EasyChair Preprint
Ne 887

j’ —crie

Applied Timetabling for Railways: Experiences
with Several Solution Approaches

Julian Jordi, Ambra Toletti, Gabrio Caimi and
Kaspar Schiipbach

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 8, 2019

Applied Timetabling for Railways: Experiences with
Several Solution Approaches

Julian Jordi #, Ambra Toletti 2, Gabrio Caimi ', Kaspar Schiipbach ®
2 SBB AG, Eigerstrasse 13, 300 Bern 65, Switzerland
! E-mail: gabrio.caimi @sbb.ch, Phone: +41 (0) 79 124 77 29
b ELCA Informatik AG, Switzerland

Abstract

As part of the smartrail 4.0 program, SBB is focusing with the project TMS (Traffic Man-
agement System) on algorithmic supported, optimized and integrated capacity planning.
For solving this problem, we have experimented with different approaches from the litera-
ture and have compared their quality and performance. In this paper, we present the results
of this comparison on a set of 8 specific instances that we also used for a crowdsourcing
challenge. We also discuss how we intend to use our lessons learned for having the best
possible solution for our ambitious goal.

Keywords
Timetabling, MILP, Constraint Programming, Alternative Graph

1 Introduction

Swiss Federal Railways (Schweizerische Bundesbahnen, short SBB) is pushing ahead digi-
tization and automation of railway planning and operations. Customers are to benefit from
higher capacities, less disturbances, better radio communication, improved customer in-
formation and lower overall costs. Railway infrastructure utilization is to be increased by
shorter headway times and more precise planning. For this purpose, SBB has launched the
smartrail 4.0 program along the following principles.

e Algorithmically supported, optimized and integrated capacity planning
e Advanced control systems for railway operations

e New generation of digital interlocking systems

e Significant reduction in quantity and diversity of signaling systems

e Network-wide roll-out of the ETCS cab signalling

e Increased data transmission capacity

e Highly available and precise tracking of trains

The smartrail 4.0 program is organized in 4 principal streams: ETCS Interlocking (EI), Lo-
calization, Connectivity and Security (LCS), Automatic Train Operation (ATO) and Traffic
Management System (TMS). In the context of smartrail 4.0, the TMS-stream strives to reach
the following goals:

e Integrated and automated planning

e Automation of the operations centers. The employee develops himself from user to
manager of the system.

e Enabling of efficient, real-time and precise automation and control of train move-
ments and speeds.

e Precise coordinated remote control of departure, driving and arrival of trains.

The opportunities for the railway system behind these goals are pointed out in Weidmann
et al. (2014).

The program clearly aims for an evolutionary approach towards automation of the plan-
ning and operation systems, in order to realize improvements step by step. During transi-
tion, it is crucial to take the human factor and the interaction between manual and automated
processes into account. Certain roles will have to prepare the inputs and have to understand
and post-process computational results. Particularly in the long-term planning process with
many commercial and political aspects, the human factor will remain still important for long
time, even if also at this stage algorithmic decision support will be important.

The key factor for the success of TMS is to find the right approach which enables on
the one hand to have a strong algorithmic performance to solve big instances of the size
of Switzerland, and on the other hand to enable a continuous integration in the current
processes, with particular focus on the man-machine interaction.

2 Problem Formulation

The timetabling rules we consider were set by experienced railway planners. Planners also
provided the test scenarios on which the different formulations are tested (see 4.2).

The Timetabling Problem considered in this paper is as follows: Given a list of trains to
be scheduled, and for each train

e alist of commercial requirements, such as earliest departure times, latest arrival times,
minimum dwell times and connections to other trains.

e adirected acyclic route graph that defines the routes the train could take from origin
to destination. Each arc in the graph is called a route section and has associated to it
the minimum running time for this train on this edge and a list of resources that are
occupied while the train is on this section. A section may also have a non-negative
penalty attached that is counted in the objective function if this section is used in the
solution

Choose for each train exactly one path from origin to destination in the route graph and
assign to each node on this path a time such that

e all commercial requirements are satisfied
e all minimum running times on the route sections are satisfied
e no resource occupation conflict results

o the objective function (see below) is minimized

The only commercial requirement that may be violated are latest arrival times. A violation
of a latest arrival is a delay. All other rules are hard constraints. The objective function is
the sum of all delays plus the sum of all route penalties for the chosen routes.

In this paper, we only consider blocking resources. To avoid resource occupation con-
flicts, it must be allocated to one train movement exclusively. The next train may only
allocate it once the previous train has released it and a given release time has elapsed.

3 Approaches
3.1 MILP Model

One standard approach is to formulate this timetabling problem as a Mixed Integer Linear
Programming (MILP) and to solve it by general-purpose MILP solvers. These can in prin-
ciple solve instances to optimality, if problem size and computation time limits permit. For
this study, we have used IBM Cplex Version 12.8.

In our model, each train run is modelled as a series of events with trip sections in-
between. Attached to the events are commercial requirements such as earliest/latest depar-
ture/arrival times and connections. The sections contain information on required process
durations and resource occupations.

Continuous decision variable are introduced for the event times. Binary variables de-
fine the routing alternatives taken and the precedence order of train pairs on sections with
common resource occupations.

Our model is similar to the ones described in Pellegrini et al. (2012) and Fischetti and
Monaci (2015). Dependencies between event times are modelled as simple time difference
constraints: Trip times, stop times, connection times and release times. Big-M constraints
are used to switch off all constraints which become oblivious depending on binary routing
and precedence decisions.

Different to Pellegrini et al. (2012) where each origin-destination route gets it own de-
cision variable, we introduce one variable for each local routing alternative. Continuity of
the local decisions is enforced by flow conservation constraints. Other differences are that
we minimize the weighted sum of delays and that we currently omit constraints on rolling
stock circulation.

As in Fischetti and Monaci (2015), we limit the maximum delay allowed for each event
as hard constraint and only introduce precedence decision variables and constraints for pairs
of trains, which are temporally close enough to be potentially conflicting.

Further we merge precedence decisions for resource occupations of neighboring sec-
tions, whenever change of precedence ordering is not possible.

A comparison of the solver performance with and without these enhancements is avail-
able in Schupbach et al. (2018).

3.2 CP Optimizer
IBM’s CP Optimizer' (CPO for short) is a general-purpose constraint solver with a strong

focus on scheduling problems. As part of this focus it provides interval variables out of
the box as central model element. An interval variable represents an activity that is to be

Thttps://www.ibm.com/analytics/cplex-cp-optimizer

planned. An expressive and intuitive constraint language is available to model conditions
on the activities. See Laborie et al. (2018) for a general overview of CP Optimizer.

The expressiveness and flexibility of the language makes it comparatively easy to in-
corporate new planning rules into the model. In our experience this makes CPO especially
suitable for prototyping new ideas before implementing them also in other solvers.

Also, CPO naturally allows a resource view on the problem, rather than a train-pair
view as in 3.1 and 3.3. Instead of demanding that for each train pair occupying a common
resource, one of the train has to precede the other, one constrains that for each resource, the
intervals of all trains must not overlap. This leads to models that grow only linearly in the
number of trains and thus remain fairly compact.

The CPO Model
For each route section of each service intention introduce an interval variable. It represents
the activity of traveling through this route section for this service intention.

Time windows (such as earliest departure, latest arrival, etc.) are handled by setting
the allowed domain of the associated interval variables accordingly. Similarly, minimum
running times are guaranteed by setting a minimum length for the interval. For connections,
introduce timing constraints such as startBeforeEnd between the appropriate intervals.

Resource occupation conflicts are avoided with appropriate no-overlap constraints. Rout-
ing alternatives are handled using the presence status of the intervals. Just as in the flow
formulation for the MILP, one has to make sure that the solver chooses exactly one path
through the routing graph for the solution.

3.3 ASP

Answer Set Programming (ASP) is a declarative problem solving approach. For our ap-
plication we used Potassco, the library developed at Potsdam University. See Gebser et al.
(2012) for a description of the language and tools. We transformed the problem described in
section 2 into a set of declarations. Then, the Potassco grounder aggregated the declarations
and defined the decision variables for the optimizer. These decision variables correspond to
the routes and time events that are not naturally involved by the declarations. Finally, the
optimizer selected the route and the time variables that return the best objective.

Similarly to the other formulations, for each route section of each service intention a
binary decision must be taken. The selection of the previous section is a precondition for
each route choice. Similarly to the MILP formulation (Section 3.1) time variables represent
the entrance of a train into a section and the exit from the last sections.

The time variables are linked together via difference logic constraints see for example
Kaminski et al. (2017), which are linear inequalities that are activated when the declared
preconditions are satisfied (cfr. Big-M in Section 3.1). For instance, minimum travelling
time constraints are activated if the corresponding route sections are selected. Analogously,
minimum time separations are activated if different trains are routed through common re-
sources.

3.4 Alternative Graph Library

The Alternative Graph Library (AGLib) is an academic optimization framework specialized
for scheduling and routing trains in real-time. 2

As described in Sama et al. (2015), the solver splits scheduling and routing into sep-
arate steps. Starting from an initial set of routes, the first schedule is computed applying
a branch-and-bound scheme on the so-called alternative graph. Then, in the routing step,
neighborhood search algorithms look for improving routings. Applying scheduling and
routing steps alternatingly, AGLib iteratively improves solution quality.

The objective function built into AGLib is the minimization of the maximum delay,
measured over all events. When comparing to the cost function described in the challenge
formulation, this can lead to different optimal solutions and needs to be kept in mind when
reading the following results section 4.

3.5 The IQUADRAT’ Solver: A Greedy Algorithm Using Resource Usage Density

From August through November 2018 SBB conducted a crowdsourcing Challenge? to so-
licit algorithms for solving the timetabling problem described in section 2.

By design, the challenge was limited to a fixed set of nine problem instances. Due
to technical limitations, it was not possible to evaluate the algorithms on an independent
test set. This setup probably explains why greedy approaches were quite successful, as
they could be fine-tuned on these particular instances. Nonetheless, the winning algorithms
appear reasonably generic, using at most a handful of parameters.

Among the leading participants a wide variety of approaches and technologies were
tried. A common theme among the very best submissions was the use of greedy algorithms,
although MILP and Constraint Programming approaches as well as enhancing greedy schedul-
ing with reinforcement learning techniques* (Q-Learning) were also successfully applied.

Some of the leading participants have made their code publicly available’. We encour-
age an academic review and possible extension of these ideas.

For our comparison tests in section 4, we include from this challenge the winning algo-
rithm by participant *iquadrat’.®

The Algorithm
The IQUADRAT algorithm greedily solves the most critical conflicts first. A conflict is
defined as any two train sections that potentially occupy a common resource simultaneously.
This also takes into account routing alternatives (so there may be many conflicts on a given
resource between two trains). Criticality of a conflict is determined by a function that takes
into account usage density of the associated resource and the planning flexibility of the
associated trains (if the trains have a large time window, the conflict is not critical).

For each conflict, at most four resolutions are possible: Train 1 before Train 2, vice
versa, Train 1 takes a different path, Train 2 takes a different path. These resolutions are

2Many Thanks to Andrea D’ Ariano and Marcella Sama from the Roma Tre University for sharing AGLib with
SBB for evaluation purposes.

3https://www.crowdai.org/challenges/train-schedule-optimisation-challenge

“https://github.com/deuxnids/sbb_challenge

SLinks to the code repositories are embedded in the following discussion thread on the challenge site:
https://www.crowdai.org/topics/what-tools-did-you-use/discussion

Shttps://github.com/iquadrat/sbb-train-scheduler

again weighted and the preferred resolution is greedily applied. If a resolution leads to
infeasibilty, the next one is tried. If all lead to infeasibilities, backtrack to previous conflict.

This greedy approach is similar in spirit to some Travel Advance Heuristics (TAH), such
as the critical first-TAH in Khadilkar (2017), but it takes into account routing alternatives
and the inherent flexibility of service intentions.

The algorithm is a satisfiability solver, not an optimizer. It stops after the first feasible
solution has been found. The maximum allowed train-wise and total delays can be specified
via parameters.

4 Tests and Results
4.1 Test Setup

We evaluate the different solvers on the problem instances of the Crowd Sourcing Chal-
lenge’. These instances are derived from the actual timetable on the triangle of lines Zurich
- Thalwil, Thalwil - Chur and Thalwil - Lucerne. They differ in the time window they
cover and the number of routing alternatives available to the trains. The complexity of the
instances generally increases with their number. Instance 01 is too trivial to be interesting
and is excluded. Instance 02 contains 58 trains with virtually no routing alternatives for a
total of roughly 4300 route sections. Instance 09 contains 287 trains and with all routing
alternatives a total of over 34000 route sections.

Most instances are solvable with zero delay. In this sense, they represent a ‘normal’
planning scenario where trains are scheduled without disturbances and with enough capacity
on the network available. Instance 05 is special in that it simulates the effect of the closure
of one track on a double track line and it is not solvable without significant delay; its optimal
objective value is 32.98.

The solvers are run on pods in a cloud platform configured to have a CPU limit of 8 cores
and 40GB of RAM, with the exception of the crowdsourced solver IQUADRAT, which is
run on an office notebook with Intel i5-6300U CPU @ 2.4GHz and 12 GB of RAM. To
simulate 8 usable cores, IQUADRAT, as a single-threaded solver, is run with the 8 different
configurations listed in 1.

The solver MILP-ND (as in ‘no-delay’) uses the MILP model as described in 3.1, but
assumes that no delay is allowed for any train. This drastically reduces the model size and
search space compared to the MILP solver, where a maximum delay of 30 minutes for each
train is assumed.

Timeout for all solvers and instances is 900 seconds.

4.2 Results and Discussion

Table 2 summarizes the results. We observe the following patterns.

The MILP solver shows decent results for smaller and medium-sized instances. In par-
ticular, it can prove optimality for instances 02-04. With bigger instances with more routing
alternatives, computation times quickly explode. The no-delay feasiblity checker MILP-ND
can solve much larger instances, also 06-08, provided they are feasible.

Instance 05 with the closed track, which is not solvable with zero delay, is best solved
by IQUADRAT and AGLib. AGLib impresses by mostly keeping up with the other solvers

7https://github.com/crowd Al/train-schedule-optimisation-challenge-starter-kit/tree/master/problem_instances

Table 1: Settings used for the IQUADRAT solver

max_penalty max_penalty_per_intention connetion_badness_factor provides best
solution for

instance

0 0 5 01, 02, 03, 06,
07, 08, 09

5 5 5 04

10 5 5 -

20 5 5 -

20 10 5 -

40 10 5 -

40 15 5 05

60 15 5 -

while only using one CPU core. Instance 05, in particular, highlights how AGLib is very
efficient in improving the initial train routes in the right place and at the right time, namely
where and when it is most critical. AGLib has problems with instance 09 since the initial
route given to each train in the input file is not feasible in terms of computing a conflict-
free train schedule. A future version of AGLib is expected to be able to recover from such
infeasibilities.

In the set of instances used for this comparison, the algorithm by IQUADRAT works
exceptionally well as a feasibility checker for a provided bound. For the medium and larger
instances that are solvable with zero delay, it finds solutions much quicker than all other
approaches. Further study with a larger variety of instances should be performed to assess
the validity of the approach in general.

CPO is an all-rounder in the wide range of scenarios 02-08, but is outperformed by
the specialists for with/without delay instances. ASP shows decent results for smaller and
medium-sized instances but, same as bare MILP, does not inherenty scale. Model building,
grounding and solving would have to be wrapped into an iterative framework that solves
complicated instances step by step.

5 Conclusions and Outlook

In this paper, we have compared several different solution methods for the specific train
scheduling problem (routing and timetabling) that we face at SBB. We can conclude that
solving routing and scheduling in one MILP-instance seems to be too much for larger in-
stances. A MILP model remains in any case our benchmark for solving smaller instances
exactly. None of the approaches alone will work for the system we need to build, in terms
of size but also in terms of business requirements (the 9 instances analyzed in this paper are
still small compared to what we have to solve in reality). Therefore, we are of the opinion
that decomposition methods for solving the problem are unavoidable.

This comparison also gave us some input to continue our work towards increasing the
tractable scenario sizes. We plan to pursue the following research directsion:

e Implement iterative MILP solvers using row and column generation, thereby reducing

Table 2: Computation times for the problem instances. Numbers represent average com-
putation time in seconds. Numbers in parentheses represent the objective value of the best
solution found. Note that AGLib uses a different objective function, 3.4. ‘infeas.” means
the problem is infeasible. ‘no sol’ means the solver provided no feasible solution within the
time limit.

Instance MILP MILP-ND CPO ASP AGLib IQUADRAT

0 8.8 1.4 7.6 23 4.3 4.0
0) 0 (0.6) 0 0.2) (V)
03 49 3.0 15 52 8.9 8
0) V) (1.4) 0 0.5))
o4 164 8.8 20 80 18 16
(0.08) €))] (15.8) €)) (7.5) “4.7)
05 900 infeas 900 900 321 391
(57.83) ’ (84.4) (44.85) (124.6) (39.95)
06 no sol 219 211 no sol i 7
’) (161.2) " (105.9) 0)
07 no sol 613 276 no sol 699 128
’) (218) T (133.2) 0)
08 no sol 266 100 no sol 338 a4
’) (99.6) o (141.3) 0)
09 no sol. no sol. nosol. nosol. nosol 2(2))7
model size.

e The strategy of first solving a no-delay feasibility problem with reduced search space
is promising for each of the solvers.

o Further investigation of routing and scheduling heuristics of AGlib and evaluate pos-
sibilities for parallelization.

Furthermore, we see much promise in combining different solvers by sharing solutions
across them. For example, we plan to use initial solutions from quick heuristic solvers, such
as AGLib, ans using them as starting solutions for the MILP-solvers, or even inject them
during a solve run.

References

M. Fischetti and M. Monaci. Using a general-purpose MILP solver for the practical solution
of real-time train rescheduling. Technical report, 2015.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2012.

R. Kaminski, T. Schaub, and P. Wanko. A tutorial on hybrid answer set solving with clingo.
In G. Ianni, D. Lembo, L. Bertossi, B. Faber, W.and Glimm, G. Gottlob, and S. Staab, ed-
itors, 13th International Summer School of the Reasoning Web, volume 10370 of Lecture
Notes in Computer Science, page 167-203. Springer-Verlag, 2017.

H. Khadilkar. Scheduling of vehicle movement in resource-constrained transportation net-
works using a capacity-aware heuristic. In Proceedings of the American Control Confer-
ence, 2017.

H. Khadilkar. A Scalable Reinforcement Learning Algorithm for Scheduling Railway Lines.
IEEE Transactions on Intelligent Transportation Systems, pages 1-11, 2018.

P. Laborie, J. Rogerie, P. Shaw, and P. Vilim. IBM ILOG CP optimizer for scheduling: 20+
years of scheduling with constraints at IBM/ILOG. Constraints, 2018.

P. Pellegrini, G. Marliere, and J. Rodriguez. Real time railway traffic management mod-
eling track-circuits. In ATOMOS 2012, 12th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems, page 12p, France, Sept. 2012.

M. Sama, A. D’ Ariano, D. Pacciarelli, and F. Corman. A variable neighborhood search for
fast train scheduling and routing during disturbed railway traffic situations. Computers &
Operations Research, 01 2015.

K. Schupbach, G. Caimi, and J. Jordi. Towards Automated Capacity Planning in Railways.
In IRSA 2017: Proceedings: Ist International Railway Symposium Aachen, Germany,
28-30 November 2017, pages 310-325, Aachen, Nov 2018. Ist International Railway
Symposium Aachen, Aachen (Germany), Publication Server of the University Library,
RWTH Aachen University.

U. Weidmann, M. Laumanns, M. Montigel, and X. Rao. Dynamische kapazititsoptimierung
durch automatisierung des bahnbetriebs. ETR Eisenbahntechnsiche Revue, 12, 12 2014.

