household load profile prediction, paper industry, au-
tomotive industry load prediction, and datasets having between
20 lakh and 50k data points.

At first, we experimented with LSTM, BiLSTM, and GRU
models across multiple datasets, using a household load con-
sumption dataset as our primary test set [20]. Through further



analysis, we observed that these conventional models were
insufficient for capturing all complex dependencies in the data.
This led us to test the BiGRU and L2-regularized GRU models.
While BiGRU produced poorer results on our base dataset
compared to BiLSTM, the L2-regularized GRU yielded better
accuracy than BiLSTM.

TABLE III: Time taken per epoch by different methods for
small and large datasets

D.S.Size BiLSTM RGRU CNNGRU GRUFCN Hybrid
S (50k) 6s 5s 11s 49s 10s
L (2M) 260s 220s 255s 2600s 271s

Seeking more advanced hybrid approaches, we identified
CNN-GRU and GRU-FCN as potential solutions. Applying
these models to the datasets improved results overall, but on
smaller datasets, they proved less accurate and more time-
consuming than the traditional BiLSTM and L2-regularized
GRU models. Consequently, we pursued the development of
a hybrid model optimized for both small and large datasets.
To achieve this, we combined the strengths of LSTM, GRU,
and TCN to simultaneously capture both local and global
dependencies. This led to our proposed hybrid model, which
outperforms all previously tested models in terms of both
accuracy and time complexity.

Our proposed model offers significant benefits over indi-
vidual GRU-FCN (GRU with Fully Convolutional Network)
and CNN-GRU (Convolutional Neural Network with GRU)
models. On small datasets, the model performed best without
the XGBRegressor, while on larger datasets, the addition of
XGBRegressor enhanced performance. By utilizing LSTM’s
ability to handle long-term dependencies, GRU’s efficiency
with temporal data, and TCN’s effective modeling of long-
range dependencies through causal convolutions and dilations,
our model delivers robust feature extraction and improved
predictive capability.

V. CONCLUSION AND FUTURE WORK

We introduced a deep learning hybrid model that integrates
BiLSTM, BiGRU, TCN, Self-attention and XGBoost regressor
for superior load profile forecasting. Our experimental results
show that the proposed hybrid model significantly outperforms
individual models like BiLSTM, L2 regularized GRU, GRU-
FCN, and CNN-GRU, achieving the best performance across
key metrics, including the lowest RMSE and MAE, and an
accuracy of 93.24%. This demonstrates the model’s robustness
and effectiveness in capturing complex temporal dependen-
cies. Future work is to focus on optimizing hyperparameters,
deploying the model for real-time forecasting, incorporating
additional data sources for enhanced accuracy, and ensuring
robustness across various scenarios. By extending the eval-
uation to diverse datasets and real-world applications, the
model’s generalizability and practical utility can be further
validated, paving the way for more reliable and accurate load
profile predictions.
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