
EasyChair Preprint
№ 3285

An Incremental SAT-Based Approach for Solving
the Real-Time Taxi-Sharing Service Problem

Aolong Zha, Qiong Chang and Itsuki Noda

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 11, 2020

An Incremental SAT-Based Approach for Solving
the Real-Time Taxi-Sharing Service Problem

Aolong Zha, Qiong Chang, and Itsuki Noda

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
{aolong.zha,jou.kyuu,i.noda}@aist.go.jp

Abstract. This paper deals with a combinatorial optimization problem
that models real-time taxi-sharing services; this problem has gained much
attention in the areas of both artificial intelligence and computational
social science. When a passenger α sends a demand to a taxi control center,
the center tries to find an optimal solution to assign an appropriate taxi
and re-plan its route for the demand so that the service can minimize the
sum of the planned travel time for all served passengers (including α) who
are allocated to the same taxi. Because finding a feasible solution to the
real-time taxi-sharing service problem is NP-hard, most previous studies
have focused on developing a semi-optimization algorithm based on well-
known metaheuristics. We propose a novel algorithm based on incremental
Boolean satisfiability solving with an extensible framework, to optimize
the taxi allocation for demands occurring in real time. Our formulation
is also suitable for other objective functions with small changes to the
weighted constraints. The experiments, which are based on real-map
data using a modified simulation of urban mobility, show that our new
approach achieves higher performance with a reasonable computational
cost compared to an existing insertion method that has been functioned
in a real service application.

Keywords: Taxi-sharing · Route planning · Combinatorial optimization.

1 Introduction

In modern cities, the increasing demand for personal mobility requires good
transport services that provide a friendlier alternative to private cars while
maintaining usability. Recently, several ride-sharing systems have emerged, that
use online-enabled platforms to connect drivers who have empty seats in their cars
to people who need a ride. In this paper, the problem of planning and scheduling
a set of taxis to transport a number of passengers from their pick-up locations
to their drop-off locations at specific times is called the real-time taxi-sharing
service problem (RTSS). The motivation for this work is that, if RTSS can be
solved efficiently, providing a convenient and flexible mode of transportation to
passengers would be possible.

RTSS is a synthetic combinatorial optimization problem, which is not only
strongly related to the multiple traveling salesmen problem [5] with time windows

2 A. Zha et al.

but also further considers the constraints of the vehicle routing problem [29] with
pick-up and delivery [6]. RTSS is also very similar to the integrated dial-a-ride
problem (IDARP) [23], which integrates the ride-sharing services provided by a
set of designated vehicles with their already existing fixed routes. Both RTSS
and IDARP are based on real-time on-demand allocation but differ in that, in
the latter, each vehicle is limited to travel from its source to destination with
possible detours.

To the best of our knowledge, there are no algorithms that can efficiently
solve RTSS in the worst-case scenario (e.g., peak time in a largely populated area)
when fully considering all potential ride-sharing. For example, for all taxis, re-
planning of all of their unfinished and shiftable (i.e., not on-board yet) demands,
or further dealing with transfer situations [8]. Because the high-frequency demand
occurrence and the limited taxi speed lead to a sustained and rapid growth of
the unfinished job list for each taxi, which reflects execution slow down on
an increasing search space. It is significant that a real-time application has a
reasonable execution time. Therefore, in this paper, we focus on allocating a taxi
and re-planning its route in real time only for fresh demands without changing
other taxi routes.

1.1 Related Work

RTSS is usually formulated as an integer programming (IP) problem. Because
finding a feasible solution to RTSS isNP-hard, as shown in Santos and Xavier [26],
most previous studies have focused on developing semi-optimization algorithms
based on well-known heuristics, such as the genetic algorithm or local search.
Baldacci et al. [3] proposed both an exact and a heuristic method to solve the
car-pooling problem based on two IP formulations. In Herbawi and Weber [13], a
generational genetic insertion heuristic to solve the IP formulation of a dynamic
ride-matching problem with a multi-objective function was presented. In Agatz et
al. [1], a simplified real-time ride-sharing problem with a simulation environment
based on real-world data, in which each driver can pass through only one pick-up
and delivery location, was modeled as a maximum-weight bipartite matching
problem and was solved using the optimization software Cplex. Alonso-Mora et
al. [2] also simplified the pick-up and delivery problem to a segmented request-
vehicle graph, and reduce it into an optimal assignment problem by IP modeling.
Huang et al. [15], presented a method for large-scale real-time ride-sharing and
used a real dataset to compare it to some general methods, such as the branch-
and-bound algorithm and the IP approach. In Xu et al. [31], a heuristic based
on user historical data for consideration of both immediate rewards and future
gains was utilized to optimize driver-order dispatch.

In addition, Gørtz [11] analyzed the computational complexity of preemptive
finite capacity dial-a-ride, and Simonin and O’Sullivan [27] provided a basis for the
development of efficient methods and heuristics. These two studies are based on
Boolean satisfiability constraints. According to the results of MaxSAT Evaluation
2017, overall, the performances of maximum satisfiability (MaxSAT) solvers are

An Incremental SAT-Based Approach for Solving the RTSS Problem 3

much better than those of Cplex, MaxSAT techniques may be comparable to
IP method for solving the combinatorial optimization problems.1

1.2 Contributions

Instead of the traditional IP modeling, we present an approach that is based
on Boolean satisfiability testing for solving RTSS. Our approach can be divided
into the following two parts: (1) a MaxSAT encoding, and (2) an incremental
algorithm. We separate the constraints only related to 0-1 variables in RTSS,
and formulate them into the first part. The rest of the constraints are handled
by the second part. According to the particularity of RTSS, we also propose
a new encoding method for Hamiltonian path constraint and give a proof of
its correctness, which are the theoretical contribution of this paper. In our
implementation, we modify a well-know traffic simulator and the proposed
method is compared with an existing method that has been applied in a real
RTSS system. Source code and external libraries for our experiments are available
at https://github.com/ReprodSuplem/RTSS/.

2 The RTSS Problem

This is a system in which a fresh demand is sent to a taxi control center. The
center tries to find an optimal solution of RTSS, i.e., how to assign an appropriate
taxi and re-plan its route to take into account current demands and to minimize
the sum of the planned trip times of all passengers who are allocated to the
taxi corresponding to the new demand.2 Then, the demand will be accepted if a
solution is found; otherwise, the demand will be rejected. Each demand contains
a pick-up point L, a drop-off point R, an earliest departure time D, a latest
arrival time T , and the number of passengers N . Note that, in this paper, each
occurring demand will be pushed into a chronological queue. Once a demand is
rejected or accepted, it will be popped out of this queue. Therefore, all demands
will be orderly processed one by one.

Mathematically, in RTSS, we are given a complete directed graph G = (f, V,E)
for each on-duty taxi, where f : E → V × V . The set of vertices V represents
all the locations, which consist of the current point O, the unfinished pick-up
points Pi, and the drop-off points Qi of the accepted demands, as well as the
pick-up point L and drop-off point R of the new demand. We denote the set
of the unfinished pick-up points as Φ, where Φ = {P1, P2, . . .}, and denote the
set of unfinished drop-off points as Ψ , where Ψ = {Q1, Q2, . . .}. Note that the
size of Φ, i.e., |Φ|, must be less than or equal to |Ψ | and that the number of
on-board passengers is |Ψ |−|Φ|. Each edge in the set of E indicates a possible link,
denoted as 〈vi, vj〉, where vi, vj ∈ V , that directly connects the corresponding

1 https://maxsat-evaluations.github.io/2017/results/complete/weighted/

table-extended.html
2 The planned trip time of a passenger is the total cost time from the pick-up point to

the drop-off point.

https://github.com/ReprodSuplem/RTSS/
https://maxsat-evaluations.github.io/2017/results/complete/weighted/table-extended.html
https://maxsat-evaluations.github.io/2017/results/complete/weighted/table-extended.html

4 A. Zha et al.

combinatorial pair of location points.3 Assume that the cost time of such a link,
denoted as w〈vi,vj〉, can be easily estimated. For each taxi, all of the cost times
of the links comprise an asymmetric time matrix shown in Fig. 1.

O P1Q1P2Q2 L R

O

P1

Q1

P2

Q2

L

R

Taxi 1:
Taxi 2:

Taxi 3:
· · ·

· · ·

w〈L,Q2〉

Fig. 1. An illustration of the asymmetric time matrix corresponding to each taxi; and
each cell of matrix indicating a cost time of corresponding link.

We define a taxi route as a vector of head-to-tail connected links that represents
a sequence of location points consisting of the vertices in V . RTSS involves finding
a route for each taxi that is subject to the following constraints.

Order constraint: The first point of a route must be the taxi’s current location
and a served passenger must be dropped off after being picked up.

Deadline constraint: Each served passenger whose demand has been accepted
but is unfinished must be picked up at the set location point P after the
corresponding earliest departure time D and must be delivered to the set
location point Q before the corresponding latest arrival time T .

Capacity constraint: Each taxi cannot carry more passengers than its capacity.
Monopoly constraint: The pick-up point L and the drop-off point R of the

new demand must be assigned to the same taxi.
HP constraint: For the taxi that is assigned the new demand, its route must

be a Hamiltonian path (HP), denoted H = (δ, V, E), while for each of the
taxis that are not assigned to the new demand, each of their routes must
also be an HP, denoted H ′ = (δ,V, E), where H,H ′ ⊆ G, V = V \ {L ∪R},
E ⊆ E, and δ are the constraints that guarantee that the route is an HP.

The typical optimization objective function is based on the model of the
shortest path problem (SPP) [10] to ensure energy conservation and environmental
protection. However, the typical objective maybe leads to highly imbalanced
solutions in some cases (e.g., when all the requested pick-up points and drop-off
points occur on a straight path). If no restriction is imposed on the number of
points to be visited by each taxi, RTSS is an ill-posed problem: the optimal
solution is obtained when one taxi takes all the demands. Therefore, in this paper,

3 Link 〈vi, vj〉 is the shortest direct path from vi to vj .

An Incremental SAT-Based Approach for Solving the RTSS Problem 5

we focus on minimizing the sum of the travel time of all served passengers who are
allocated to the taxi that corresponds to the fresh demand; such optimization can
effectively offer better service. Formally, the objective of most existing research
is to minimize the total travel time of all served passengers (i.e., the min-sum
objective). Considering that continuous demand allocation occurrs in a time series,
our objective can be regarded as the min-max objective, which is equivalent
to minimize the time that the taxi spent most of the time; such a min-max
objective function is more valuable to industry research of taxi-sharing service.
We will show that these two different criteria can be easily adapted via small
modifications to the weighted constraints.

3 MaxSAT Encoding

A well-known Boolean satisfiability problem (SAT) was the first problem shown
to be NP-complete [9]; in this problem, determining whether there exists a truth
assignment that satisfies a given Boolean formula is necessary.4 Typically, a
Boolean formula is expressed in conjunctive normal form (CNF), which consists
of a conjunction (i.e., logic and) of one or more clauses. A clause is a disjunction
(i.e., logic or) of one or more literals, and a literal is an occurrence of a Boolean
variable or its negation (i.e., logic not).

MaxSAT is an optimal version of SAT [17]. In the weighted partial MaxSAT,
the problem instance is typically expressed as a set of hard and soft clauses,
where each soft clause has a bounded positive numerical weight. The problem
is to find a model that satisfies all the hard clauses and maximizes the sum
of the weights of the satisfied soft clauses. Formally, we denote a MaxSAT
formula as F = C1 ∧ . . . ∧ Cm ∧ (Cm+1, w1) ∧ . . . ∧ (Cm+n, wn), where the
first m clauses are hard and the rest are soft. Solving a MaxSAT instance
F amounts to finding an assignment that satisfies all

∧m
i=1 Ci and maximizes∑n

i=1(wiCm+i). Technically, F can be solved via the resolution of a sequence of
SAT instances associated with pseudo-Boolean (PB) constraints encoding [25] as
follows: Fk = C1 ∧ . . . ∧ Cm ∧ CNFPB(

∑n
i=1(wi¬Cm+i) < k). Fk is a CNF that

is satisfiable if and only if F has an assignment A whose optimum answer (i.e.,∑n
i=1(wiA(Cm+i))) is greater than

∑n
i=1 wi − k. If the optimal assignment of F

is A and its optimum answer is
∑n
i=1 wi − kopt, then the SAT problem Fk for

k ≥ kopt is satisfiable, while the problem for k < kopt is unsatisfiable. Therefore,
searching for the optimum answer for F means finding the precise location of this
transition from satisfiable to unsatisfiable CNF formulas. MaxSAT solvers based
on the above-mentioned approach are usually called satisfiability-based solvers,
which is the term used in the remainder of this paper.

Definition 1. Let X = {x1, x2, . . . , xn} be a set of n Boolean variables. We
have the following naive CNF encodings corresponding to three special cases of
cardinality constraints for X as follows.

4 A truth assignment is a function A : X → {0, 1}, where X is a set of Boolean
variables and A is regarded as a conjunction of all elements in X.

6 A. Zha et al.

At most one constraint: AMO(X) =
∧n
i=1

∧n
j=i+1(¬xi ∨ ¬xj).

At least one constraint: ALO(X) =
∨n
i=1 xi.

Exactly one constraint: EO(X) = AMO(X) ∧ALO(X).

3.1 Two Types of Boolean Variables

In our MaxSAT encoding, there are two different types of Boolean variables that
will be used. One type indicates whether a link 〈a, b〉 is a sub-path of its taxi
route. For the sake of convenience, we also denote this type of Boolean variable
as 〈a, b〉. For example, if 〈a, b〉 = 1, then we know that the taxi has arranged a
route in which it will go directly to location b when it departs from location a;
otherwise, location b cannot be the next arrival point from location a. The other

type of Boolean variable is denoted as
−→
a, b, which indicates a directed reachability.

For example,
−→
a, b = 1 means that the taxi has arranged a route where it can

access location b via location a. In these two types of Boolean variables, the pair
of parameters a and b cannot be identical vertices in V for a specific taxi; this
is restricted by blocking the corresponding variables. For each pair of these two
types of Boolean variables, we have a related implication rule as follow:

〈a, b〉 →
−→
a, b. (1)

3.2 HP Constraint for RTSS

There are several previous works related to encoding HP constraint to CNF,
which includes the log encoding proposed in Iwama and Miyazaki [16], the absolute
encoding presented in Hoos [14] and the relative encoding described in Prestwich
[24]. In contrast with encoding a naive HP constraint, solving RTSS need to
further consider encoding objective function that concerns the relative positions
of taxi’s via points with respect to each other in its permutation. Therefore,
our encoding is based on the relative encoding, while holding a different idea in
ensuring edge connections.

To encode the HP constraint, we constructed a connective network of the two
types of Boolean variables with the following four laws.

Chain transition law: For each taxi, for any three different locations a, b, and
c, where a, b, c ∈ V , we have

−→
a, b ∧

−→
b, c→ (−→a, c ∧ ¬〈a, c〉), −→a, c ∧

−→
c, b→ (

−→
a, b ∧ ¬〈a, b〉),

−→
b, a ∧ −→a, c→ (

−→
b, c ∧ ¬〈b, c〉),

−→
b, c ∧ −→c, a→ (

−→
b, a ∧ ¬〈b, a〉),

−→c, a ∧
−→
a, b→ (

−→
c, b ∧ ¬〈c, b〉),

−→
c, b ∧

−→
b, a→ (−→c, a ∧ ¬〈c, a〉).

(2)

Confluence law: For each taxi, for any three different locations a, b, and c,
where a, b, c ∈ V , we have

−→
b, a ∧ −→c, a→ (

−→
b, c ∨

−→
c, b),

−→
a, b ∧

−→
c, b→ (−→a, c ∨ −→c, a), −→a, c ∧

−→
b, c→ (

−→
a, b ∨

−→
b, a). (3)

An Incremental SAT-Based Approach for Solving the RTSS Problem 7

Ramification law: For each taxi, for any three different locations a, b, and c,
where a, b, c ∈ V , we have

−→
a, b ∧ −→a, c→ (

−→
b, c ∨

−→
c, b),

−→
b, a ∧

−→
b, c→ (−→a, c ∨ −→c, a), −→c, a ∧

−→
c, b→ (

−→
a, b ∨

−→
b, a). (4)

Acyclic law: For each taxi, for any two different locations a and b, where
a, b ∈ V , we have

¬
−→
a, b ∨ ¬

−→
b, a. (5)

Theorem 1. The simultaneous Eqs. (1)–(4) ensure that, for each taxi, each
vertex of its V can be visited at most once and be departed from at most once.

Proof. Assume that a point a can be visited more than once from other points
which include points b and c, where a, b, c ∈ V ; therefore, 〈b, a〉 = 〈c, a〉 = 1.

According to Eq. (1), we have
−→
b, a = −→c, a = 1. Then, due to Eq. (3), we know

that
−→
b, c ∨

−→
c, b = 1. If we let

−→
b, c = 1 with −→c, a = 1, according to Eq. (2), we have

−→
b, a∧¬〈b, a〉 = 1, which conflicts with the first assumption 〈b, a〉 = 1; otherwise, if

we let
−→
c, b = 1 with

−→
b, a = 1, according to Eq. (2), we have −→c, a∧¬〈c, a〉 = 1, which

also conflicts with the first assumption 〈c, a〉 = 1. Therefore, the simultaneous
Eqs. (1)–(3) ensure that, for each taxi, each vertex of its V can be visited at
most once.

Assume that a point a can be departed from more than once to other points
which include points b and c, where a, b, c ∈ V ; therefore, 〈a, b〉 = 〈a, c〉 = 1.

According to Eq. (1), we have
−→
a, b = −→a, c = 1. Then, due to Eq. (4), we know

that
−→
b, c ∨

−→
c, b = 1. If we let

−→
b, c = 1 with

−→
a, b = 1, according to Eq. (2), we have

−→a, c∧¬〈a, c〉 = 1, which conflicts with the first assumption 〈a, c〉 = 1; otherwise, if

we let
−→
c, b = 1 with −→a, c = 1, according to Eq. (2), we have

−→
a, b∧¬〈a, b〉 = 1, which

also conflicts with the first assumption 〈a, b〉 = 1. Therefore, the simultaneous
Eqs. (1), (2) and (4) ensure that, for each taxi, each vertex of its V can be
departed from at most once.

Let a set of taxis Λ consist of on-duty taxis. We denote a set of vertices
V (resp. a vertex v) of a specific taxi λ as Vλ (resp. vλ). For each taxi, we
need to further guarantee that there exists at least one visit to each unfinished
pick-up point P and drop-off point Q (Eq. (6)), and that there exists at least
one departure from each P (Eq. (7)).∧

λ∈Λ

∧
a∈Φλ∪Ψλ

ALO({〈x, a〉 | x ∈ Vλ}) (6)

∧
λ∈Λ

∧
P∈Φλ

ALO({〈P, y〉 | y ∈ Vλ \Oλ}) (7)

Lemma 1. The simultaneous Eqs. (1)–(7) guarantee that, for each taxi, each
vertex of its Φ ∪ Ψ , can be visited exactly once, and each vertex of its Φ can be
departed from exactly once.

8 A. Zha et al.

For all taxis, we need to guarantee that there exists exactly one taxi to visit
the pick-up point L and the drop-off point R of a new demand (Eqs. (8) and (9)),
that there exists exactly one taxi to depart from L (Eq. (10)), and that there
exists at most one taxt to depart from R (Eq. (11)).

EO(
⋃
λ∈Λ

{〈x, Lλ〉 | x ∈ Vλ}), EO(
⋃
λ∈Λ

{〈x,Rλ〉 | x ∈ Vλ}) (8,9)

EO(
⋃
λ∈Λ

{〈Lλ, y〉 | y ∈ Vλ \Oλ}), AMO(
⋃
λ∈Λ

{〈Rλ, y〉 | y ∈ Vλ \Oλ}) (10,11)

For each taxi, if there are some unfinished jobs, we need to further ensure that
there exists at least one departure from its current point O; otherwise, we do
nothing (Eq. (12)).

∧
λ∈Λ

{
ALO({〈Oλ, y〉 | y ∈ Vλ \Oλ}), if Ψλ 6= ∅,
>, otherwise.

(12)

Irreflexivity law: Because self-cyclic paths and the self reachabilities need to
be banned, we encode some unit clauses to block the relevant corresponding
variables as follow: ∧

λ∈Λ

∧
x∈Vλ

¬〈x, x〉 ∧ ¬−−→x, x. (13)

Corollary 1. The simultaneous Eqs. (1)–(13) ensure HP constraints for RTSS.

3.3 Order and Monopoly Constraints

Encoding the order and monopoly constraints on the basis of the HP constraint
are straightforward. To encode the former, we only need to block all the directed
reachabilities from somewhere to the current point for each taxi (Eq. (14)).
Besides, for each existing pair of the unfinished pick-up and the drop-off points
(i.e., Pi and Qi) which correspond to the same served passenger, we add the unit

clause
−−−→
Pi, Qi for restricting the order of via-points (Eq. (15)).∧

λ∈Λ

∧
x∈Vλ

¬
−−−→
x,Oλ,

∧
λ∈Λ

∧
i

−−−−−→
Pλi , Qλi (14,15)

To encode the latter, we need to ensure that, for each taxi, the reachability of
point L to point R must be evaluated to true if this taxi occupies either point
of them (Eqs. (16) and (17)), and for all taxis, there exists at most one such a
reachability that is evaluated to true (Eq. (18)).∧

λ∈Λ

(
¬
−−−−→
Oλ, Lλ ∨

−−−−→
Lλ, Rλ

)
,

∧
λ∈Λ

(
¬
−−−−→
Oλ, Rλ ∨

−−−−→
Lλ, Rλ

)
(16,17)

AMO({
−−−−→
Lλ, Rλ | λ ∈ Λ}) (18)

An Incremental SAT-Based Approach for Solving the RTSS Problem 9

3.4 Soft Clauses

To minimize the sum of the travel times of all the served passengers who are
allocated to the taxi corresponding to the currently occurring demand, we have

the following optimization objective function: min{
∑
λ∈Λ

∑
x∈Vλ

∑
y∈Vλ(

−−−−→
Oλ, Lλ ·

〈x, y〉 · w〈x,y〉)}. Therefore, we have the soft clauses:∧
λ∈Λ

∧
x∈Vλ

∧
y∈Vλ

(
¬
−−−−→
Oλ, Lλ ∨ ¬〈x, y〉, w〈x,y〉

)
. (19)

Because RTSS is required to continuously solve the path planning problem in
a time series scenario, this optimization is equivalent to a min-max objective
function. Note that we cannot directly IP-formulate the above objective because
it is a nonlinear polynomial which is different from the normal min-max objective
function. For an min-sum objective that minimizes the total cost time required
for all the taxis to finish their accepted job lists corresponds to solving SPP, Eq.

(19) can be converted by simply removing ¬
−−−−→
Oλ, Lλ from each soft clause.

3.5 Space Complexity

Here, we give the space complexity of our encoding, which includes the number
of required Boolean variables and clauses. Consider that the number of taxis is m
(i.e., |Λ| = m) and that the size of V that has the largest number of unfinished
points is n (i.e., maxλ∈Λ{|Vλ|} = n), where n ≥ 3.

Theorem 2. When encoding RTSS to MaxSAT without deadline and capacity
constraints, the simultaneous Eqs. (1)–(19) always produce a pseudo-polynomial-
sized CNF that includes the number of required Boolean variables in O(mn2) and
the number of generated clauses in O(mn3 +m2n2).

Proof. The total number of variables required in our encoding is bounded by
2mn2, which is composed of two types of variables that have the same size, mn2.
In Eqs. (1) and (5), the number of clauses involved in our encoding is bounded
from above by 3m

(
n
2

)
. In Eqs. (2)–(4), the number of clauses is bounded by

18m
(
n
3

)
. In Eqs. (6) and (7), the number of clauses is bounded by 3mn/2. In

Eqs. (8)–(11), the number of clauses is bounded by 2m2n2. In Eq. (12), (resp.
Eq. (13)), the number of clauses is bounded by m (resp. 2mn). In Eqs. (14) and
(15), the number of clauses is bounded by 3mn/2, while in Eqs. (16)–(18), the
number of clauses is bounded by 2m+

(
m
2

)
. When encoding soft clauses in Eq.

(19), the number of clauses is bounded by mn2. Therefore, the simultaneous
Eqs. (1)–(19) always produce a pseudo-polynomial-sized CNF that includes the
number of required Boolean variables in O(mn2) and the number of generated
clauses in O(mn3 +m2n2).

Technically, we can further reduce the CNF size via integrating Boolean

variables by
−→
a, b ≡ ¬

−→
b, a, where ∀λ ∈ Λ, a, b ∈ Vλ and a 6= b, which is based on

the method in Velev and Gao [30]. Due to such integration, one-third of Eq. (2)
and most of Eqs. (3)–(5) can be eliminated. Nonetheless, it does not affect the
above asymptotic upper bounds.

10 A. Zha et al.

Algorithm 1 MaxSAT solver with an incremental approach

Input: C1 ∧ . . . ∧ Cm ∧ (Cm+1, w1) ∧ . . . ∧ (Cm+n, wn), Γ
Initialization: sat?← true, first← true, k ← 1 +

∑n
i=1 wi, assumption← ∅

Output: Unsatisfiability or a pair of the optimal assignment to F and its optimum
answer

1: ∀i SATsolver.AddClause(Ci), s.t. 1 ≤ i ≤ m
2: while sat? do
3: if first then
4: first← false
5: (sat?,A)← SATsolver.Solve(assumption)
6: else
7: (violate?, reason)← CheckCondition(A, Γ), s.t. reason ⊆ A
8: if violate? then
9: SATsolver.AddClause(¬reason)

10: else
11: k ←

∑
A(Cm+i)=0 wi

12: ∀PBclause SATsolver.AddClause(PBclause), s.t.
PBclause ∈ CNFPB(

∑n
i=1(wi¬Cm+i) < k)

13: end if
14: (sat?,A)← SATsolver.Solve(assumption)
15: end if
16: end while
17: if k = 1 +

∑n
i=1 wi then

18: return UNSAT

19: else
20: return (A,

∑n
i=1 wi − k)

21: end if

4 Incremental Approach

A general direct encoding for the rest constraints is anticipated that a huge
number of auxiliary Boolean variables are required, which are used to represent
every possible sum of the combinations of the cost time and the number of
on-board passengers. Therefore, in this paper, we prune the search space using a
naive incremental SAT-based approach [28], instead of the constraints encoding
method. The idea of our approach, shown in Algorithm 1, is to construct a
sequence of MaxSAT instances by adding a hard clause whenever the current
assignment violates the externality conditions (i.e., the deadline and capacity
constraints), denoted by Γ , during the SAT solving iterations (lines 7–12). Each
added clause is the negation of a partial assignment, which is the reason for
the violation (lines 7–9). Learning these clauses can effectively avoid the same
inconsistency in the remaining procedures. The main difference from the general
MaxSAT solver is that k is updated to a smaller value (line 11), and then the
PB constraint is associated with a fresh k (line 12) only when Γ is satisfied with
the current assignment A.

An effective heuristic of variable assignment can greatly reduce the time for
solving large-scale RTSS [18,2]. Therefore, it is essential to provide an extensible

An Incremental SAT-Based Approach for Solving the RTSS Problem 11

framework for heuristics in a real-time system. Our incremental SAT-based
algorithm can use an assumption SAT solving for further modifications (lines 5
and 14). A set of assumptions is defined as a set of literals that are assumed to
be true and which are picked for decisions first, always in the top of the search
tree. Then, if during the search, it is needed to flip the assignment of one of these
assumptions to false, the problem is unsatisfiable under the initial assumptions.
Therefore, we can introduce some heuristics methods via this assumption solving
interface for preferential search strategies in the early solving stage.

5 Implementation and Evaluation

5.1 The Existing Insertion Method

To better evaluate our proposed approach, we implemented another method
called successive best insertion (SBI), proposed in Noda et al. [22,21], which is
used to provide a comparison to our approach. SBI is an approximation method
that finds a semi-optimal result for RTSS via a specific local searching method
described as follows:

1. For each taxi λ (λ ∈ Λ), there exists a via-point list that chronologically
stores each vertex of Vλ.

2. Each taxi’s via-point list cannot be modified except via operations inserting
L and R.

3. For each taxi, SBI linearly searches for the best pair of positions to insert
L and R, according to the minimum of its self-time consumption plus the
sum of the delays to all the served passengers’ trip times. During the above
search, a temporary best answer is initialized with no solution and is updated
whenever a better answer is found that does not violate the deadline and
capacity conditions.

4. SBI assigns the demand to a taxi whose cost is the minimum for all the taxis.
If all taxis report no solution, then the demand is refused.

SBI has used in a real RTSS application system operated in Japan for more
than three years [20,19], because SBI requires small computational resources
(e.g., computing time) and provides reasonable solutions to vehicle allocation
in real services. This work motivated to improve the quality of the solutions
under reasonably extended computational resources. Therefore, we compare the
performance of the proposed method to SBI. Note that our new method and
SBI have different search space. In brief, for each taxi, SBI tries to insert new
demand’s pick-up and drop-off points into a fixed permutation (i.e., the order
of all unfinished points cannot be shifted). However, the proposed MaxSAT
approach exhaustively considers all possible permutations.

5.2 Experimental Setting

Our empirical experiments were conducted using simulation of urban mobility
(SUMO) [4], version 0.32, which is a widely recognized open-source traffic simula-
tion package including a traffic simulator as well as supporting tools. SUMO is

12 A. Zha et al.

microscopic, space continuous, and time discrete, providing a fair approximation
of real-world traffic scenarios. We imported the road network for the city of
Tsukuba from OpenStreetMap [12] into the simulator. To simulate real-world
scenarios, there are three discrete areas set to occur demands in the city that
were far apart and had high population mobility (e.g., commuting locations,
shopping centers, residential areas).

The experiment was performed with the following parameter settings: the
number of taxis (#Taxi) was chosen from {20, 30, 40, 50}; the demand occurrence
frequency (Dof) for every set area was chosen from {18, 24, 36, 72}, where Dof
indicates the number of demands occurring during a simulation hour; each demand
involved only one passenger (i.e., N = 1) with the current time as its D and a
calculated deadline as its T by dividing a measured distance between P and Q by
an average walking velocity. the capacity of each taxi was 4; and the average taxi
speed was 8.33 m/s. Note that each parameter set contains a pair with #Taxi
and Dof. In addition, each experiment ran within 43,200 simulation seconds,
and a new-demand checker worked during every simulation second to return the
current demands to an allocation algorithm (i.e., SBI or SAT).5 Even though
both the SBI and SAT approaches were given a set 10 CPU second time limit
for each demand, they also returned an approximate solution if they exceeded
that time limit.

All experiments were performed on an Intel Xeon(R) Silver 4108, 1.8 GHz,
with an 8-core processor and 93 GB of memory using the Ubuntu 18.04 operation
system. Only one CPU core was used for each experiment. We implemented
both SBI method and our proposed MaxSAT encoding by using Ruby 2.5.1, and
modified a satisfiability-based solver, QMaxSAT, for the presented incremental
approach in GCC version 7.3.0 with an n-level modulo-based CNF encoding of
the PB constraints to solve all the generated MaxSAT instances [32].

5.3 Evaluation Metrics

There are three different evaluation metrics considered as follows: (1) the passen-
gers’ average speed (avg. speed), (2) the cumulative shared ratio (cumul. share)
and (3) the average runtime for solving a demand (avg. runtime). Avg. speed was
obtained by calculating the average of the passengers’ actual moving distances
divided by the cost time, which was counted from when the demand occurred to
when the passenger arrived at their destination. In transportation research, the
avg. speed can be regarded as a metric to evaluate the usability of service, in
which a higher avg. speed corresponds to a shorter and less time-consuming trip
for each demand. The cumul. share is a ratio of the total number of occurred
demands to the cumulated number of shared people in each passenger trip.6 The
cumul. share can be regarded as another metric to evaluate the usability of service,

5 The proposed approach is called “SAT” in our experiments.
6 If passengers were in the same taxi at the same time, we say that they “shared” their

trip with each other. Due to this mutuality, the cumulation of each demand includes
duplicate calculations.

An Incremental SAT-Based Approach for Solving the RTSS Problem 13

Table 1. Results of the SBI and SAT approaches compared using three different
evaluation metrics.

Param. Avg. speed (m/s) Cumul. share (person/demand) Avg. runtime (CPU s/demand)

setting SBI SAT SBI SAT SBI SAT

n20-f18 3.94 [0.02] 4.34 [0.03] 0.88 [0.07] 1.37 [0.19] 0.18 [0.01] 0.18 + 0.04 [0.01 + 0.00]
n30-f18 4.00 [0.13] 4.34 [0.04] 0.74 [0.14] 1.13 [0.06] 0.16 [0.00] 0.21 + 0.05 [0.01 + 0.00]
n40-f18 3.95 [0.06] 4.33 [0.06] 0.68 [0.10] 1.08 [0.09] 0.16 [0.01] 0.27 + 0.07 [0.02 + 0.00]
n50-f18 3.91 [0.07] 4.20 [0.11] 0.62 [0.11] 1.05 [0.05] 0.16 [0.01] 0.34 + 0.09 [0.03 + 0.01]
n20-f24 3.70 [0.08] 4.31 [0.03] 1.20 [0.06] 1.50 [0.10] 0.18 [0.01] 0.19 + 0.05 [0.01 + 0.00]
n30-f24 4.00 [0.06] 4.32 [0.07] 0.83 [0.09] 1.33 [0.06] 0.17 [0.02] 0.23 + 0.06 [0.01 + 0.00]
n40-f24 3.98 [0.12] 4.33 [0.02] 0.79 [0.06] 1.30 [0.07] 0.16 [0.01] 0.29 + 0.08 [0.02 + 0.00]
n50-f24 3.90 [0.10] 4.23 [0.14] 0.80 [0.07] 1.28 [0.12] 0.16 [0.01] 0.35 + 0.09 [0.03 + 0.00]
n20-f36 2.47 [0.20] 4.00 [0.07] 2.37 [0.15] 2.53 [0.16] 0.21 [0.02] 0.21 + 0.10 [0.02 + 0.01]
n30-f36 3.76 [0.06] 4.24 [0.04] 1.20 [0.06] 1.93 [0.14] 0.18 [0.01] 0.25 + 0.09 [0.01 + 0.01]
n40-f36 3.88 [0.06] 4.26 [0.05] 0.99 [0.07] 1.67 [0.15] 0.17 [0.01] 0.29 + 0.09 [0.02 + 0.00]
n50-f36 3.85 [0.04] 4.25 [0.02] 0.96 [0.15] 1.67 [0.16] 0.17 [0.01] 0.36 + 0.12 [0.02 + 0.00]
n20-f72 0.94 [0.04] 1.67 [0.17] 3.63 [0.07] 4.84 [0.29] 3.91 [0.67] 1.01 + 5.10 [0.26 + 0.55]
n30-f72 1.51 [0.12] 3.50 [0.04] 2.87 [0.10] 3.85 [0.19] 1.46 [0.26] 0.33 + 0.51 [0.01 + 0.02]
n40-f72 2.67 [0.19] 3.94 [0.03] 2.33 [0.07] 2.74 [0.13] 0.23 [0.03] 0.37 + 0.26 [0.03 + 0.03]
n50-f72 3.35 [0.04] 4.01 [0.05] 1.75 [0.08] 2.27 [0.12] 0.20 [0.02] 0.44 + 0.25 [0.02 + 0.03]

in which a higher cumul. share ratio corresponds to a smaller payment amount
for each served passenger. Lastly, the avg. runtime represents the computational
cost of the allocation method.

5.4 Results and Analyses

Table 1 shows the experimental results for the mentioned three evaluation items.
The notation “nx-fy” in the first column of Table 1 lists all pairs of the parameter
setting, where x indicates #Taxi and y indicates Dof. For each “nx-fy”, we re-
peated five experiments and then calculated their average and standard deviation
rounded to two decimal places, which corresponds to two numbers in each cell,
where the left number indicates the average and the right number surrounded by
square brackets indicates the standard deviation. Comparing SBI and SAT, SAT
outperforms SBI for both avg. speed and cumul. share for each parameter setting.
However, SAT is overall inferior to SBI for the avg. runtime. Note that the avg.
runtime of SAT is added in two parts, where the first part indicates the avg.
runtime of the MaxSAT encoding, and the second part indicates the avg. runtime
of the incremental MaxSAT solving. Interestingly, for each parameter setting, the
avg. runtime of the encoding is generally longer than that of the solving, except in
the cases of “n30-f72” and “n20-f72”. This highlights a future avenue of research,
that is, to improve our MaxSAT encoding with a more compact space complexity.
Here we explain the worst-case scenario in our experiment, “n20-f72”, which
leads to the service being in short supply. Due to the sustained and rapid growth
of the unfinished job list for each taxi, the MaxSAT encoding generates a series
of huge size instances (see Theorem 2). In this case, the accepted demand rate of
SBI was 64.20%, while that of SAT was 70.24%. Conversely, in all other cases,
both of their accepted demand rates were 100%. Therefore, another future avenue
of research is to find a method that can dynamically adjust #Taxi depending

14 A. Zha et al.

on specific features (e.g., area information or different time zones). Nevertheless,
overall, when evaluating the efficiency of a real-time planning system, SBI and
SAT can solve RTSS within a reasonable runtime.

To further compare the performances of SBI and SAT, in Fig. 2, we plot
their change trend for avg. speed with different parameter settings, which are
depicted as the corresponding contour plots of avg. speed separated by color bars.
The horizontal axis indicates increasing values of #Taxi, and the vertical axis
indicates increasing values of Dof. For both SBI and SAT, we see that, as #Taxi
becomes smaller and Dof becomes greater, the corresponding color mapping is of
a lower avg. speed. In addition, the change trend (i.e., the gradient of the surface)
of SAT is greater than that of SBI. If we consider whether the avg. speed exceeds
3.5 m/s as a condition for distinguishing service quality, then only about 60%
of results in SBI can be satisfied with this condition; while more than 90% of
them in SAT can be evaluated to good. Consequently, both SBI and SAT suffer a
service quality decline, here reflected in the avg. speed; however, SAT can provide
a wider range of treatment than SBI.

4

3.9
5 3.953.9

3.9 3.9

3.85
3.85

3.85

3.8

3.8

3.8

3.75

3.75

3.7
5

3.7

3.7

3.7

3.65

3.65

3.6
5

3.6

3.6

3.6

3.5
5

3.55

3.5
5

3.5

3.5

3.5

20 25 30 35 40 45 50

20

30

40

50

60

70

#Taxi

D
of

SBI

1 1.5 2 2.5 3 3.5 4

4.3
4.3

4.
25

4.25
4.25

4.25

4.2
4.2

4.2

4.15

4.15

4.1
5

4.1

4.1

4.1

4.05

4.0
5

4.0
5

4

4

4

3.
95

3.9
5

3.
9

3.9

3.
85

3.8
5

3.
8

3.
83.
753.
73.

653.
63.
553.

5

20 25 30 35 40 45 50

20

30

40

50

60

70

#Taxi

D
of

SAT

2 2.5 3 3.5 4

Fig. 2. The change trend for the avg. speed with different parameter settings using the
SBI and SAT approaches.

5.5 Real-World Experiment

We simulated the real-world data of the city of Yokohama that were obtained
from a transport service company to further demonstrate our proposed approach.
In this experiment, we chose the collected one-week dataset (from December 1 to
7, 2018), fixed the number of taxis to 10 with an 8-capacity for each taxi, and kept
the rest of the other parameter settings and our experimental environment. Note

An Incremental SAT-Based Approach for Solving the RTSS Problem 15

Table 2. Results of the SBI and SAT approaches compared on real-world data.

Real-world data #Rejected (demand) Avg. speed Cumul. share Avg. runtime

(#Demand [date]) SBI SAT SBI SAT SBI SAT SBI SAT

702 [Dec. 1] 55 0 1.58 1.85 1.75 2.12 0.15 0.21 + 1.75
714 [Dec. 2] 2 0 1.67 1.84 1.96 1.80 0.14 0.19 + 1.46
508 [Dec. 3] 0 0 2.08 2.50 0.64 0.64 0.13 0.15 + 0.05
593 [Dec. 4] 0 0 1.99 2.28 1.12 1.08 0.13 0.16 + 0.47
518 [Dec. 5] 1 0 2.26 2.46 0.62 0.66 0.12 0.14 + 0.05
537 [Dec. 6] 0 0 2.03 2.39 1.06 1.10 0.12 0.16 + 0.28
931 [Dec. 7] 99 0 1.34 1.48 2.36 3.31 0.17 0.32 + 3.21

that the elements of each demand (i.e., its L,R,D, T and N) were based on the
real-world data. The results are shown in Table 2, where the first column indicates
the information of real-world data corresponding to the total number of occurred
demands during that day surrounded by square brackets. In addition to the three
mentioned evaluation metrics, we also listed the number of rejected demands in
both SBI and SAT. Obviously, SAT outperforms SBI in this item. Overall, the
other results have the same trend and conclusions with the random experiment,
except there are some dates that SAT is slightly inferior to SBI in terms of cumul.
share. The reason for this shortage may be that in our proposed algorithm there
is a single objective function which can be regarded as the maximization of avg.
speed but not that of cumul. share.

6 Conclusions

In this paper, we studied RTSS and proposed a novel approach to solve RTSS
that is based on the incremental SAT technique. Our method is suitable for
other objective functions (e.g., the shortest path optimization) and is extendible
for other heuristic search strategies. We also proved the correctness of our
encoding and analyzed its space complexity. Finally, we conducted a comparative
experiment based on real-map data using a modified SUMO simulator to compare
our method to another existing insertion method–SBI, which has been practiced
in a real RTSS system. The experimental result shows that, even though the
two methods can solve RTSS within a reasonable computational time in general
and both suffer a service quality decline in the worst-case scenarios, our new
approach can provide a wider range of treatments and a more rapid transport
service with a cheaper price on average than SBI.

References

1. Agatz, N.A., Erera, A.L., Savelsbergh, M.W., Wang, X.: Dynamic
ride-sharing: A simulation study in metro atlanta. Transporta-
tion Research Part B: Methodological 45(9), 1450 – 1464 (2011).
https://doi.org/https://doi.org/10.1016/j.trb.2011.05.017

https://doi.org/https://doi.org/10.1016/j.trb.2011.05.017

16 A. Zha et al.

2. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Pro-
ceedings of the National Academy of Sciences 114(3), 462–467 (2017).
https://doi.org/10.1073/pnas.1611675114

3. Baldacci, R., Maniezzo, V., Mingozzi, A.: An exact method for the car pooling
problem based on lagrangean column generation. Operations Research 52(3), 422–
439 (2004). https://doi.org/10.1287/opre.1030.0106

4. Behrisch, M., Krajzewicz, D., Weber, M. (eds.): Simulation of Urban Mobility -
First International Conference, SUMO 2013, Berlin, Germany, May 15-17, 2013.
Revised Selected Papers, Lecture Notes in Computer Science, vol. 8594. Springer
(2014). https://doi.org/10.1007/978-3-662-45079-6

5. Bektas, T.: The multiple traveling salesman problem: an overview of
formulations and solution procedures. Omega 34(3), 209 – 219 (2006).
https://doi.org/https://doi.org/10.1016/j.omega.2004.10.004

6. Berbeglia, G., Cordeau, J., Laporte, G.: Dynamic pickup and delivery
problems. European Journal of Operational Research 202(1), 8–15 (2010).
https://doi.org/10.1016/j.ejor.2009.04.024

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

8. Coltin, B., Veloso, M.M.: Ridesharing with passenger transfers. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, September 14-18, 2014. pp. 3278–3283. IEEE (2014).
https://doi.org/10.1109/IROS.2014.6943018

9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM (1971). https://doi.org/10.1145/800157.805047

10. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem,
Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November
13-14, 2006, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 74. DIMACS/AMS (2009), http://dimacs.rutgers.edu/Volumes/
Vol74.html

11. Gørtz, I.L.: Hardness of preemptive finite capacity dial-a-ride. In: Dı́az, J., Jansen,
K., Rolim, J.D.P., Zwick, U. (eds.) Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, 9th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems,
APPROX 2006 and 10th International Workshop on Randomization and Com-
putation, RANDOM 2006, Barcelona, Spain, August 28-30 2006, Proceedings.
Lecture Notes in Computer Science, vol. 4110, pp. 200–211. Springer (2006).
https://doi.org/10.1007/11830924 20

12. Haklay, M.M., Weber, P.: Openstreetmap: User-generated street maps. IEEE
Pervasive Computing 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

13. Herbawi, W., Weber, M.: A genetic and insertion heuristic algorithm for
solving the dynamic ridematching problem with time windows. In: Soule,
T., Moore, J.H. (eds.) Genetic and Evolutionary Computation Conference,
GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012. pp. 385–392. ACM (2012).
https://doi.org/10.1145/2330163.2330219

14. Hoos, H.H.: Sat-encodings, search space structure, and local search performance.
In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2
Volumes, 1450 pages. pp. 296–303. Morgan Kaufmann (1999), http://ijcai.org/
Proceedings/99-1/Papers/044.pdf

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1287/opre.1030.0106
https://doi.org/10.1007/978-3-662-45079-6
https://doi.org/https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1109/IROS.2014.6943018
https://doi.org/10.1145/800157.805047
http://dimacs.rutgers.edu/Volumes/Vol74.html
http://dimacs.rutgers.edu/Volumes/Vol74.html
https://doi.org/10.1007/11830924_20
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1145/2330163.2330219
http://ijcai.org/Proceedings/99-1/Papers/044.pdf
http://ijcai.org/Proceedings/99-1/Papers/044.pdf

An Incremental SAT-Based Approach for Solving the RTSS Problem 17

15. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time rideshar-
ing with service guarantee on road networks. PVLDB 7(14), 2017–2028 (2014).
https://doi.org/10.14778/2733085.2733106

16. Iwama, K., Miyazaki, S.: Sat-variable complexity of hard combinatorial problems.
In: In: Proceedings of the world computer congress of the IFIP. pp. 253–258. Elsevier
science B.V (1994)

17. Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. In: Biere et al. [7], pp.
613–631. https://doi.org/10.3233/978-1-58603-929-5-613

18. Ma, S., Zheng, Y., Wolfson, O.: T-share: A large-scale dynamic taxi
ridesharing service. In: Jensen, C.S., Jermaine, C.M., Zhou, X. (eds.) 29th
IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013. pp. 410–421. IEEE Computer Society (2013).
https://doi.org/10.1109/ICDE.2013.6544843

19. Nakashima, H., Matsubara, H., Tayanagi, E. (eds.): Smart Mobility Revolution —
Advanced AI Public Transportation Service, SAVS —. FUN Press (March 2019),
https://books.google.co.jp/books?id=QTEAwwEACAAJ, (in Japanese)

20. Nakashima, H., Sano, S., Hirata, K., Shiraishi, Y., Matsubara, H., Kanamori, R.,
Koshiba, H., Noda, I.: One Cycle of Smart Access Vehicle Service Development, pp.
247–262. Springer Japan, Tokyo (2016). https://doi.org/10.1007/978-4-431-55861-
3 17

21. Noda, I., Ohta, M., Kumada, Y., Shinoda, K., Nakashima, H.: Usability of dial-
a-ride systems. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P.,
Wooldridge, M.J. (eds.) 4th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands.
pp. 1281–1282. ACM (2005). https://doi.org/10.1145/1082473.1082733

22. Noda, I., Ohta, M., Shinoda, K., Kumada, Y., Nakashima, H.: Evaluation of us-
ability of dial-a-ride systems by social simulation. In: Hales, D., Edmonds, B.,
Norling, E., Rouchier, J. (eds.) Multi-Agent-Based Simulation III, 4th Interna-
tional Workshop, MABS 2003, Melbourne, Australia, July 14th, 2003, Revised
Papers. Lecture Notes in Computer Science, vol. 2927, pp. 167–181. Springer (2003).
https://doi.org/10.1007/978-3-540-24613-8 12

23. Posada, M., Andersson, H., Häll, C.H.: The integrated dial-a-ride problem
with timetabled fixed route service. Public Transport 9(1-2), 217–241 (2017).
https://doi.org/10.1007/s12469-016-0128-9

24. Prestwich, S.D.: SAT problems with chains of dependent variables. Discrete
Applied Mathematics 130(2), 329–350 (2003). https://doi.org/10.1016/S0166-
218X(02)00410-9

25. Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints. In:
Biere et al. [7], pp. 695–733. https://doi.org/10.3233/978-1-58603-929-5-695

26. Santos, D.O., Xavier, E.C.: Dynamic taxi and ridesharing: A framework and
heuristics for the optimization problem. In: Rossi, F. (ed.) IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013. pp. 2885–2891. IJCAI/AAAI (2013), http://www.aaai.org/ocs/
index.php/IJCAI/IJCAI13/paper/view/6779

27. Simonin, G., O’Sullivan, B.: Optimisation for the ride-sharing problem: a complexity-
based approach. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 831–836.
IOS Press (2014). https://doi.org/10.3233/978-1-61499-419-0-831

https://doi.org/10.14778/2733085.2733106
https://doi.org/10.3233/978-1-58603-929-5-613
https://doi.org/10.1109/ICDE.2013.6544843
https://books.google.co.jp/books?id=QTEAwwEACAAJ
https://doi.org/10.1007/978-4-431-55861-3_17
https://doi.org/10.1007/978-4-431-55861-3_17
https://doi.org/10.1145/1082473.1082733
https://doi.org/10.1007/978-3-540-24613-8_12
https://doi.org/10.1007/s12469-016-0128-9
https://doi.org/10.1016/S0166-218X(02)00410-9
https://doi.org/10.1016/S0166-218X(02)00410-9
https://doi.org/10.3233/978-1-58603-929-5-695
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6779
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6779
https://doi.org/10.3233/978-1-61499-419-0-831

18 A. Zha et al.

28. Soh, T., Berre, D.L., Roussel, S., Banbara, M., Tamura, N.: Incremental sat-based
method with native boolean cardinality handling for the hamiltonian cycle problem.
In: Fermé, E., Leite, J. (eds.) Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8761, pp. 684–693. Springer
(2014). https://doi.org/10.1007/978-3-319-11558-0 52

29. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, Second
Edition. No. 18 in MOS-SIAM Series on Optimization, SIAM (2014)

30. Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permutations
with constraints. In: Nicholson, A.E., Li, X. (eds.) AI 2009: Advances in Artificial
Intelligence, 22nd Australasian Joint Conference, Melbourne, Australia, December
1-4, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5866, pp. 517–527.
Springer (2009). https://doi.org/10.1007/978-3-642-10439-8 52

31. Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye,
J.: Large-scale order dispatch in on-demand ride-hailing platforms: A learning
and planning approach. In: Guo, Y., Farooq, F. (eds.) Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD 2018, London, UK, August 19-23, 2018. pp. 905–913. ACM (2018).
https://doi.org/10.1145/3219819.3219824

32. Zha, A., Koshimura, M., Fujita, H.: N -level modulo-based CNF encodings
of pseudo-boolean constraints for maxsat. Constraints 24(2), 133–161 (2019).
https://doi.org/10.1007/s10601-018-9299-0

https://doi.org/10.1007/978-3-319-11558-0_52
https://doi.org/10.1007/978-3-642-10439-8_52
https://doi.org/10.1145/3219819.3219824
https://doi.org/10.1007/s10601-018-9299-0

An Incremental SAT-Based Approach for Solving the RTSS Problem 19

Appendix

A Function CheckCondition(A, Γ) in Algorithm 1

The pseudo-code of function CheckCondition is shown in Algorithm 2, which
is called in line 7 in Algorithm 1. The externality conditions in Γ contain
deadlineArr, currenTime, capacityArr, numPassengArr and pickDropArr, where
deadlineArr and pickDropArr are two-dimensional arrays respectively storing the
deadline and the number of pick-up/drop-off passengers of each taxi’s job list.
We also give an illustration of such data structures in Fig. 3 to help understand
this algorithm. In Algorithm 2, the solution A need to be decoded and be found
out which taxi’s size of route has grown two, i.e., points L and R are allocated
in its route (line 1), and we extract the partial assignment corresponding to this
taxi from A (line 2).

Algorithm 2 A function to check whether the current assignment violates the
deadline or capacity constraints

Input: A, Γ , where deadlineArr, currenTime, capacityArr, numPassengArr,
pickDropArr ∈ Γ (note that, all indices of arrays range from 1)

Initialization: sumDelay← 0, sumCarried← 0, violate?← false, reason← ∅
Output: violate?, reason, s.t. reason ⊆ A
1: Decode A and find out the index λ of taxi who occupies new demand
2: Extract Aλ which indicates the partial assignment involved with taxi λ
3: for each 〈i, j〉 (〈i, j〉 ∈ Aλ) in route order do
4: reason← reason ∧ 〈i, j〉
5: sumDelay← sumDelay + w〈i,j〉
6: if sumDelay > (deadlineArr[λ][j]− currenTime) then
7: violate?← true
8: break
9: end if

10: sumCarried← numPassengArr[λ]
11: sumCarried← sumCarried + pickDropArr[λ][j]
12: if sumCarried > capacityArr[λ] then
13: violate?← true
14: break
15: end if
16: end for
17: return (violate?, reason)

B Simulation

In order to confirm the result in the real city, Tsukuba, we investigated the
features of mobility and transportation in this city based on actual road map,
costs, and realistic conditions (e.g., acceleration, deceleration, boarding and
alighting time, etc). Our simulation environment consists of four parts: (1) traffic

20 A. Zha et al.

Taxi λ: O P1 L Q1 P2 P3 Q3 R Q2

deadlineArr[λ]: t 7:10 7:05 7:30 7:20 7:15 7:35 7:25 7:40

pickDropArr[λ]: c +2 +1 −2 +3 +1 −1 −1 −3

t: currenTime c: numPassengArr[λ]

Fig. 3. An example of deadline and capacity conditions checking for the current assign-
ment in Algorithm 2.

physical simulator, (2) demand generator, (3) vehicle routing controller, and
(4) simulation GUI. All geometric distances in our experiment were estimated
according to the corresponding Manhattan distance. We imported the road
network of this city into our modified SUMO simulator, which is schematically
shown in Fig. 4 (a). A magnified scale zooming in a specific location point picked
from (a) with SUMO GUI is also given in Fig. 4 (b), which can highly simulate
the road and traffic information of the real-map (see Fig. 4 (c)).

(a)

(b)

(c)

Fig. 4. A modified SUMO simulator: (a) The road network for the city of Tsukuba
from OpenStreetMap. (b) A magnified scale zooming in a specific location point picked
from (a) with SUMO GUI. (c) The aerial photograph of real-map corresponding to (b)
obtained by Google Map.

