
EasyChair Preprint
№ 7029

Timesmash: Process-Aware Fast Time Series
Clustering and Classification

Victor Rotaru, Yi Huang and Ishanu Chattopadhyay

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2021

Timesmash: Process-aware Fast Time Series Clustering and Classification

Victor Rotaru, Yi Huang, Ishanu Chattopadhyay
Department of Medicine, University of Chicago, Chicago, IL 60637, USA

{virotaru, yhuang10, ishanu}@uchicago.edu

Abstract
We introduce Timesmash: a comprehensive suite of cluster-
ing and classification algorithms and their implementation
as a eponymous python package for stochastic time series
analysis. We leverage a subclass of hidden Markov model
(HMM), called Probabilistic Finite-State Automaton (PFSA),
which are used to first model in an unsupervised setting the
underlying generative processes for observed data streams,
which then aid in carrying out automatic physics or process
aware featurization enabling subsequent clustering and clas-
sification. The algorithms in this suite consist of the following
tools: a) LikelihoodDistance estimating in an unsupervised
setting the divergence between ergodic stationary finite val-
ued stochastic processes from the observation of finite and
possibly unequal sample paths. b) Featurization algorithms
SymbolicDerivative, InferredHMMLikelihood, and Clus-
teredHMMClassifier, which operate by aiming to recover
the underlying hidden generator for the sample paths pre-
sented, which then may be used to automatically distill ef-
fective features for classification. Our core algorithms require
the data streams to take values in a finite alphabet. To extend
applicability to continuous-valued time series, a data-driven
quantization algorithm, our implementation includes the tool
Quantizer that discretizes continuous sequences without the
assumption of domain knowledge. We evaluate the perfor-
mance of the Timesmash algorithms on problems from the
UCR Time Series Classification Archive, and show that we at
par or better compared to the state of the art Dynamic Time
Warping (DTW) algorithm. In addition, we include brief ex-
amples where our unsupervised physical modeling leads to
insights not easily obtainable with the current state of the art.

Introduction
Efficiently contrasting and comparing stochastic processes
is the key to analyzing time-dependency in complex sys-
tems, particularly where randomness cannot be ignored. For
such learning to occur, we need to define either a measure
of deviation or, more generally, a measure of similarity to
compare stochastic time series. Examples of such similar-
ity measures from the literature include the classical lp dis-
tances and lp distances with dimensionality reduction (Lin
et al. 2003), the short time series distance (STS)(Möller-
Levet et al. 2003), which takes into account of irregularity in

Copyright c©2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0)

sampling rates, the edit based distances(Navarro 2001) with
generalizations to continuous sequences(Chen, Özsu, and
Oria 2005), and the dynamic time warping (DTW)(Petitjean,
Ketterlin, and Gançarski 2011), which is used extensively in
the speech recognition community.

We present a suite of algorithms for time series classi-
fication and clustering, implemented as a python package
Timesmash. The package provides 1) an algorithm Likeli-
hoodDistance to calculate the distance matrix given a set
of time series; 2) two featurization algorithms, Symbol-
icDerivative and InferredHMMLikelihood, that map in-
dividual time series to feature vectors appropriate for in-
put to any standard classification algorithm; 3) a domain
knowledge-free quantization algorithm Quantizer that ex-
tends the applicability of the package from categorical to
continuous-valued time series. We also discuss a classi-
fication algorithm, Cluster InferredHMMLikelihood Clas-
sification (ClusteredHMMClassifier) implemented using
Timesmash tools, and compare its performance to Dynamic
Time Warping (DTW) on the UCR time series classification
dataset archive.

The algorithms underlying the tools in Timesmash fo-
cus on the generating process of the data streams. We hy-
pothesize that time series from the same class in the train-
ing dataset of a given classification problem “should” have
similar generating processes. While stochastic processes in
general can be arbitrarily complex, here we assume that un-
der appropriate quantization the processes can be well ap-
proximated by ergodic stationary finite-valued processes. In
particular, we assume that the quantized version of our un-
derlying processes may be generated by Probabilistic Fi-
nite State Automata (PFSA). PFSA have the property that
we can carry out efficient evaluation of log-likelihood of
a sequence as being generated by a specific model, and
also PFSAs maybe efficiently inferred from quantized data
streams (Chattopadhyay and Lipson 2013) by the algorithm
genESeSS. LikelihoodDistance and InferredHMMLike-
lihood are both based on the PFSA log-likelihood evalua-
tion. ClusteredHMMClassifier boosts classification perfor-
mance by allowing for the possibility that time series from
the same prescribed class in training, may actually be gen-
erated by different processes. Capturing these within-class
variations via an unsupervised learning algorithm, will al-
low better classification of the test dataset.

Table 1: Performance Comparison on UCR Time Series Classification Datasets

Dataset Baseline SD CH Dataset Baseline SD CH

ChlorineConcentration 0.3500 0.2753 0.3518 MiddlePhalanxTW 0.4870 0.4286 0.4675
Computers 0.3000 0.3360 0.2760 MixedShapesRegularTrain 0.0911 0.0833 0.0680
Crop 0.2883 0.4169 0.4426 PhalangesOutlinesCorrect 0.2389 0.2914 0.2541
Distal...Group 0.2302 0.2878 0.1942 PowerCons 0.0667 0.1667 0.1278
Distal...Correct 0.2754 0.2681 0.2391 Proximal...Group 0.1951 0.1268 0.1415
DistalPhalanxTW 0.3669 0.3741 0.3094 Proximal...Correct 0.1924 0.1924 0.1890
Earthquakes 0.2734 0.2518 0.2590 ProximalPhalanxTW 0.2439 0.2683 0.2293
ECG5000 0.0749 0.0802 0.0798 RefrigerationDevices 0.5360 0.4027 0.5013
ElectricDevices 0.3806 1.0000 0.4889 ScreenType 0.5893 0.5467 0.5760
EthanolLevel 0.7180 0.6860 0.7140 SemgHandGenderCh2 0.1550 0.2417 0.1317
FordA 0.3091 0.1644 0.1515 SemgHandMovementCh2 0.3622 0.3911 0.2778
FordB 0.3802 0.3432 0.2827 SemgHandSubjectCh2 0.2000 0.3889 0.1956
FreezerRegularTrain 0.0930 0.0596 0.0196 SmallKitchenAppliances 0.3280 0.2133 0.2293
GunPointAgeSpan 0.0348 0.0443 0.0348 StarLightCurves 0.0934 0.0244 0.0211
Gun...Female 0.0032 0.1108 0.0285 Strawberry 0.0541 0.0757 0.0757
Gun...Young 0.0349 0.0540 0.0063 UWaveGestureLibraryAll 0.0343 0.3398 0.2990
Ham 0.4000 0.4190 0.3524 UWaveGestureLibraryX 0.2267 0.2993 0.3099
HandOutlines 0.1189 0.2595 0.2432 UWaveGestureLibraryY 0.3009 0.3903 0.4013
LargeKitchenAppliances 0.2053 0.3173 0.3520 UWaveGestureLibraryZ 0.3222 0.4534 0.3473
MelbournePedestrian 0.1518 0.2743 0.2922 WormsTwoClass 0.3766 0.2208 0.2857
Middle...Group 0.4286 0.3831 0.3571 Wafer 0.0045 0.0008 0.0015
Middle...Correct 0.2337 0.2337 0.2680 Yoga 0.1560 0.2540 0.2027

1. Smallest error in red. Baseline error rate is the minimum error listed in the UCR Time Series Classification Archive.
2. SD for SymbolicDerivative, CH for ClusteredHMMClassifier.

Background: Models of Discrete Processes
Definition 1 (probabilistic Finite-State Automaton (PFSA)).
A probabilistic finite-state automaton, or PFSA for short,
G is specified by a quadruple (Q,Σ, δ, π̃), whereQ is a finite
set of states, Σ is a finite alphabet, δ is a partial map from
Q×Σ to Q, called transition map, and π̃, called observation
probability, is a map from Q to PΣ, where PΣ is the space
of probability distributions over Σ. The entry indexed by σ
of π̃(q) is written as π̃(q, σ).

We call the directed graph (not necessarily simple with
possible loops and multi-edges) with vertex set Q and edges
specified by δ the graph of the PFSA and assume it to be
strongly connected (Bondy and Murty 2008), which means
for any pair q, q′ ∈ Q, there is a sequence σ1σ2 · · ·σk such
that δ (qi−1, σi) = qi for i = 1, 2, . . . , k with q0 = q and
qk = q′.
Definition 2 (Observation and Transition Matrices). Given
a PFSA (Σ, Q, δ, π̃), the observation matrix Π̃ is the |Q| ×
|Σ| matrix with the (q, σ)-entry given by π̃(q, σ), and the
transition matrix Π is the |Q|× |Q|matrix with the (q, q′)-
entry, written as π(q, q′), given by

π(q, q′) =
∑

{σ:δ(q,σ)=q′}

π̃(q, σ).

It is straightforward to verify that both Π and Π̃ are
stochastic, i.e. non-negative with rows of sum 1. Since the
graph of a PFSA is strongly connected, we have there is
a unique probability vector pG that satisfies pTGΠ = pTG
(Vidyasagar 2014). We call pG, or simply P if G is under-
stood, the stationary distribution of G.

Definition 3 (Stochastic process Generated by a PFSA). Let
G = (Q,Σ, δ, π̃) be a PFSA and pG be the stationary distri-
bution on Q. G generates sequences in the following fash-
ion. To start, a state q0 is chosen following p0 = pG, and
then a symbol σ1 is generated following π̃(q0) and the sys-
tem moves to q1 = δ(q0, σ1). Then, a symbol σ2 is generated
following π̃(q1) and the system moves to p2 = δ(q1, σ2), so
on and so forth.

Entropy Rate, KL Divergence, and Log-likelihood
Definition 4 (Entropy rate and KL divergence). The entropy
rate of a PFSA G is the entropy rate of the stochastic pro-
cess G generates (Cover and Thomas 2012). Similarly, the
KL divergence of a PFSA G′ from the PFSA G is the KL
divergence of the process generated by the G′ from that of
G. More precisely, we have the

H(G) = − lim
d→∞

1

d

∑
x∈Σd

pG(x) log pG(x),

and the KL divergence

DKL (G ‖G′) = lim
d→∞

1

d

∑
x∈Σd

pG(x) log
pG(x)

pG′(x)
,

if the limits exist, and where Σd is teh d times Cartesian
product of Σ. Importantly, PFSA has closed-form formula
for both entropy rate and KL divergence (Chattopadhyay,
Huang, and Evans 2020).
Definition 5 (Log-likelihood). The log-likelihood (Cover
and Thomas 2012) of a PFSA G generating x ∈ Σd is:

L(x,G) = −1

d
log pG(x).

Train time
series

Train labels

Fit
quantizer

Quantized
time series

Compute
Like-
lihood

Distance

Distance
matrix

Compute
sub-labels

New train
labels

Find
PFSA PFSA

Compute
Log-

likelihood
Features Fit

classifier

Test time
series

Quantize Quantized
test data

Compute
Log-

likelihood
Features Predict

labels
Predicted

labels

Train

Test

Figure 1: Flow chart of the ClusteredHMMClassifier on a continuous-valued dataset.

Algorithm 1: PFSA Log-likelihood L(x,G)

Data: A PFSAG = (Q,Σ, δ, π̃) and a sequence x of length n.
Result: Log-likelihood ofG generating x

1 Get the stationary distribution pG as the left eigenvector of ΠG of
eigenvalue 1;

2 Let p be the current distribution on states, and initialize it with pG;
3 Let L be the log-likelihood ofG generating x and initialize it with 0;
4 for each symbol σ in x do
5 Get the current distribution on symbols φ = pT

GΠ̃G;
6 Update L = L− log φ(σ);
7 Let pnew be the new distribution on states, and initialize all its entries

with 0;
8 for each state q ∈ Q do
9 Let the next the state qnew = δ(q, σ);

10 Let pnew(qnew) = pnew(qnew) + p(q)π̃(q, σ);
11 end
12 Update p with pnew/ ‖pnew‖1;
13 end
14 Let L = L/n;
15 return L;

Theorem 1 (Convergence of Log-likelihood). Let G and
H be two irreducible PFSA, and let x ∈ Σd be a se-
quence generated by G. Then we have L(x,H)→ H(G) +
DKL (G ‖H) , in probability as d→∞.

LikelihoodDistance: Log-likelihood Distance

A (pseudo-)distance between two sequences is calculated
by choosing a set of basis PFSA G = {G1, . . . , Gk}
and mapping the sequence x to the vector vx =
(L (x,G1) , . . . , L (x,Gk)) , where L(x,G) is the log-
likelihood of G generating x as defined in Defn. 5. The
distance between a pair of sequences can be any valid dis-
tance between their coordinates (See Alg. 1 and Alg. 3).
For unsupervised learning, G can be a pre-determined set
of PFSA that is well-separated in a certain sense, for exam-
ple, KL divergence. For supervised problems, G consists of
one or more PFSA inferred from each class of the training
dataset using algorithm genESeSS (Chattopadhyay and Lip-
son 2013).

Algorithm 2: Compute likelihoods
Data:
• A datasetX =

{
x1, . . . , x|X|

}
over alphabet Σ;

• A set of PFSA G =
{
G1, . . . , G|G|

}
, each PFSA over alphabet Σ.

Result: Feature matrix ofX .
1 return the |X| × |G| matrix with the (i, j)-th entry being L (xi, Gj);

Algorithm 3: LikelihoodDistance
Data:
• A collectionX of sequences over alphabet Σ;

• A set G of basis PFSA over the same alphabet.

Result: A distance matrix of dimension |X| × |X|
1 Let F = Compute likelihoods(X,G);
2 LetD be a matrix of dimension |X| × |X| ;
3 for i = 1, . . . , |X| do
4 Let vi be the i-th row of F ;
5 for j = 1, . . . , |X| do
6 Let vj be the j-th row of F ;
7 Let the (i, j)-entry ofD be d (vi,vj);
8 end
9 end

10 returnD;

SymbolicDerivative
Definition 6 (Empirical Symbolic Derivative). For x ∈ Σ?

(i.e. x is a finite but unbounded sequence over Σ), the em-
pirical symbolic derivative φ̂xy of a subsequence y of x is a
probability vector:

∀σ ∈ Σ, φ̂xy(σ) =
number of subsequence yσ in x
number of subsequence y in x

where yσ is teh concatenation of y and σ.
SymbolicDerivative maps each sequence in x over alpha-

bet Σ to a feature vector composed of empirical symbolic
derivatives. More specifically, let Σ = {σ1, . . . , σk}, the
feature vector of the subsequence y is defined to be the k-
dimensional vector φxy =

(
φxy (σ1) , . . . , φxy (σk−1)

)
. Let l

be a fixed length, the feature vector vx of a sequence x is

Algorithm 4: InferredHMMLikelihood featuriza-
tion

Data:
• DatasetX =

(
X train, X test

)
over alphabet Σ;

• Labels Ltrain =
(
l1, . . . , l|Xtrain|

)
;

Result: Feature matrices ofX train andX test

1 Let L be the set of unique labels;
2 Let G = ∅ be the set of class PFSA;
3 for each l in L do
4 LetXl = {xi : yi = l};
5 Add PFSAGl = genESeSS(Xl) to G;
6 end
7 Let F train = Compute likelihoods

(
X train,G

)
;

8 Let F test = Compute likelihoods
(
X test,G

)
;

9 return F train and F test;

given by the concatenation of φxy for all y with length less
than or equal to l.

InferredHMMLikelihood

InferredHMMLikelihood infers a PFSA Gi from each
class i of a k-class classification dataset X and returns
LikelihoodDistance matrix produced with X and G =
{G1, . . . , Gk} (See Alg. 9).

Quantizer

The simplest approach to turn a continuous sequence to a
symbolic one with alphabet size k is by choosing k − 1 cut-
off points p1 < p2 < · · · < pk−1. With p0 = −∞ and
pk = +∞, we can replace a data point p in the continuous
sequence with symbol i if p ∈ [pi, pi+1). The set of cut-off
points is called a partition. A commonly used principle for
choosing a partition is entropy maximization, in which the
pis are chosen so that there are as equal as possible numbers
of data points falling in each [pi, pi+1). In the current im-
plementation of Quantizer, users can specify the following
quantization parameters: 1) Alphabet size (default is 2 and
3); 2) Whether to take derivative first (default is to try both);
3) Whether to standardize (default is to try both); 4) Maxi-
mum number of quantization schemes returned (default is to
return all). For a fixed alphabet size k, by default, Quantizer
produces 2 ·2 · (2k+ 1) quantization schemes, where 2k+ 1
is because of the k quantizations at 90% maximum entropy,
k at 95%, and 1 with maximum entropy. Hence, by default,
Quantizer generates totally 48 quantization schemes.

With quantization schemes {Q1, . . . ,Qm}, we get m
discrete datasets X1, . . . , Xm from a continuous dataset
X . Let Fi, i = 1, . . . ,m, be the feature matrix pro-
duced by either SymbolicDerivative or InferredHMM-
Likelihood from Xi, the feature matrix of X is given by
F = (F1, . . . , Fm). We define the LikelihoodDistance ma-
trix D of a continuous dataset to be (1/m)

∑m
i=1Di, where

Di is the LikelihoodDistance matrix of Xi. For supervised
learning, Quantizer uses separation ratio to measure the
quality of quantization schemes. Let li be the class label of
the i-th sequence in X , the mean inter-class distance s and

mean intra-class distance d are defined by

s =

∑
i,j δliljDi,j∑
i,j δlilj

, d =

∑
i,j

(
1− δlilj

)
Di,j∑

i,j

(
1− δlilj

) ,

respectively, where δab = 1 if a = b and 0 if otherwise. The
bigger the separation ratio rQ = d/s, the better separation
Q produces between different classes of the dataset.

ClusteredHMMClassifier
ClusteredHMMClassifier proceeds by first clustering se-
quences from the training dataset belonging to the same
class using LikelihoodDistance and a standard specified
clustering algorithm, and then infers a PFSA from each sub-
class. A feature matrix is generated from the inferred PFSA,
for the final classifier training (See Alg. 19).

Algorithm 5: ClusteredHMMClassifier: Cluster
InferredHMMLikelihood Classification

Data:
• Dataset

(
X train, X test

)
;

• Labels Ltrain = (l1, . . . , ln);

• Optional quantization parameters;

• A set of basis PFSA G for LikelihoodDistance;

• A clustering algorithm clu;

• A classification algorithm clf.

Result: Predicted labels forX test.
1 Let quantization schemesQ1, . . . ,Qm = Quantizer

(
X train, Ltrain

)
;

2 Let L be the set of unique labels;
3 for i = 1, . . . ,m do
4 LetX train

i , X test
i = Qi

(
X train, X test

)
;

5 for each l ∈ L do
6 LetX train

i,l be the subset ofX train
i with label l;

7 LetD = LikelihoodDistance
(
X train

i,l ,G
)

;

8 Let
{
X train

i,l,c : c = 1, . . . , C
}

= clu(D);
9 for c = 1, . . . , C do

10 Assign a new label lc to sequences inX train
i,l,c;

11 end
12 end
13 Let Lnew

i be the new labels;

14 Let F train
i , F test

i = InferredHMMLikelihood
(
X train

i , X test
i , Lnew

i

)
;

15 end
16 Let F train =

(
F train

1 , . . . , F train
m

)
;

17 Let F test =
(
F test

1 , . . . , F test
m

)
;

18 Train clf with F train;
19 return prediction clf

(
F test);

We show the flow chart for ClusteredHMMClassifier in
Fig. 1, and compare the performance of ClusteredHMM-
Classifier with SymbolicDerivative and DTW in Tab. 1.

Performance Comparison
We first compare runtimes of dynamic time warping
(DTW) (Berndt and Clifford 1994), LikelihoodDistance on
a synthetic symbolic dataset. We implement both algorithms
in C++ and use the implementation documented in (Rak-
thanmanon et al. 2012) for DTW. The synthetic dataset
contains 200 randomly generated bi-class classification sub-
datasets with 25 sequences of length 500 in each class. Se-
quences in each class are sample paths from a randomly

generated hidden Markov model with binary output. For
comparing performances, we use the separation ratio de-
fined in discussion of Quantizer. For DTW, we try window
sizes 5, 10, 20, 30, 40, 50, and 100. The average run time
of LikelihoodDistance is .042 second. LikelihoodDistance
achieves an average separation ratio that is comparable to
DTW of window size 30 but with run time 2 magnitude
smaller. The run time of DTW with window size 30 and
LikelihoodDistance on a synthetic dataset constructed as
before but with sequence lengths ranging from 200 to 2000
with 200 increment.

Performance Comparison on UCR Datasets
In Tab. 1, we compared the error rates of DTW, Symbol-
icDerivative, and ClusteredHMMClassifier on datasets
from the UCR Time series classification archive. We
did the comparison on all datasets that contain at least
50 time series per class for the comparison since the
inference algorithm genESeSS does need a moderate
sample size to work optimally. Compared to the DTW
baseline, SymbolicDerivative and ClusteredHMMClas-
sifier perform at or better on 29 out of the 44 of datasets.
SymbolicDerivative is a featurization algorithm and
requires a standard classification algorithm to be speci-
fied. ClusteredHMMClassifier also needs user-specified
clustering and classification algorithm. The classifica-
tion and clustering algorithms we used were selected
from the algorithms available in the scikit-learn (Pe-
dregosa et al. 2011) package: RandomForestClassi-
fier,AdaBoostClassifier,GradientBoostingClassifier,and
SVC And for clustering algorithms, we considered KMeans
and AffinityPropagation.

Clustering based on infectious disease outbreaks
To illustrate a particularly relevant applicability of to the
modeling of bio-physical systems, we calculate a county-
wise disease risk factor from historical outbreaks of infec-
tious diseases. Using a comprehensive database of insur-
ance claims records (Truven Marketscan database of ∼ 150
million patients in the US tracked over approximately a
decade (Hansen 2017)), we obtain weekly county-wise time
series of diagnosed cases for specific infections over a period
of 471 weeks spanning from 2003 to 2011.Considering two
infections, influenza (flu) and Styphlococcus Aureus (staph)
here, we use LikelihoodDistance to get distance matrixDflu
andDstaph, with which we cluster the counties using standard
spectral clustering. Selecting the cluster with the highest av-
erage case counts, we run genESeSS on the time series from
each cluster, and generate PFSA models Gflu and Gstaph. By
Thm. 1, we have

DKL (G ‖H)← L(x,H)−H(G) (1)

Hence, for a particular disease d, a county from which PFSA
Gd has a smaller divergence has a higher risk. Approx-
imating the entropy rate in Eq. (1) by the empirical en-
tropy of time series xc of a county c, we can evalute the
risk of county c with respect to disease d by Rd(c) =

−
(
L(xc, Gd)− Ê(xc)

)
, where L(xc, Gd) can be evalu-

ated by Compute likelihoods and Ê(xc) is the binary en-
tropy of the frequency of 0 in xc. The risk factor obtained in
this manner from flu was used to the development a COVID-
19 cases forecast model that achieves the smallest mean
absolute error in one-week-ahead forecasts among the top
performing teams from the COVID-19 Forecast Commu-
nity (team UCHICAGOCHATTOPADHYAY-UnIT, https://
covid19forecasthub.org/community/) In Fig. 3a and b, we
show results for flu and staph, respectively. The chloropleth
in i. of each panel is the averaged normalized case count over
the weeks. In ii., we show Gflu and Gstaph. The chloropleth
of the computed risk R is shown in iii.

Acknowledgement
This work is funded in part by the Defense Advanced
Research Projects Agency (HR00111890043/P00004). The
claims made in this study do not necessarily reflect the posi-
tion or the policy of the US Government.

References
Berndt, D. J.; and Clifford, J. 1994. Using dynamic time
warping to find patterns in time series. In KDD workshop,
volume 10, 359–370. Seattle, WA.

Bondy, J.; and Murty, U. 2008. Graph theory (2008). Grad.
Texts in Math .

Chattopadhyay, I.; Huang, Y.; and Evans, J. 2020. Deep
Learning Without Neural Networks: Fractal-nets for Rare
Event Modeling. doi:10.21203/rs.3.rs-86045/v1. URL
https://doi.org/10.21203/rs.3.rs-86045/v1.

Chattopadhyay, I.; and Lipson, H. 2013. Abductive learn-
ing of quantized stochastic processes with probabilistic fi-
nite automata. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences
371(1984): 20110543.

Chen, L.; Özsu, M. T.; and Oria, V. 2005. Robust and fast
similarity search for moving object trajectories. In Proceed-
ings of the 2005 ACM SIGMOD international conference on
Management of data, 491–502. ACM.

Cover, T. M.; and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.

Hansen, L. 2017. The Truven health MarketScan databases
for life sciences researchers. Truven Health Ananlytics IBM
Watson Health .

Lin, J.; Keogh, E.; Lonardi, S.; and Chiu, B. 2003. A
symbolic representation of time series, with implications
for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and
knowledge discovery, 2–11. ACM.

Möller-Levet, C. S.; Klawonn, F.; Cho, K.-H.; and Wolken-
hauer, O. 2003. Fuzzy clustering of short time-series and
unevenly distributed sampling points. In International Sym-
posium on Intelligent Data Analysis, 330–340. Springer.

Navarro, G. 2001. A guided tour to approximate string
matching. ACM computing surveys (CSUR) 33(1): 31–88.

https://covid19forecasthub.org/community/
https://covid19forecasthub.org/community/
https://doi.org/10.21203/rs.3.rs-86045/v1

q0

q1

0(.3)

0(.7)

1(.7)

1(.3)

q00

q01

q11

q10

0(.3)

0(.2)

0(.7)

0(.8)

1(.7)

1(.8)

1(.3)

1(.2)

q0

q1 q2

0(.3)

0(.7)

0(.6)

1(.7)1(.3)

1(.4)
q0

q1

0(.3)

0(.7)

1(.7)

1(.3)

a. b.

c. d.

L 5 10 20 30 40 50 100
1.2

1.5

1.8

2.1

2.4

se
pa

rt
ai

on
ra

tio

L 5 10 20 30 40 50 100

1

2

3

4

ru
n

tim
e

(s
ec

on
d)

Separation ratio run time
e.

200 600 1000 1400 1800

10−1

100

101

sequence length

ru
n

tim
e

(s
ec

on
d)

DTW30
This paper

f.

Figure 2: Panel a-d. Four pre-specified PFSA models chosen to act as the basis to estimate similarity between stochastic sample
paths. An edge connecting state q to q′ is labeled as σ (π̃(q, σ)) if δ(q, σ) = q′ (See Defn. 1). Panel e. Performance and run
time comparisons of LikelihoodDistance and DTW on a synthetic dataset. We denote the LikelihoodDistance by L and DTW
by their window size in Panel e. The average run time of of LikelihoodDistance is .042 second. Panel f. Run time v.s. sequence
length comparison between DTW30 and the LikelihoodDistance distance.

0

0.5

1

1.5

2

2.5

3
avg

0.0
0.5
1.0
1.5
2.0
2.5
3.0

q0

q1

q2

q3

q4

q5

q6

q7

q8

0(.39)
0(.35)

0(.45)

0(.31)

0(.49)

0(.21)

0(.47)

0(.49)

0(.44)

1(.61)

1(.65)

1(.45)

1(.69)

1(.51)

1(.79)

1(.56)

1(.51)

1(.56)

−1

−0.5

0

0.5

1

1.5

2
UnIT

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

i. averaged count ii. PFSA Gflu iii. disease risk factor augmented by %urban population

0

0.5

1

1.5

2

2.5

3
avg

0.0
0.5
1.0
1.5
2.0
2.5
3.0

q0q1

q2

q3

q4

q5

q6q7

0(.14)

0(.10)

0(.37)

0(.18)

0(.36)

0(.38)

0(.36)

0(.17)

1(.86)1(.90)

1(.63)

1(.82)

1(.64)

1(.62)

1(.64)

1(.83)

−1

−0.5

0

0.5

1

1.5

2
UnIT

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

i. averaged count
ii. PFSA Gstaph

iii. disease risk factor augmented by %urban population

a. Influenza

b. Staphylococcus Aureus Infection

Figure 3: Use of LikelihoodDistance to quantify risk phenotype of US counties to specific infections

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.

Petitjean, F.; Ketterlin, A.; and Gançarski, P. 2011. A global
averaging method for dynamic time warping, with applica-
tions to clustering. Pattern Recognition 44(3): 678–693.

Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.;
Westover, B.; Zhu, Q.; Zakaria, J.; and Keogh, E. 2012.
Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 262–270.
Vidyasagar, M. 2014. Hidden markov processes: Theory and
applications to biology, volume 44. Princeton University
Press.

	Introduction
	Background: Models of Discrete Processes
	Entropy Rate, KL Divergence, and Log-likelihood

	LikelihoodDistance: Log-likelihood Distance
	SymbolicDerivative
	InferredHMMLikelihood
	Quantizer
	ClusteredHMMClassifier

	Performance Comparison
	Performance Comparison on UCR Datasets
	Clustering based on infectious disease outbreaks

	Acknowledgement

