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Abstract. Keyword Spotting (KWS) is a significant branch of Auto-
matic Speech Recognition (ASR), which has been widely used in edge
computing devices. The goal of KWS is to provide high accuracy at a low
false alarm rate (FAR) while reducing the costs of memory, computation,
and latency. However, limited resources are challenging for KWS appli-
cations on edge computing devices. Lightweight models and structures
for deep learning have achieved good results in the KWS branch while
maintaining high accuracy, low computational costs, and low latency. In
this paper, we present a new Convolutional Recurrent Neural Network
(CRNN) architecture named EdgeCRNN for edge computing devices.
EdgeCRNN is based on a depthwise separable convolution (DSC) and
residual structure, and it uses a feature enhancement method. The ex-
perimental results on Google Speech Commands Dataset depict that
EdgeCRNN can test 11.1 audio data per second on Raspberry Pi 3B+,
which are 2.2 times that of Tpool2. Compared with Tpool2, the accuracy
of EdgeCRNN reaches 98.05% whilst its performance is also competitive.

Keywords: edge computing - keyword spotting - convolutional recur-
rent neural network - feature enhancement - lightweight structure

1 Introduction

Keyword Spotting (KWS) is a branch of Automatic Speech Recognition, which
focuses on detecting predefined keywords from a continuous audio stream. The
wake-up words are the critical applications of KWS on edge computing devices,
such as Apple’s “Hey Siri” and Google’s “OK Google”. The device is awakened
to execute the appropriate commands if the KWS system detects a predefined
keyword in a dialogue.
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61572028), National Cryptography Development Fund (No. MMJJ20180206), the
Project of Science and Technology of Guangzhou (No. 201802010044) and Guang-
dong Basic and Applied Basic Research Foundation (No. 2019A1515011797).
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Traditional methods of KWS usually use the Keyword /Filler Hidden Markov
Model (HMM) [1,2]. However, depending on an HMM topology, these systems
require Viterbi decoding and are computationally expensive. These approaches
are not suitable for edge computing with limited resources. In KWS branch, Deep
Neural Networks (DNN) has been shown to produce an efficient and reliable
solution. DNN [3] was the first deep learning model to be applied to KWS with
a model parameter size of 224M, which is smaller than the 373M of the GMM-
HMM , and its performance exceeds that of the HMM model. However, these
model parameters are still not suitable for edge computing devices.

In addition, the KWS system uses a server-client pattern, where the client
collects data on the terminal and the cloud server processes it. With the rapid
growth of data, pressures of computing and storage at the server will increase
exponentially. Eventually, the user experience will become very bad. Moreover,
there is a problem of user privacy leakage, which may lead to violations of law.
Consequently, we adopt a new pattern that the client collects and processes data
on the terminal. This model not only diminishes the burden of cloud servers and
network bandwidth, but also provides positioning and high-quality services.

However, the model’s high requirements for hardware resources and limited
resources pose a challenge on applying KWS to edge computing devices. The
hardware acceleration and designing lightweight models are used to solve this
problem. In [4], Benelli et al. used a Neural Compute Stick (NCS) to accelerate
and lower latency by 50%. Dinelli et al. [5] proposed a Convolutional Neural Net-
work (CNN) based on a field-programmable gate array (FPGA), which is nearly
10 times faster than NCS. However, the hardware acceleration is costly and is
not used in edge computing devices. So we choose the approach of designing
lightweight model.

Various lightweight architectures for deep learning have been successfully
applied to KWS problems, such as Tpool2 [6] and CNN [7]. Compared with
DNN [3], CNN [7] offers a 27-44% relative improvement in false alarm rate
(FAR). However, CNN ignores the global time and spectral correlation owing
to the size of the convolution kernel. Recurrent Neural Network (RNN) could
leverage a longer temporal context, which makes up for this question of CNN.
Recently, RNN [8] and convolutional recurrent neural network (CRNN) [9] are
used in KWS. CRNN is a hybrid of CNN and RNN. In CRNN, convolution layer
extracts local temporal/spatial correlation and recurrent layer extracts global
temporal features dependency in time sequence [9].

In this paper, we design a new CRNN model called EdgeCRNN. Its CNN
adopts depthwise separable convolution (DSC) and residual structure. Besides,
we propose two feature enhancement methods LFBE-Delta and first convolu-
tion feature enhancement, and use the LFBE-Delta feature instead of the Mel-
Frequency Cepstrum Coefficient (MFCC) as input features. EdgeCRNN can rec-
ognize 12 class keywords by training on the Google Speech Commands Dataset
[10]. The experiment results show that EdgeCRNN not only reduces model pa-
rameters and Floating-point Operations Per Second (FLOPs), but also decreases
latency. The test cases can run normally and test 11.1 audio data per second
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on Raspberry Pi 3B+ without stuttering. Besides, accuracy rate is state of the
art, reaches 98.05%. The source codes of EdgeCRNN and its test samples are
available at GitHub repository !.

This paper is organized as follows. Section 2 introduces the related work of the
lightweight KWS model. We describe our approach and EdgeCRNN architecture
in Section 3. In Section 4, we explain the experiment steps and results. Section
5 gives a conclusion.

2 Related Work

There are three main methods for designing lightweight KWS models: (1) model
compression, (2) automatic neural network architecture design based on Neural
Architecture Search (NAS), (3) artificial design of lightweight neural network.

The model compression is to further diminish the size of the model by remov-
ing redundant layers, quantizing high-precision weight parameters, and decom-
posing complex operations. In [11], George et al. use low-rank weight matrices
throughout DNN, which obtains a 23.9% relative reduction in frame error rate.

The NAS can automatically design high-performance neural networks, which
are gradually applied in the fields of speech recognition [12]. NAS is based on a
search strategy to automatically design a model suitable for a specific application
within a predefined search space [13].

The artificial design of lightweight neural network mainly reduces the amount
of calculation by optimizing the calculation method of convolution and designing
more efficient convolution operations. DS-CNN [14] proposes a lightweight model
based on DSC and the accuracy rate reaches 95.4% with limited memory and
compute capability.

The model compression and automatic design methods based on network
architecture search consume resources and time costly. The artificial design of
lightweight neural network requires designers to have professional knowledge,
but it consumes fewer resources and is mature in technology. Therefore, we use
the artificial neural network method to design a lightweight KWS model for edge
computing devices.

3 EdgeCRNN

In this section, first we propose a Feature Enhancement approach. And then the
architecture of EdgeCRNN is designed from EdgeCRNN Block.

3.1 Feature Enhancement

To extract acoustic features more efficiently, we propose two enhancement meth-
ods Input and First Convolution Layer Feature Enhancement.

! https://github.com/genty1314/KWS.git
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Fig. 1. Input Feature. 39 dimensions (39D) MFCC and 39D LFBE-Delta (LFBE-Delta
denotes the concatenation of 13D LFBE, 13D Delta and 13D Delta-Delta).

Input Feature Enhancement The traditional method MFCC only extracts
the envelope information on spectrum and it loses sound details. However,
the Log-Mel filterbank energies (LFBE) contains more features, such as low-
frequency and spectral details. Many proposals have adopted LFBE as feature
extract method [7, 15]. Besides, the first derivative (Delta) and second derivative
(Delta-Delta) features on the time axis of MFCC can better represent correla-
tion among frames. We propose a new feature extraction method LFBE-Delta,
which is 39 dimensions and computed every 30ms with a 10ms frame shift by
LibROSA package [16]. LFBE-Delta contains three features with 13 dimensions,
which include LFBE, Delta, and Delta-Delta (Figure 1).

First Convolution Layer Feature Enhancement The convolution kernel
enhances features by multiplying input signals with sliding, then it outputs a
small-size map feature. By setting convolution kernel stride = 1, the size of
the output map remains the same. Therefore, repeating multiple convolution
operation is equivalent to adding features. Compared to large-size inputs, small-
size inputs could relatively save computational costs. Compared with the input
data dimensions of 3 x 224 x 224 in the computer vision [17,18], the acoustic
feature of 39 dimensions LFBE-Delta is too small to effectively extract valid
features. In the convolution layer, maintaining the output map size unchanged
by setting stride could extract more efficient features. So we maintain the output
map size by setting stride = 1 to achieve feature enhancement.

3.2 The Building Blocks of EdgeCRNN

In this section, we first describe the core approaches (i.e., DSC and residual
structure), on which EdgeCRNN Block is built. We then describe the EdgeCRNN
Block and RNN.

Depthwise Separable Convolution According to Howard et al’s research
[18], the FLOPs of the DSC is & + 5 times than the standard convolutional
k
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Fig. 2. EdgeCRNN Block. a) is the basic block, two branch outputs are “Concat”
operation ;b) is the downsampling module with the output operate by “Concat”.

operation, where NV is the number of output channels, Dy, is the kernel size. The
number of channels is usually large, so the % value can be ignored. It consists of
depthwise convolution(DWConv) and point convolution(PConv) and gradually
replaces standard convolution kernels in many lightweight model studies. Most
EdgeCRNN’s convolution kernel sizes are 3 x 3 and 1 x 1, so the computation cost
of EdgeCRNN can less about 9 times than full convolution layer. This proves
that the DSC can reduce computational costs and model parameters.

Residual Structure In theory, deeper networks are more capable of learning.
However, with the numbers of network layer increases, the structure becomes
more complicated and requires expensive computational cost. Therefore, He et
al. [19] proposed ResNet based on the Residual Structure, which uses the identity
mapping of shortcut connections, the input and output of different blocks are
concatenated by an element-wise. It increases the training speed of the model.
The Residual Structure was applied in the KWS task, and the accuracy rate was
state-of-the-art at that time and reached 95.8% [20].

RNN The RNN uses a loop structure to connect early state information to
the later state, which can well extract sequence data context features. However,
standard RNN has short-term memory problem. The long short-term memory
(LSTM) [21] and gated recurrent unit (GRU) [22] of variant RNN were created
as the solution to the problem. They have internal mechanisms called memory
cells that can store the flow of information. BiLSTM can obtain time series
features well and achieve the accuracy of 96.6% [23]. Hence, we use LSTM on
EdgeCRNN model.
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Output Channels

Layer Output KSR s 1ox 15x 2.0x
Audio 39 x 101 - - - 1
Convl 39 x 101 3x3 1
MaxPool 20 x 51 3x3 2 1 16 24 2 24
10 x 26 3x3 2 1
Stage2 10 x 26 3%3 1 1 32 72 116 160
5x13 3x3 2 1
Stage3 5% 13 3% 3 1 9 64 144 232 320
3x7 3x3 2 1
Stage4 357 3% 3 1 1 128 288 464 640
Convb 3xXT 1x1 1
GlobalPool 1x7 3x1 1 1 256 512 1024 1024
RNN - - - - 64
FC - - - - 12
MFLOPs 4.10 14.54 34.89 57.65
MWeights 0.15 0.59 1.15 1.68

Table 1. EdgeCRNN architecture. Stage* include EdgeCRNN Block, K and S are the
size and stride of the convolutions kernel, R represents the number of modules and
padding=1.

EdgeCRNN Block We design EdgeCRNN Block based on DSC and residual
structure, which is similar to the ShuffleNetV2 [24]. It includes Base-Block and
EdgeCRNN-Block (Figure 2). EdgeCRNN Block consists of two PConv layers
and one DWConv layer, which selects the rectified linear unit (ReLU) nonlinear-
ity and it uses Batch Normalization (BN) to normalize input data. EdgeCRNN-
Block is used for downsampling to halve the input signal size by setting Stride
= 2 on the DWConv layer, and then it uses the Concat operation to double the
number of channels. Base-Block is the basic block and adding features by Concat
operation, the input signal size and channels remain unchanged. EdgeCRNN-
Block is on the first layer of each stage (see more detail in Session 3.3), and
Base-Block follows it.

3.3 The Architecture of EdgeCRNN

The EdgeCRNN architecture is a hybrid model of CNN and RNN, where CNN
is mainly composed of a stack of EdgeCRNN Block and the LSTM model which
consists of one hidden layer with 64 nodes. Besides, CNN is divided into one first
convolution layer feature enhancement layer called Convl, three Stage, and one
standard convolution layer named Convb. Convl and Convb contain the vari-
ant Pool operator which is a sample-based discretization process with the goal
of downsampling the input representation [8]. Convl is MaxPool and Conv5
uses GlobalPool. There are two units in each Stage. The first unit consists of
a downsampling block EdgeCRNN-Block with a convolution kernel stride of 2.
The second unit consists of the Base-Block module, which is located behind the
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EdgeCRNN-Block and its number is determined by R in Table 1. The Edge-
CRNN uses Width Multiplier o similar to MobilenetV1 [18]. The role of the «
is to thin a network uniformly at each layer (Table 1).

4 Experiments on EdgeCRNN

In this section, we introduce the datasets, experiment steps, and how to train the
model. We then investigate the effects of feature enhancement and EdgeCRNN
Block. Finally, we compare performances between EdgeCRNN and popular KWS
models.

4.1 Experimental Step on EdgeCRNN

We evaluate our models by using Google Speech Commands Dataset [10], which
consists of 65,000 one-second utterances of 30 words by thousands of different
people. The sampling frequency is 16KHz. Our task is to discriminate among
12 classes “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, “go”,
unknown, and silence. The unknown class is used to simulate the model to learn
the difference between keywords and non-keywords. The silence class represents
background noise. The dataset is then randomly split into training, validation,
and test sets in the ratio of 80:10:10. EdgeCRNN is trained in the training and
validation set, and the experimental results are obtained from the test set.

We use the Tpool2 [6] as the baseline model, which consists of two convolu-
tional layers and one DNN layer. In our experiment, the input features are 39
dimensions LFBE-Delta. The EdgeCRNN uses the Relu activation function, the
Adam optimizer, and Cross Entropy loss function on each of the convolution
layers.

4.2 Model Training on EdgeCRNN

Accuracy, FLOPs and model parameters are our primary metric of quality. We
also plot receiver operating characteristic (ROC) curves, where the x and y axes
denote FAR and false rejects rate (FRR), respectively. Curves for each of the
keywords are computed and then averaged vertically to produce the overall ROC.
The lower the curve, the better the model performance.

We compare the model performances that adopt feature enhancement and
non-use. The accuracy of EdgeCRNN-Mel is 3% higher than EdgeCRNN-M for
LFBE-Delta containing three features in Table 2. Meanwhile, EdgeCRNN-M-F
and EdgeCRNN-Mel-F also have a similar relationship in accuracy. The Figure
3(b) illustrates the EdgeCRNN-Mel-F gives a 69.5% relative improvement over
the EdgeCRNN-M-F at the operating point of 0.1 FAR. This means that input
features contain three feature types which can improve model accuracy more
than containing one feature.

The first convolution layer feature enhancement can repeatedly extract fea-
tures and improve accuracy. EdgeCRNN-Mel-F is 0.8% higher than EdgeCRNN-
Mel. However, FLOPs of the EdgeCRNN-Mel-F is almost 10M more than that
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Model MFLOPs  Parameter  Accuracy(%)
EdgeCRNN-M 4.60M 0.59M 94.15
EdgeCRNN-M-F 14.54M 0.59M 94.97
EdgeCRNN-Mel 4.60M 0.59M 97.05
EdgeCRNN-Mel-F 14.54M 0.59M 97.89

Table 2. Accuracy of features enhancement. Where M denotes MFCC as feature ex-
traction and Mel represents LFBE-Delta, F represents first convolution layer feature
enhancement, the o defaults to 1.0x.

ROC ROC

EdgeCRNN-Me | —— EdgeCRNN-Mel-F
— - EdgeCRNN-Me|-F R N EdgeCRNN-M-F

[

False Rejects Rate
False Rejects Rate

001 .t

e

0.00 0.00
0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09

False Alarms Rate False Alarms Rate
(a) First Convolution Layer Feature Enhancement (b) Input Feature Enhancement

Fig. 3. ROC curves for feature enhancement.

of EdgeCRNN-Mel. We have found that it is most appropriate to reuse it only
once. So EdgeCRNN uses the first convolution layer feature enhancement only
once. The EdgeCRNN-Mel-F curve is lower compared with the EdgeCRNN-Mel

from Figure 3(a), which depicts that EdgeCRNN extracts feature more robust
by feature enhancement.

4.3 Result on EdgeCRNN

First, we compare accuracy between previous KWS models [6, 8,9, 14, 23] and
EdgeCRNN (Table 3), these models are trained on the Google Speech Commands
Dataset [10] (except CRNN [9], which uses a private TalkType dataset, and the
data of LSTM from literature [14]). The parameter of EdgeCRNN 1.0x is not
the smallest, while it is relatively lightweight and less than 0.6M. Besides, the
accuracy of EdgeCRNN is higher than other KWS models from Table 3, which
reaches 97.89% with limited computational cost (only 14.54M). This indicates
that EdgeCRNN can almost achieve the state of art accuracy in KWS task and
is a lightweight model.

We evaluate the performance of EdgeCRNN on edge computing device, which
is depicted in Table 4. EdgeCRNN 0.5x can read 11.1 audio data per second on
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Model FLOPs Parameter Accuracy
Tpool2[6] 103M 1.09M 91.97%
LSTM]8] 48.4M 0.26M 94.81%
CRNN[9] 19.3M 0.22M 97.711%

DS-CNNJ14] 56.9M 0.47™™ 95.38%
DenseNet-BiLSTM[23] - 0.24M 97.50%
EdgeCRNN 1.0x 14.54M 0.59M 97.89%

Table 3. Accuracy of the related KWS models.

Model MFLOPs Parameters Accuracy CPU ARM
Tpool2 [6] 103 1.09M 91.97% 27.6/s 5.0/s
EdgeCRNN 0.5x 4.10 0.29M 97.09%  49.9/s  11.1/s
EdgeCRNN 1.0x 14.54 0.59M 97.89% 25.6/s 5.0/s
EdgeCRNN 1.5x 34.89 1.29M 97.92% 17.3/s 3.1/s
EdgeCRNN 2.0x 57.65 1.72M 98.05%  13.5/s 2.3/s

Table 4. Performances of different width Multiplier and platforms. The CPU denotes
the test speed on a platform of Intel(R) Core(TM) 13-8100 CPU. The ARM is the
Raspberry Pi 3B+.

the Raspberry Pi 3B+, which is much faster than Tpool2’s 5 per second. It
demonstrates that EdgeCRNN reduces latency and computational costs with
an accuracy of 97.09%. From the keyword audio length of 1 second on Google
Speech Commands Dataset, we know the speed of human speech is nearly one
keyword per second. It means that EdgeCRNN processing speed can keep up
with the speed of human speech in a resource-constrained environment.

Table 4 compares the effects of different Width Multiplier models, which
have four multiples 0.5x, 1.0x, 1.5x, 2x from Table 1. The 2.0x model has the
highest accuracy 98.05%, and the 0.5x model processes 11.1 audio per second
which is the fastest speed on Raspberry Pi 3B+. In practical applications, we
should consider the trade-off between FLOPs and accuracy to choose the most
appropriate model.

5 Conclusion

In the paper, we designed a new EdgeCRNN model for edge computing devices
applied to KWS. We demonstrated how to improve EdgeCRNN’s performance
by using feature enhancement methods with repeatedly extracting features. The
result shows that EdgeCRNN can process 11.1 audio per second on Raspberry Pi
3B+, and its accuracy rate reaches 98.05%. However, FLOPs are still relatively
large on variant EdgeCRNN 1.0x, and there is still room for improvement in
accuracy. Moreover, the model test platform is only on ARM. In the future, we
will continue to reduce the computational costs, improve the accuracy, and apply
the KWS system to different environments.
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