
EasyChair Preprint
№ 5385

Algorithm Visualizer

Ashwani Kumar Singh, Danish Jamal and Pranjal Aggarwal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 25, 2021

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Algorithm Visualizer
Ashwani Kumar Singh

School of Computer Science
Galgotias University
Gr. Noida, India

ashwanicena5@gmail.com

Danish Jamal
School of Computer Science

Galgotias University
Gr. Noida, India

danishjamal.104@gmail.com

Pranjal Aggarwal
School of Computer Science

Galgotias University
Gr. Noida, India

pranjalaggarwal2708@gmail.com

Abstract—Algorithm visualization illustrates how algorithms
work in a graphical way. It mainly aims to simplify and deepen
the understanding of algorithms operation. Within the paper
we discuss the possibility of enriching the standard
methods of teaching algorithms, with the algorithm
visualizations. As a step in this direction, we introduce the
Algorithm visualizer platform, present our practical
experiences and describe possible future directions,
based on our experiences and exploration performed by means
of a simple questionnaire

Keywords—algorithm visualization • plugin-based
visualization platform • computer science education

I. INTRODUCTION
Algorithms and data structures as an essential part of
knowledge in a framework of computer science1 have their
stable position in computer science curricula2, since every
computer scientist and every professional programmer
should have the basic knowledge from the area. With the
increasing number of students in Central European’s higher
education systems in last decades (more concrete numbers
and impacts for the case of Slovak one can be found in),
introduction
of appropriate methods into the process of their education is
also required. Our scope here is the higher education in the
field of computer science. So within the paper, we discuss
the extension of standard methods of teaching algorithms,
using the whiteboard or slides, with the algorithm
visualizations. According to they can be used to attract
students’ attention during the lecture, explain concepts in
visual terms, encourage a practical learning process, and
facilitate better communication between students and
instructors. Interactive algorithm visualizations allow
students to experiment and available nowadays, and results
are quite encouraging. A systematic meta-study of 24
experimental studies can be found in. Results of empirical
study aimed at the determination of factors influencing the
effectiveness of algorithm visualization are published in.
Another example is the study with the objective to
determine learning advantage of the interactive prediction
facility provided by the courseware containing algorithm
animations and data structure visualizations. Based on above
mentioned reasons, results of studies carried, as well as our
own experiences and explorations, we consider algorithm
visualization important and perspective area of further
research and application of its results in nowadays computer
science education. Except the algorithm visualization, the
term software visualization is also often used within the
papers published in last
years. It usually covers both visualization of algorithms and
visualization of data structures, but sometimes also another
aspects of software (like its development process) are
considered, too. Algorithm visualization, as part of software

visualization, could be described as "graphical
representation of an algorithm or program that dynamically
changes as the algorithm runs". An overview of
visualization taxonomies, together with an analysis of
factors increasing the
effectiveness of software visualization, is summarized in .
Even if the beginnings of algorithm visualization date back
into 1940’s , the greatest development in the area we could
observe within the last 20-30 years. Modern approaches to
software visualization were brought in the 1980’s by the
introduction of system BALSA (Brown & Sedgewick,
Brown University, USA). Some of contemporary solutions
include systems like TRAKLA23, ANIMAL4, JAWAA5 or
Algorithms In Action6. Concise overview of development in
the area of software visualization we provided in, so it is not
our intention to analyse this topic within the paper.

II. ALGORITHM VISUALIZER

In addition to the mathematical and empirical analyses of
algorithms, there is yet a third way to study algorithms. It is
called algorithm visualization and can be defined as the use
of images to convey some useful information about
algorithms. That information can be a visual illustration of
an algorithm’s operation, of its per-formance on different
kinds of inputs, or of its execution speed versus that of other
algorithms for the same problem. To accomplish this goal,
an algorithm visualization uses graphic elements points, line
segments, two- or three-dimensional bars, and so on to
represent some “interesting events” in the algorithm’s
operation.

III. BACKGROUND OF ALGORITHM VISUALIZATION

Despite that arrays constitute a fundamental data structure in
introductory programming curriculum, only a small amount
of research has been directed to the investigation of
students’ mental models and programming difficulties with
arrays [2, 6, 18, 19]. According to a survey of computing
educators, loops and arrays are two of the three
programming topics of major difficulty for novice students.
Du Boulay reported on students’ confusion between an array
index and its cell; they also have difficulties to deal with
arrays that contain indices as array elements. An
unpublished authors’ investigation in Greek secondary
schools, using a sample of 102 students (K-12), confirmed
the same misconceptions and learning difficulties; the
majority of the students had faulty or incomplete models of
the array concept which resulted in misconceptions and
serious difficulties in solving simple algorithmic problems
which demand the use of array data structure. In general,
there are two main categories of visualization systems in CS
education: program visualization and algorithm
visualization systems. Program Visualization (PV) systems
produce direct representations of programming structures

and/or program execution phases (e.g., values of variables,
internal program structures, method frames, data structures,
objects etc.). Jeliot 3 is a well-known PV system which
visualizes Java programs; other contemporary systems, like
Jype [20], UUhistle and Online Python Tutor, visualize
programs in Python. However, the logic behind an algorithm
cannot be revealed by just showing how the values of the
program variables change. Students need proper graphical
representations which fit better to their mental models about
the execution of the particular algorithm. Algorithm
Visualization (AV) systems aim to cover this need by
visualizing abstract concepts and unfolding the underlying
logic of the algorithm under study, thus helping students to
construct multiple mental models, to interlink construct
hierarchies and generalize problem-solving patterns. The
terms static and dynamic algorithm visualizations are used
in the literature in order to distinguish the degree of
interactivity and students’ experimentation with the
visualization (e.g. abilities to modify both, input data and
algorithm code, as well as various representations of the
visual objects). A recent survey about algorithm
visualization systems can be found in . The first reference to
algorithm animation was the famous video entitled ‘Sorting
Out Sorting’ which has been presented by R. Baecker on
1981 at the SIGGRAPH Conference. This 30 min video
demonstrated the characteristics and the operations of nine
sorting algorithms, using animation and audio comments.
Since then, there were several tools developed as a result of
research projects on algorithm visualization. The most
popular technique for creating an algorithm animation is by
annotating the algorithm code with scripting commands
producing the visualization. The first system based on a
scripting language has been developed by John Stasko and
his colleagues and belongs to a wide family of algorithm
visualization systems (Tango, Polka, Samba and JSamba).
Animations consist of a file containing graphics instructions
which correspond to important events of the algorithm under
visualization. Another family of systems, like MatrixPro,
Trakla2 and Ville , provide “Algorithm Simulation
Exercises”, where the student has to manually perform a
given algorithm, typically by dragging elements to new or
target positions or by clicking on buttons to cause a certain
function. Ville is a new tool of this family; it supports
multiple programming languages includibg C++ and Java.
Its built-in editor supports creation of interactive quizzes
and tests displayed as pop-up windows. Another novel AV
system is JHave which helps AV developers to easily create
animated slideshows. Its specific feature is the ‘stop-and-
think’ questions and explanations that can appear at any
time during the execution of the animation, thus promoting
students’ active interaction with the visualization of the
algorithm. JHave includes a large collection of algorithm
visualizations and has received great educational interest. A
recent algorithm animation system is Alvis Live!. It is a
program development environment that supports
construction and interactive presentation of algorithm
visualizations using SALSA scripting language. It includes
features that support story boarding. Moreover, Alvis Live!
provides an error checking system, which reports error
messages while the student develops his own code

A. Static Algorithm Visualization
Algorithm animation, on the other hand, shows a continuous,
movie-like presentation of an algorithm’s operations.
Animation is an arguably more sophisticated option, which,
of course, is much more difficult to implement.

Early efforts in the area of algorithm visualization go back
to the 1970s. The watershed event happened in 1981 with
the appearance of a 30-minute color sound film titled
Sorting Out Sorting. This algorithm visualization classic
was produced at the University of Toronto by Ronald
Baecker with the assistance of D. Sherman [Bae81, Bae98].
It contained visualizations of nine well-known sorting
algorithms (more than half of them are discussed later in the
book) and provided quite a convincing demonstration of
their relative speeds.
The success of Sorting Out Sorting made sorting algorithms
a perennial favorite for algorithm animation. Indeed, the
sorting problem lends itself quite naturally to visual
presentation via vertical or horizontal bars or sticks of
different heights or lengths, which need to be rearranged
according to their sizes. This presentation is convenient,
however, only for illustrating actions of a typical sorting
algorithm on small inputs.

IV. PROBLEM FORMULATION

The application of algorithm visualization to education
seeks to help students learn algorithms. The available
evidence of its effectiveness is decisively mixed. Although
some experiments did register positive learning outcomes,
others failed to do so. The increasing body of evidence
indicates that creating sophisticated software systems is not
going to be enough. In fact, it appears that the level of
student involvement with visualization might be more
important than specific features of visualization software. In
some experiments, low-tech visualizations prepared by
students were more effective than passive exposure to

sophisticated software systems. The commonly example of
algorithm visulaiozation are.

V. REQUIRED TOOL

A. P5.js
p5.js is a JavaScript library for creative coding, with a
focus on making coding accessible and inclusive for
artists, designers, educators, beginners, and anyone else!
p5.js is free and open-source because we believe
software, and the tools to learn it, should be accessible
to everyone.

Drawback: No built-in rendering. If looking for
something to build UIs with or similar, one might be
disappointed by the lack of any predefined UI element
objects and such in p5. js. One has to write all the
rendering code for any objects one includes, integrating
it appropriately with the loop.

B. Pixi. Js
Pixi.js is a rendering library that will allow you to
create rich, interactive graphic experiences, cross-
platform applications, and games without having to
dive into the WebGL API or grapple with the intricacies
of browser and device compatibility.
https://www.pixijs.com/

VI. FEASIBILITY ANALYSIS

VII. MERITS

1) It mainly aims to simplify and deepen the
understanding of algorithms operation. Within the paper we
discuss the possibility of enriching the standard methods of
teaching algorithms, with the algorithm visualizations.

2) Algorithm visualizer platform, present our practical
experiences and describe possible future directions,
based on our experiences and exploration performed by
means of a simple questionnaire

VIII.IMPLEMENTATION

Algorithms is the very fundamental about programming
which is very important for beginner developers and getting
it cleared is really tough for certain people. So this
implementation will focus on getting the right thing to large
number of people in easy and efficient manner.
And here comes the HTML. Website is the easiest and best
way of getting to the most of the audience there is always an
option of desktop app or mobile application, but those will
limit the reach-ability of the idea hence the idea will be
implemented using website. Where we will be having
website which will be user friendly demonstrating most of
the generic algorithms where user can interact and see the
algorithm happening infant of them rather than visualize it
in dry run or imagining and getting the theory clear.

This implementation is broadly divided into 2 steps which is
decided based on various factors, considering the facts that
all these three steps can be implemented parallel without
disturbing the progress of other. Making the development
process smooth and fast reaching our end goal is also the
important factor which can’t be ignored. So below are the 2
major division of this implementation.

A. Setting Up The Environment
This step is chosen as the first step because is focuses
mainly on the front-end where the focus is more towards
UI/UX(User Interface/User Experience) rather than the
business login, hence this step includes the steps for getting
the right dependencies, building user friendly UI and an
integration module which easily fits with the business logic
to make the product ready. Detailed review and insight of
this step will be further discussed.

B. Designing the visualization logic
Any product is a good product only if it has good business
logic or back end because if we design a beautiful UI but
their is no data to display then it is useless. Hence this step
also plays a great role in the final result. Where the main
focus is not user driven instead it focuses on developing the
visualization function and logic to make the user see what
actually is happening in real time by developing a way to
implement visualization in real time of different data
structures like array, tree, graph etc. More insight about this
step is discussed further.

1) Why P5.js
Before getting straight into implementation its important to
get it clear why P5.js is used in this implementation. P5.js is
a client side library which is open source and used for
delivering graphical and interactive experiences and this
idea also deals with the graphical representation. This is one
of the main reason for choosing the library. Another reason
for choosing P5.js is that it makes the development process
really fast as developing animations and motion can be
really tough task and we need to develop our own rendering
module hence P5.js act as a great tool to eliminate the
rendering part so that the main focus is on visualization
logic rather than building the rendering module which can
be a mini project in itself. P5.js itself is a great tool for
making graphical intensive application really light and fast,
so concluding the idea this implementation is build upon the
library P5.js.

C. Setting Up The Environment
As previously discussed this step involves the steps for
getting the right dependencies, building user friendly UI and
an integration module which easily fits with the business
logic to make the product ready. Detailed review and insight
of this step will be further discussed. So first we get the
simple website layout ready using simple html tags and the
most basic html page with empty values.

<!DOCTYPE html>

<html lang="">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<title>Algorithm Visualization</title>
<style>
body {
padding: 0;
margin: 0;
}
</style>
</head>
<body>
</body>
</html>

Next step is importing the P5.js library which can be easily
downloaded from their official website
Which comes with the some basic JS(javascript) files and
some documentation to integrate it in any website. To
maintain the abstraction within our project structure it is
necessary to store the files in separate directory, hence the
below project structure works well considering the
maintainability and abstraction.

——project_dir
|
|
—- p5.js
—- p5.dom.js
—- readme.md
—- addon/
—- src/

|
|
—- src/index.html
—- src/quick_sort.js
—- src/bubble_sort.js

D. Structure Explanation

P5.js and p5.dom.js is the main library files which handles
the rendering the sketch file and it needs to be included in
main index.html file within the <head> tag.

src/ is the main folder which consist of visualization logic
written in java script the detailed structure of sketch is
discussed below. All the sketch file resides in the same
folder as index.html and it is to be included within <body>
tag.

After importing and adding the basic sketch file index
would be like:

E. Sketch File

These are the java script files written in convention of P5.js
documentation which basically need two main functions

function setup() {

createCanvas(windowWidth, windowHeight);

}

function draw() {

// visualisation logic goes here

}

The success of Sorting Out Sorting made sorting algorithms
a perennial favorite for algorithm animation. Indeed, the
sorting problem lends itself quite naturally to visual
presentation via vertical or horizontal bars or sticks of
different heights or lengths, which need to be rearranged
according to their sizes. This presentation is convenient,
however, only for illustrating actions of a typical sorting
algorithm on small inputs. Hence for dataset the screen is
divided in each pixels which is taken as an element in an
array and then the array is shuffled using shuffle(array)
function. Above logic is used for visualising quick_sort
algorithm which makes the. Sorting really fast since sorting
each pixel using bubble sort algorithm makes it really
lengthy process and slow hence for bubble sort the small
and discreet data set is required hence we use bar to
represent the bubble_sort visualization the small mock up of
what it looks like is show below.

https://p5js.org/download/

1) Quick Sort Source Code
var val;
let i = 0;
let j = 0;
const bw = 20;

let sorted = -1;
preload()
function setup() {
createCanvas(windowWidth, windowHeight);
val = [];
for (let i = 0; i < 30; i++) {
val[i] = random(1, windowHeight);
}
val = shuffle(val);
console.log(val);
}
function draw() {
background(200);
const a = val[j];
const b = val[j + 1];
if (a > b) {
const temp = a;
val[j] = val[j + 1];
val[j + 1] = temp;
}
if (i < val.length) {
if (j > val.length - i - 1) {
j = 0;
i++;
sorted = val.length - i;
} else { j++; }

} else {
noLoop();
}

for (let i = 0; i < val.length; i++) {
if (i >= sorted && sorted != -1) {
fill(0, 255, 0);
} else {
fill(255);
}
rect(bw * i * 2 + 100, 0, bw, val[i]);
}

}

2) Quick Sort Working
Fig(1)

Fig(2)

Fig(3)

Fig(4)

IX. CONCLUSIONS
According to our findings, algorithm visualization can be
seen as a valuable supporting tool, used in addition to
standard ways of education in the field of computer science.
Within the paper we provided an overview of the VizAlgo
algorithm visualization platform as well as our practical
experiences with the system. We believe (and the results of
questionnaire support our belief) it helps to improve the
quality of education in the field and contribute to the
solution for some of the problems in higher education
mentioned at the beginning of the paper.
There are still open issues with using algorithm
visualizations. Algorithm visualizations can help
understanding the principles, but do not replace the need to
implement algorithms by students is a chosen programming

language. Another drawback of using algorithm
visualizations within our subject is the lack of the tool
offering required visualizations in a single package with the
unified interface. The VizAlgo platform can also be
considered as a step in this direction.
Generally, more systematic evaluation of algorithm
visualization tools is required, as there is rather informal
evidence available that applications of algorithm
visualizations are useful [3].
We summarized results of the questionnaire filled in by
students in order to support our decisions on further
development of the platform, too. Our intentions here
include development of new plugin modules from the area
of sorting algorithms and more complex data structures.
Some of proposed core-related features are on the list too
(like graphically better visualizations, optional changing of
algorithm properties), but some of them will probably not be
implemented in a near future (like undo/step back in running
visualization), as they would require more fundamental
changes. Except the extensions mentioned within the

questionnaire, we also consider some other interesting
features: dynamic changes in algorithm pseudocode
reflected in visualization, different visual views on running
algorithm or simultaneous comparison of different algorithm
visualizations.

REFERENCES
[1] K. Mehlhorn, P. Sanders, Algorithms and Data
Structures (Springer-Verlag, Berlin Heidelberg, 2008)
[2] J. Genci, Possibilities to Solve Some of the Slovak
Higher Education Problems Using Information
Technologies, In proceedings of: 10th IEEE International
Conference on Emerging eLearning Technologies and
Applications, ICETA 2012, Stará Lesná, The High Tatras,
Slovakia, November 8-9, 2012
[3] C.D. Hundhausen, S.A. Douglas, J.T. Stasko, A Meta-
Study of Algorithm Visualization Effectiveness, J. Visual
Lang.
Comput. 13, 259–290, 2002

