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Abstract. In this work we used the Lattice Boltzmann method (LBM) to model the turbulent flow in a local filled with air, of 

side H, and heated from below by a constant temperature θC=1. One of the vertical walls has a cold portion of temperature θF=0. 

The other walls are adiabatic. The calculations were performed in two dimensions (2D) for Rayleigh numbers Ra=108 and 

Ra=1.5×108 and for different size ratio of the heat source (0.2 ≤ Lr = ℓ / H ≤ 0.8). The results are presented in the form of 

streamlines, isotherms and temperature evolution. The heat transfer is studied in terms of the average Nusselt number calculated 

on the hot wall. Results show that the temperature at the center and the heat transfer increases by increasing the Lr or Ra.   
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I. INTRODUCTION 

During the last decades, an increasing interest has been given to thermal transfers by natural convection, because 

of these applications in several fields of research and engineering (heating and cooling of premises, heating of 

electrical circuits, nuclear power station, etc…). Several authors have studied and simulated turbulent or laminar 

natural (or mixed) convection using numerical methods: Finite Difference Method (FDM), Finite Volume Method 

(FVM), Lattice Boltzmann Method (LBM) etc…. Among these authors De Vahl Davis [1] studied and imposed a 

reference solution of natural convection in a square cavity filled with air and differentially heated. Le Quéré [2] studied 

the same configuration as De Vahl Davis using a more precise method for high Rayleigh numbers. In recent years 

several researchers [3-8] used the lattice Boltzmann method for the simulation of natural or mixed convection in 

turbulent regime. Mohamad [9] established the various stages and the steps necessary for the application of the method 

of Lattice Boltzmann (LBM), and made a comparative study between the results obtained by the LBM method and 

the finite difference method (MDF). The results found by the two methods are in good agreement in different 

applications. Dixit et al. [10], in turn, used the LBM method to simulate convection flows in a square cavity for high 

Rayleigh numbers and for this they did a good validation and comparison in the two types of laminar and turbulent 

convection by the use of an interpolation to complete Lattice Boltzmann. Abouricha et al. [11,12] used LBM for the 

simulation of turbulent natural convection in a large-scale square cavity and for high Rayleigh numbers. Results were 

presented for different values of Rayleigh numbers in the form of streamlines and isotherms as well as the evolution 

of temperature and velocity in the median plane of the cavity. The global local Nusselt number is also presented. The 

authors found a correlation for the heat transfer characterized by the Nusselt number as a function of the Rayleigh 

number. 

Our contribution, consists in the characterization of turbulent natural convection flows in a closed room heated 

from below. We use the LBM numerical method for this purpose. We value the influence of the size of the heat source 

Lr and the Rayleigh Ra number on the heat transfer. 
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II. PHYSICAL PROBLEM AND METHOD OF SOLUTION 

1. Physical Problem  

The configuration studied is a square room in 2D of side H (Fig. 1) heated from below by a temperature assumed 

to be constant θc = 1. One of the vertical walls is provided with a cold portion θF = 0 simulating a glass door. The other 

walls are adiabatic. The variation of the density is subject to the Boussinesq approximation. The cavity is filled with 

air (Pr = 0.71). 
 

       
FIGURE 1. Physical problem and 2D configuration 

 

2. Lattice Boltzmann Method (LBM) 

The LB model used here is the same as that employed in [9,11]. This model utilizes two single particle distribution 

functions, the first 𝑓𝑘(𝑥, 𝑡)for dynamic and the second 𝑔𝑘(𝑥, 𝑡), for thermal field simulations, respectively. So we 

consider the model LBM called model D2Q9 two-dimensional and nine discrete velocities (Fig. 2). 

 

FIGURE 2. D2Q9 model 

 
The BGK approximation LB equation without external forces can be written as: 

 
𝜕𝑓𝑘

𝜕𝑡
 +  𝑐𝑘 

𝜕𝑓𝑘

𝜕𝑥
=  Ω(𝑓𝑘)                      (1) 

 

where 𝑓𝑘 are the particle distribution functions defined for the finite set of discrete particle velocity vectors 𝑐𝑘, x is the 



position and t is the time . The collision operator Ω(𝑓𝑘), on the right hand side of Eq. (1) uses the so called Bhatangar-

Gross-Krook (BGK) approximation [13]. For single time relaxation, LB approximation is that the collision term Ω(𝑓𝑘) 

will be replaced by: 

 

Ω(𝑓𝑘) = −
1

𝜏𝑚
(𝑓𝑘 − 𝑓𝑘

𝑒𝑞)                                        (2) 

 

Where 𝜏𝑚 is the relaxation time for the flow and 𝑓𝑘
𝑒𝑞

 is the local equilibrium distribution functions that have 

appropriately prescribed functional dependence on the local hydrodynamic properties. The equilibrium distribution 

can be formulated as in [11]: 

 

𝑓𝑘
𝑒𝑞(𝑥, 𝑡) = 𝜔𝑘𝜌(𝑥, 𝑡) (1 + 3

𝑐𝑘𝑢

𝑐2 +
9

2

(𝑐𝑘 𝑢)2

𝑐4 −
3

2

𝑢2

𝑐2)          (3) 

 

where u and 𝜌 are the macroscopic velocity and density, respectively, and the 𝜔k are the weights factors and 𝑐𝑘  the 

discrete velocities that are given for D2Q9 by: 

ωk =
4

9
  for  k = 0, ωk =

1

9
  for  k = 1 … 4, ωk =

1

36
  for  k = 5 … 8. 

𝑐𝑘 = (0 , 0 ) for  k = 0, 𝑐𝑘 = (±1 , 0 ) ;  (0 , ±1 ) for  k = 1 … 4, 𝑐𝑘 = (±1 , ±1 ) for  k = 5 … 8. 

 

where 𝑐𝑘 =
∆𝑥

∆𝑡
, ∆𝑥 and ∆𝑡 are the lattice space and the lattice time step sizes, respectively, which are set to unity. 

Finally The BGK approximation lattice Boltzmann equation with external forces can be written as for the flow field: 

 

𝑓𝑘(𝑥 + 𝑐𝑘∆𝑡 , 𝑡 + ∆𝑡) = (1 − 𝑤𝑚)𝑓𝑘(𝑥 , 𝑡) +  𝑤𝑚𝑓𝑘
𝑒𝑞(𝑥 , 𝑡) + ∆𝑡 𝐹𝑘                           (4) 

 

where 𝑤𝑚 =  
∆𝑡

𝜏𝑚
 . For momentum 𝑤𝑚 is prescribed through kinematic viscosity as: 

 

𝑤𝑚 =  
1

3𝜐+ 0.5
                  (5) 

 

𝐹𝑘 is an external force term. The Boussinessq approximation is applied to the buoyancy force term. In this case the 

external force 𝐹𝑘  appearing in Eq. (8) is given by: 

 

𝐹𝑘 =  3𝜔𝑘
𝜌𝑔𝛽∆𝑇.𝑐𝑘

𝑐2   (6) 

 

where g is the gravitational vector, 𝜌 is the density, ∆𝑇 is the temperature difference between hot and cold boundaries 

and 𝛽 is the thermal expansion coefficient. 

Finally, the basic hydrodynamic quantities, such as density 𝜌 and velocity u, are obtained through moment summations 

in the velocity space: 

 

𝜌(𝑥, 𝑡) = ∑ 𝑓𝑘(𝑥, 𝑡)𝑘=8
𝑘=0                                            (7) 

 

𝜌𝑢(𝑥, 𝑡) = ∑ 𝑐𝑘𝑓𝑘(𝑥, 𝑡)𝑘=8
𝑘=0                                    (8) 

 

For scalar function temperature or energy, other distribution functions are defined as, 

 

𝑔𝑘(𝑥 + 𝑐𝑘∆𝑡 , 𝑡 + ∆𝑡) = (1 − 𝑤𝑠)𝑔𝑘(𝑥 , 𝑡) + 𝑤𝑠𝑔𝑘
𝑒𝑞(𝑥 , 𝑡) (9) 

 

where 𝑤𝑠 =
∆𝑡

𝜏𝑠
  is related to diffusion coefficient as: 

𝑤𝑠 =  
1

3𝛼 + 0.5
                                              (10) 

 



where 𝜏𝑠 is the relaxation time for temperature and 𝛼 is the thermal diffusion coefficient. The equilibrium distribution 

functions for the temperature field, i.e.  Eq. (13), can be used at first-order. 

 

𝑔𝑘
𝑒𝑞

= 𝜔𝑘𝑇(𝑥, 𝑡) [1 + 3
𝑐𝑘 𝑢

𝑐2 ]                                (11) 

 

The temperature T(x,t) is calculated by: 

 

𝑇(𝑥, 𝑡) = ∑ 𝑔𝑘(𝑥, 𝑡)8
0                 (12) 

 

3.   Boundary conditions 

The boundary conditions associated with the problem are as below:  

 

 Dynamic boundary conditions: 

𝑢 =  𝑣 =   0  For    𝑥 = (0, 1)  and  0 ≤ 𝑦 ≤  1 

𝑢 =  𝑣 =   0  For    𝑦 = (0, 1)  and   0 ≤ 𝑥 ≤  1 

 

 Thermal boundary conditions: 

𝜃 = 𝜃𝑐  =  0      For    𝑥 = 1   and    0 ≤ 𝑦 ≤  
2 

3
 

𝜃 = 𝜃ℎ  =  1     For    𝑦 = 0   and   
1−𝐿𝑟

2
≤ 𝑥 ≤  

1+𝐿𝑟

2
 

 
𝜕𝜃

𝜕𝑛
= 0 for adiabatic walls,  n is the normal of walls. where 𝜃 =  

𝑇 −  𝑇𝑐

𝑇ℎ −  𝑇𝑐
 is the dimensionless temperature. 

 

 « bounce-back » conditions for the imposed temperature:  

𝑔𝑘(𝑥, 𝑡) = (𝜔𝑘 + 𝜔𝑜𝑝𝑝(𝑘))𝜃 − 𝑔𝑜𝑝𝑝(𝑘)(𝑥, 𝑡)                   (13) 

 

4.  Nusselt number calculation 

The heat transfer is examined by calculation the average Nusselt numbers on the hot wall using this integration follow:  

𝑁𝑢̅̅ ̅̅ =  
−1

𝐿𝑟
∫

𝜕𝜃

𝜕𝑦
|

𝑦=0
𝑑𝑥

1+𝐿𝑟

2
1−𝐿𝑟

2

                                    (14) 

 

III. VALIDATION OF NUMERICAL METHOD 

The model was validated by considering a differentially heated square cavity containing air of Prandtl number 

Pr=0.71 . This comparison was made for a value of the Rayleigh number Ra = 108. The numerical results are in good 

agreement with the results of the reference [2], (table 1). 
 

TABLE 1. Comparison of the results. 

 
Nos résultats 

Ra=108 

Le Quéré [2] 

Ra=108 

Deviation 

 

Vmax 

X 

2156.52 

0.011 

2222.39 

0.012 
2.9% 

𝑁𝑢̅̅ ̅̅  30.79 30.225 1.8% 

 



IV. RESULTS AND DISCUSSION 

1. Streamlines and isotherms  

Fig. 3 represents the isothermal lines and the current lines for Ra = 1.5×108 and for Lr = 0.8. The isotherms 

are more intense in the vicinity of the active portions where we are witnessing the development of a thermal boundary 

layer. At the heart of the room, the isotherms become distorted and form closed isotherms representing the puffs of 

warm air rising upwards. The flow is formed by a main cell which rotates clockwise with small secondary cells located 

at (X = 0.2; Y = 0.85) and (X = 0.95; Y = 0.75) and turning in the opposite direction. 

 

 

FIGURE 3.  Isotherms (Left) and streamlines (right) for Lr=0.8 and Ra=1.5×108. 

2. Temperature profile 

The temporal evolution of the temperature θ (t) at the center of the room is shown in Fig.4 for a size of the heat 

source varying in the range 0.2≤Lr≤0.8 and for Ra = 108. Generally the evolution of the temperature represents a 

transition towards a permanent value of the temperature θp which varies linearly with Lr in the form:  

 

𝑝(𝐿𝑟)  ≈ 0.54 × 𝐿𝑟 +  0.2                         (15) 

 

 
FIGURE 4.  Time evolution of the temperature at the center for different values of Lr and for Ra=108. 

3. Heat transfer 

The heat transfer is examined by calculating the mean Nusselt number 𝑁𝑢̅̅ ̅̅ . From Table 2 we notice that 𝑁𝑢̅̅ ̅̅  

increases with the increase in Ra and with that of Lr. 



 

TABLE 2. Values of mean Nusselt number 𝑁𝑢̅̅ ̅̅  for different values of  Ra and of Lr. 

Lr Ra=108 Ra=1.5×108 

0.2 8 --- 

0.4 12.5 --- 

0.6 16 --- 

0.8 20 23 

V. CONCLUSION 

We carried out this numerical study to developing a house code based on LBM which allowed us to treat the 

natural convection flows in laminar or turbulent regime. The objective is to study the heat transfer by convection in 

a large-scale square cavity heated from below for high Rayleigh number. The results show that: 

 

- The flow is turbulent similar to the Rayleigh-Bénard type. 

- The temperature in the center increases with increasing of Lr. And can be correlated in this game of Lr by: 

𝑝(𝐿𝑟)  ≈ 0.54 × 𝐿𝑟 +  0.2 

- The heat transfer is accentuated by the increase in Ra or Lr. 
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