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Extensions of three-valued paraconsistent logics
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Cybernetics, Glushkov prosp. 40, Kiev, 03680, Ukraine

We first prove any [conjunctive/disjunctive] 3-valued paracon-
sistent logic with subclassical negation (3VPLSN)’s being de-
fined by a uniqgug modulo isomorphisth [conjunctive/disjunc-
tive] 3-valued matrix and provide effective algebraic criteria of
their beingsubclassicdbeing maximally paraconsistettiaving

no consistent non-subclassical extension implying any [conjun-
ctive/disjunctive] 3VPLSN'’s being subclassical if[f] its defin-
ing 3-valued matrix’s having a 2-valued submafaixy conjunc-
tive/both disjunctive and subclassical/refutibguble Negation
Law 3VPLSN's being maximally paraconsisténty conjuncti-
ve/disjunctive subclassical 3VPLSN's having no consistent non-
subclassical extension. Next, any disjunctive 3VPLSN has no
proper non-classical disjunctive extension, any classical exten-
sion being disjunctive and relatively axiomatized Rgsolution
rule. Further, we provide an effective algebraic criterion of a
[subclassical] 3VPLSN with lattice conjunction and disjuncti-
on’s having no proper [consistent non-classical] extension but
that which is relatively axiomatized yx Contradictione Quod-
libet rule. Finally, any disjunctive 3VPLSN with classically-va-
lued connectives has an infinite increasing chain of finitary ex-
tensions.
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1 INTRODUCTION

Appearance of any non-classical (in particular, many-valueed) logic inevitab-
ly raises the problems of studying both the logic itself and those related to
it (in particular, its extensions) with regard to such points as their (relative)
axiomatizations as well as sound and, especially, complete semantics. In this
connection, the [axiomatic] maximality of various kinds of the logic under
consideration — in the sense of absence of proper [axiomatic] extensions
satisfying a certain property held for the given logic — becomes especially
acute.

In particular, when dealing with paraconsisten{viz., refuting theEx
Contradictione Quodlibetule) logic, the issue of itsnaximal paraconsis-
tencyin the sense of absence of any proper paraconsistent extension becomes
especially acute. Such strong version of maximal paraconsistency — as op-
posed to the weakxiomaticone (regarding merelgxiomatic extensions)
discovered in [13] folP* — was first observed in [7] for thegic of paradox
LP [6] and then forH Z [3] in [9] and has been proved for arbitrary con-
junctive subclassicalviz., having a classical extension) three-valued para-
consistent logics in the reference [Pyn 95b] of [7] as well as comprehensively
studied for arbitrary four-valued expansions of a four-valued logic in [12]
with providing its effective — in case of finitely many connectives — alge-
braic criterion properly inherited by thefour-valuedexpansions. In this
paper, we provide an equally effective algebraic criterion of the maximal
paraconsistency of three-valued paraconsistent logics with subclassical nega-
tion [fragment] properly inherited by theinree-valuedexpansions, while any
such logic isaxiomaticallymaximally paraconsistent. As a consequence, we
prove that any conjunctive/both subclassical and disjunctive/refutingdbe
ble Negation Lawthree-valued paraconsistent logic with subclassical nega-
tion is maximally paraconsistent. In particular, ahyee-valuedexpansion
of LP/HZ/P! is maximally paraconsistent.

Likewise, when dealing with non-classical (in particular, many-valued)
logics, their connections with the classical (two-valued) one deserves a par-
ticular emphasis. In particular, this concerns the property of a non-classical
logic’s being subclassical equally comprehensively studied within the frame-
work of four-valued expansions of a four-valued logic in [12] with its equally
effective algebraic criterion very similar to that found here within the context
of conjunctive/disjunctive three-valued paraconsistent logics with subclassi-
cal negation. (Here, we adapt [12]'s abstract conceptiaiassicallogic).

To mark the framework of this study, we prove that any [conjunctive/dis-



junctive] 3-valued paraconsistent logic with subclassical negation is defined
by a unique{up to isomorphisrh [conjunctive/disjunctive] 3-valued matrix.

Nevertheless, the most culminating part of the paper concerns a much
more advanced issue of exploration of overall lattices of extensions of three-
valued paraconsistent logics with subclassical negation going back to the
works [8] and [9] as well as [11] that have advanced much the maximal
paraconsistency results f&tP, HZ as well as both. A [1] and its bounded
expansion towards proving the fact the lattices of their extensions form four-
element chains, the greatest/least consistent proper extension being relatively
axiomatized by either th®lodus Ponensule for thematerialimplication or
the Resolutionrule/the Ex Contradictione Quodlibetule and being classi-
cal/defined by the direct product of any defining three-valued matrix and its
two-valued submatrix. On the other hand, such does not hold for arbitrary
(even both subclassical, conjunctive and disjunctive) three-valued paracon-
sistent logics with subclassical negation, a most representative example being
P! [13] having infinitely many (even finitary) extensions, proved here for ar-
bitrary disjunctive three-valued paraconsistent logics with subclassical nega-
tion and classically-valued conectiveB! being a term-wise definitionally
minimal instance of such a kind. This inevitably raises the question: what
does unify the above miscellaneous instances? In this connection, it is re-
markable that, though the work [11] has unifiet¥Z, LA and its bounded
expansion, the very first instance of such a kind — the logic of pardd®x
— has proved beyond the mentioned general study. Therefore, thus far, the
problem raised remained still open. Here, we study it within the framework
of three-valued paraconsistent logics with subclassical negation as well as
chain-lattice-based conjunction and disjunction with providing an effective
— in case of finitely many connectives — criterion of having the mentioned
structure of extensions positively covering those subclassical logics of the
kind involved which satisfy th€ontradiction Negatioraxiom (in particular,
the Double Negation Lawincluding arbitrary expansions @fP — such as
both LA and its bounded expansion — as well aghf).

The rest of the paper is as follows. The exposition of the material of the pa-
per is entirely self-contained (of course, modulo very basic issues concerning
Set Theory, Lattice Theory, Universal Algebra, Model Theory and Mathemat-
ical Logic not specified here explicitly, to be found, e.g., in standard mathe-
matical handbooks like [5]). Section 2 is a concise summary of basic issues
underlying the paper, most of which have actually become a part of logical
and algebraic folklore. Then, in Section 3 we elaborate quite useful generic
tools concerning weakly conjunctive matrices with a single non-distinguished



value as well as both an enhancement of the conception of equality determi-
nant going back to [10] and axiomatic [resp., disjunctive] extensions of logics
defined by [finitely many finite disjunctive] matrices. In Sections 4, 6, 7, 8, 9
and 10 we formulate and prove majaneralresults of the paper, exemplify-

ing these by brief discussing certain representative instances of 3VPLSN.

2 BASICISSUES

2.1 Set-theoretical background

We follow the standard set-theoretical convention, according to which natural
numbers (including 0) are treated as finite ordinals (viz., sets of lesser natural
numbers), the ordinal of all them being denotedubyThe proper class of

all ordinals is denoted byo. Also, functions are viewed as binary relations,
while singletons are identified with their unique elements.

Given a setS, the set of all subsets & [of cardinalitye K C oo] is
denoted byox(S). Further, given any equivalence relatidon S, as usual,
by vy we denote the function with domaisi defined byvg(a) = 0[{a}],
for all a € S, whereas we seT’/f) = vy[T], for everyT C S. Next,
S-tuples (viz., functions with domail) are often written in the sequence
t form, its s-th component (viz., the value under argumeptwheres €
S, being written ag;. Given two more sets! and B, any relationR C
(A x B) (in particular, a mappinq? : A — B) determines the equally-
denoted relatio® C (A° x B?) (resp., mapping? : A5 — B®) point-wise.
Likewise, given a sef, an S-tuple B of sets and any € ([],.q B#), put
(IIf) : A— (JIB),a — (fs(a))ses. (Incasel = 2, fy x f1 stands for
(IT1f).) Further, seAs = {(a,a)|la € S}, functions of such a kind being
referred to asliagonal andS™ £ (J;c ;) S°, elements o™ £ (S°US™)
being identified with ordinary finite tuples. Then, any binary operation
on S determines the equally-denoted mapping ST — S as follows: by
induction on the length= (dom a) of anya € S+, put:

od A ] Ao if l = 1,
a =
(o(al(l—1))) o a1 otherwise

In particular, given anyf : S — S and anyn € w, setf” £ (o(n x
{f},Ap)) : S — S. Finally, given anyI" C S, we have theharacteristic
functionxX £ (T x {1}) U ((S\ T) x {0})) of Tin S.

In general, we adopt the following standard notations for elemeris: of

t2(1,1), f £ (0,0), b= (1,0), n=(0,1).



Moreover, byC we denote the partial ordering @A defined by(a C b) BN

((ap < bo)&(b1 < a1)), for all @,b € 22. Then, given anyB C 22, any

f : B™ — B, wheren € w, is said to baegular, provided, for alla,b € B"

such that, for every € n, a; C b;, it holds thatf (a) C f(b).

2.2 Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur letters
[possibly, with indices], their carriers (viz., underlying sets) being denoted by
corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language/signatuseany algebraic (viz., fu-
nctional) signature: (to be dealt with throughout the paper by default) con-
stituted by function (viz., operation) symbols of finite arity to be treated as
(propositional/sentential) connective§iven anya € poo\1(w), put Vs, =
{z3|B € a}, elements of which being viewed §sropositional/sentential)
variables of rankx. Then, we have the absolutely-frEealgebragms: freely-
generated by the séf,, referred to as théormula X-algebra of rankq, its
endomorphisms/elements of its carriéms; (viz., X-terms of ranka) be-
ing called(propositional/sentential¥-substitutions/-formulas of rank. (In
general, any mention af is normally omitted, whenever = w.)

A X-algebra?l with A C 22 is said to beregular, whenever its primary
operations are so, in which case secondary ones are so as well.

2.3 Propositional logics and matrices
A [finitary] ¥-ruleis any couplgl’, ), where(T'U{¢}) € p[,j(Fm3), nor-
mally written in the standard sequent fofim- ¢, ¢/any element of” being
referred to as the/eonclusion/premise at. A (substitutional)>-instanceof
it is then anyX-rule of the formo (" - ¢) £ (o[[] - o(y)), whereo is a
Y-substitution. As usuab:-rules without premises are callédaxiomsand
are identified with their conclusions. A[fdxiomatic] (finitary) X-calculus
is then any se€ of (finitary) X-rules [without premises], the set of al-
instances of its elements being denotedSby(C).

A (propositional/sentential}-logic (cf., e.g., [4]) is any closure operator
C over Fm$ that isstructural in the sense that[C(X)] C C(o[X]), for
all X € Fm% and alle € hom(gm$, §ms), in which case we setg, =
{{¢,¥) €)(Fmg)? | C(¢) = C(v)}, wherea € po\1(w). This is said to
be (in)consistentif C(@) # (=) Fmy. Then, aX-ruleT" — @ is said to be
satisfied in/byC, provided® € C(T"), X-axioms satisfied i’ being referred
to astheorems of”. Next, aX-logic C” is said to be gproper] extension of
C, wheneveC' C [C]C”, in which case” is said to be §proper] sublogic of



C’. Then, a[n axiomaticE-calculusC is said toaxiomatizeC” (relatively to
), if ¢’ is the least:-logic (being an extension @f' and) satisfying every
rule in € [(in which case it is called aaxiomatic extension of’, while

C'(X) = C(X USIx(A)). (2.1)

for all X C Fm$)]. Furthermore, we have the finitary sublodit, of C,
defined byC5(X) £ (U Clpw.(X)]), for all X C Fm$, called thefinitariza-
tion of C. Then, the extension of any finitary (in particular, diagonalpgic
relatively axiomatized by a finitary-calculus is a sublogic of its own finita-
rization, in which case it is equal to this, and so is finitary. (in particular, the
Y-logic axiomatized by a finitarjg-calculus is finitary). Further,' is said to
be[weakly] A-conjunctive wheren is a (possibly, secondary) binary connec-
tive of 33, providedC(¢pAy)[2] = C({¢, 9 }), wherep, ¢ € Fms.. Likewise,
C'is said to beV-disjunctive whereV is a (possibly, secondary) binary con-
nective of%, providedC(X U {¢ YV ¢}) = (C(X U{¢o}) N C(X U {¢})),
where(X U {¢,¢}) C Fmg, in which case the following rules:

i) H (l‘o \ 1‘1), (22)
T H (370 v ZCl), (23)
(CU() v 350) Fooxg (2-4)

are satisfied irC’, and so in its extensions, while any axiomatic extension of
C'is V-disjunctive, in view of (2.1). FinallyC is said to bg(axiomatically)
maximally] ~-paraconsistentwhere~ is a unary connective df, provided

it does not satisfy th&x Contradictione Quodlibaule:

{zo, ~xo} - 21 (2.5)

[and has no proper-paraconsistent (axiomatic) extension].

A (logical) ¥-matrix (cf. [4]) is any couple of the formd = (A, DA),
where2 is a ¥-algebra, called thenderlying algebra of4, while D4 C
A is called thetruth predicate ofA. (In general, matrices are denoted by
Calligraphic letters [possibly, with indices], their underlying algebras being
denoted by corresponding Fraktur letters [with same indices, if any].) This
is said to ben-valued/[in]consistent/truth(-non)-empty/trutfalse-singular
wheren € w, provided|A| = n/D4 # [=]A/D* = (#)/|(DA|(A\
DA))| € 2, respectively. Next, given any’ C ¥, A is said to be g¥-
yexpansion ofits ¥'-reduct (A[X) £ (A%, DA). (Any notation, being
specified for single matrices, is supposed to be extended to classes of matrices



member-wise.) Finally,A is said to befinite[ly generated]/generated by
B C A, whenevefl is so.

Given anya € p..\1(w) and any clas#/ of ¥-matrices, we have the clo-
sure operato€ng overFm$, defined byCngy (X) = (Fm$ n{h~'[D4] 2
X|A € M, h € hom(Fmg, 2)}, forall X C Fmg,, in which case:

Cnpy(X) = (Fms, N Cny (X)), (2.6)

becauséiom (Fms;, A) = {h|Fm§; |h € hom(Fms, A)}, for anyX-algebra
A, asA # @. Then,Cny, is aX-logic, called thdogic of M, a X-logic C
being said to béfinitely-]defined byM, providedC(X) = Cnp(X), for all
X € pp(Fms). A ¥-logic is said to bex-valued wheren € w, whenever
it is defined by am-valuedX:-matrix, in which case it is finitary (cf. [4]).

As usual X-matrices are treated as first-order model structures (viz., alge-
braic systems; cf. [5]) of the first-order signateJ { D} with unary predi-
cateD, anyX-ruleI' F ¢ being viewed as (the universal closure of, depend-
ing upon the context) the infinitary equality-free basic strict Horn formula
(AT) — ¢ under the standard identification of any propositiodgbrmula
¥ with the first-order atomic formul®(v).

A Y-matrix A is said to be anodel of a X-logic C, providedC' is a
sublogic of the logic of4, the class of all them being denoted kiod(C).
Next, A is said to be--paraconsistentwhere~ is a unary connective df,
whenever the logic ofl is so. FurtherA is said to bgweakly] o-conjunctive
wherec is a (possibly, secondary) binary connectivélpprovided({a, b} C
DA)[<] & ((ao™b) € DA), for all a,b € A, that is, the logic ofA is
[weakly] o-conjunctive. Likewise,A is said to bec-disjunctive/implicative
whenever((a ¢ / € DA) = (b € DA)) < ((ao®b) € DA), for all
a,b € A, in which case the logic of{ is ¢-disjunctive, and so is the logic
of any class of-disjunctive X-matrices/resp.,A is Y, -disjunctive, where
(vo Yo z1) 2 ((mg 0 11) 0 7).

Let A and B be two X-matrices. A(strict) [surjective] {matrix} homo-
morphism fromA [on]to B is anyh € hom(2(,B) such that j[A] = B
and] D4 C (=)h~'[D®] ([in which caseB/A is said to be astrict sur-
jective{matrix} homomorphic image/counter-image.4f ]), the set of all
them being denoted byomgss])(A, B). Recall that(vh € hom(%,B) :
[((img h) = B) =](hom(§mS,B) 2 [=]{hoglg € hom(FmT, A)}), where
@ € poc\1(w), and so we have:

(3h € homb (A, B)) =(Cng(X) C [=] Cn% (X)), 2.7)
(3h € hom® (A, B)) =(Cn%(2) C Cni(2)), (2.8)

~



for all X C Fm$. Then, A[# B] is said to be dproper] submatrix of/3,

wheneverA 4, € homsg(A, B), in which case we setB3]4) £ A. Injec-
tive/bijective strict homomorphisms frotd to 55 are referred to aembed-
dings/isomorphisms of/frotd into/onto 3, in case of existence of whicH

is said to beembeddable/isomorphic into/t&

Let A be aX-matrix. Theny* £ XQA is referred to as theharacteristic
function of.A. Next, given any) € Con(2) [such that) C 64 £ (ker )],
we have thejuotient(A/0) £ (A/0, D*/6) of A by 6, in which case we get
vy € hom[ss} (A, A/0).

Given a setl and an/-tuple .4 of X-matrices, [any submatri8 of] the
S-matrix ([T,c; Ai) £ ([Tie; is [L;e; D) is called the [a][sub]direct
product of A [whenever, for each € I, m;[B] = A;]. As usual, wherf = 2,

Ao x A, stands for the direct product involved. Likewise(iifig .A) C {A}
(and] = 2), whereA is aX-matrix, A" £ (T, A;) [resp.,B] is called the
[a] [sub]direct I-power (square) ofd.

Given a clas#M of X-matrices, the class of all [consistent] submatrices of
members oM is denoted byS(,;(M), respectively. Likewise, the class of all
[sub]direct products of (finite) tuples constituted by membeid & denoted
by PE}?] (M). As itis well-known, any logic model class is closed under both
P andS (cf. (2.7)).

Lemma 2.1 Finite Subdirect Product Lemma; cf. Lemma 2.7 of [12]kt

M be a finite class of finit&-matrices andA a finitely-generated model of
the logic of M. Then, A is a strict surjective homomorphic counter-image of
a strict surjective homomorphic image of a membePgf (S..(M)).

Theorem 2.2 ¢f. Theorem 2.8 of [12]) Let K and M be classes of-
matricesC the logic ofM andC"’ an extension of’. Suppose [botiM and all
members of it are finite and?? ) (S.(M)) C K (in particular, S(Py,;(M)) C
K {in particular, K © M is closed under botl$ and P,( in particular,
K = Mod(C))}). Then,C" is [finitely-]defined byMod(C’) N K, and so by
Mod(C").

Given anyX-logic C' and anyYX’ C ¥, in which caseFm§, C Fm$
and hom(gms,, §ms,) = {h[Fm$, |h € hom(Fms, Fmy), h[Fms,] C
Fmg, }, for all & € poo\1(w), we have the'-logic €7, defined byC’(X) £
(Fms, NC(X)), for all X C Fmy,, called theX'-fragment ofC, in which
caseC is said to be dX-)expansion of”’. In that case, given also any class
M of X-matrices defining”, C’ is, in its turn, defined by Y.



Classical negations, matrices and logics

Let ~ be a (possibly, secondary) unary connectiv&of
A Y-matrix A is said to bgweakly] (classically)~-negative provided,
foralla € A, (a € DA)[<] & (~%a & DA).

Remark2.3. Let < be any (possibly, secondary) binary connective_and
(w0dz1) £ ~(~x( 0 ~x1). Then, any~-negativeX-matrix iso-disjunctive/-
conjunctive iff it isd-conjunctive/-disjunctive, respectively. O

From now on, it is supposed that 3.

A two-valued consisterit-matrix A is said to be--classical whenever it
is ~-negative, in which case it is truth-non-empty, for it is consistent, and so
is both false- and truth-singular but is netparaconsistent.

A Y-logic is said to be--[sub]classical whenever it is [a sublogic of] the
logic of a~-classical:-matrix. Then,~ is called asubclassical negation for
aX.-logic C, whenever the--fragment ofC' is ~-subclassical, in which case:

~May ¢ C(~"0), (2.9)

for all m,n € w such that the integen — n is odd.

3 PRELIMINARY ADVANCED KEY GENERIC ISSUES

3.1 False-singular consistent weakly conjunctive matrices

Lemma 3.1. Let A be a (possibly, secondary) binary connectivehfA a
false-singular weaklyi-conjunctiveX-matrix, f € (A \ D#), I a finite set,
C an I-tuple constituted by consistent submatrices4ofind B a subdirect
product of C. Then,(I x {f}) € B.

Proof. By induction on the cardinality of any C I, let us prove that there
is somea € B including (J x {f}). First, whenJ = &, take anya €
C # @, in which casg(J x {f}) = @ C a. Now, assumeJ # @. Take
anyj € J C I, in which casek = (J\ {j}) C I, while |K| < |J],
and so, ag’; is a consistent submatrix of the false-singular magixwe
havef € C; = «;[B]. Hence, there is somec B such thatr;(b) = f,
while, by induction hypothesis, there is somes B including (K x {f}).
Therefore, sincd = (K U {j}), while A is both weaklyA-conjunctive and
false-singular, we havB > ¢ = (a A b) D (J x {f}). Thus, whenJ = I,
we eventually geB > (I x {f}), as required. O



3.2 Equality determinants

A binary equality determinant foa classM of Y-matrices is any)-cal-
culuse C (p(Fm%) x Fm%) such that the infinitary universal sentence
VaoVri((Ae) < (xo = 1)) is true inM. Then, according to [10], a
(unitary) equality determinant foM is any T C Fmgy, such thatey £
{(v[zo/zs]) F (v[zo/x1-4]) | P € 2,v € T} is a binary equality determinant
for M.

Example 3.2 ¢f. Example 1 of [10]) {x} is a unitary equality determinant
for any both false- and truth-singular (in particularclassical) matrix. [

Lemma 3.3. Let.A and B be X-matrices¢ a binary equality determinant for
Aandh € homg (A, B). Then,h is injective.

Proof. Then, for anya,b € A such thath(a) = h(b), we have(a = a) =
(A = (Ae)lzo/a,x1/al) = (B | (Ae)lzo/h(a),21/h(a)]) = (B =
(Ae)lzo/h(a), z1/h(D)]) = (A k= (Ae)lxo/a,21/b]) = (a =b). O

Lemma 3.4. Let A and B be X-matrices¢ a binary equality determinant for
B ande € homs(A, B). Suppose is injective. Theng is a binary equality
determinant fotA.

Proof. By the well-known fact that any infinitary universal sentence, being
true inB, is so inA, being isomorphic (unde) to (B](imge)) € S(B). O

Lemma 3.5. Let. A be a¥-matrix with unitary equality determinant, 5 a
submatrix of4 andh € homg(5,.4). Then,h is diagonal.

Proof. For anya € B and anyv € T, (v¥(a) € D*) & (v®(a) € D) &
(v¥(h(a)) = h(v®(a)) € DA), and soh(a) = a, as required. O

Lemma 3.6. Any axiomatic binary equality determinantfor a classM of
Y-matrices is so fol? (M).

Proof. In that case, members bf are models of the infinitary universal strict
Horn theorye[z1 /zo] U{(A &) — (xo =~ x1)} with equality, and so are well-
known to be those dP (M), as required. O

3.3 Disjunctive extensions of disjunctive finitely-valued logics

Fix any (possibly, secondary) binary connectivef >. Given anyX,Y C
Fm¥, put(X VYY) £ V(X x Y].

10



Lemma 3.7. LetC be aV-disjunctiveX-logic. Then,
(pYO(XUY)) CC(XU(pYY)), (3.1
forall X C Fmy, all ¢ € Fmy and allY € p,, (Fmy).

Proof. By induction on|Y| € w. The case, wheli = &, is by (2.3). Now,
assume” # @. Take anyy € Y, in which caseX’ £ (X U {¢}) C Fm$.
andY’ £ (Y \ {¢}) € p.(Fm$), while |Y’'| < |Y|, whereadY’ U X') =
(X UY), and so, by induction hypothesis, we hayev C(X UY)) C
C(X'U(pYY")). Onthe other hand, by (2.2), we also héy& C(XUY)) C
C((XU{e})U(pYY"). Thus, ad” = (Y’ U {¢}), the¥-disjunctivity of
C'yields (3.1). O

Given aX-ruleT I ¢ and ax-formulay, put((T' - ¢) V) = (T'V.9) -
(¢ Y )). (This notation is naturally extended Ixcalculi member-wise.)
By 011 we denote th&-substitution extendingr; /;+1]icw-

Theorem 3.8. Let M be a [finite] class of [finiteV-disjunctive] X-matrices,
C the logic of M, while A an axiomaticX-calculus [wherea a finitary
Y-calculus]. Then, the extensiafl’ of C relatively axiomatized by’ =
(A[U(o11[C] Y 20)]) is defined bys = (Mod(A[UC]) N S.(M)) [and so is
V-disjunctive].

Proof. First, by (2.7) [and Lemma 3.7 withk = & as well as the/-disjun-
ctivity of every A € S, (M), and so both that and the structurality@f],
we haveS = (Mod(A)[NMod(€)] N S.(M)) C (Mod(€") N S.(M)) C
(Mod(€") N Mod(C)) = Mod(C").

Conversely, consider any [finitary]-rule I' = ¢ not satisfied inC’, in
which casep ¢ T £ C'(T') € (imgC’) C (imgCnjyy), and so [by the
finiteness of(I' U {¢}) € Fmy], there is some [finitek € .\ (w) such
that(T' U {¢}) € Fm$, in which casd” C U £ (T N Fm$) ¢, and so,
by (2.6),U = Cnpy(U) = (Fm$E NN U), wherell 2 {h"'[DA] DU | A €
M, h € hom(Fms;, A)} [is finite, for e as well as bottM and all members
of it are so]. Therefore, there is some [minim&lle U not containingyp, in
which case' C U C S, and sal" - ¢ is not true inB = (Fm$, S) under
[z:/x;)ica. Next, we are going to show th&t € Mod(A[UC]). For consider
any (A F ¢) € (A[UC]) and anyo € hom(§ms, §ms:) such that[A] C S
as well as the following exhaustive case[s]:

° (A F o) € A,
in which caseA = &, and so, ag € A C €/, by the structurality of
C’', we haver (¢) € (FmyNC'(@)) C (Fmy,NT) =U C 8S.
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[e (AF ¢) €@,

in which casé (o1 [A] F o41(¢)) Yag) € €, and so is satisfied i@”.

Then,(U\{S}) C Uis finite, forl is so, in which case = |U\{S}| €

w. Take any bijectioW : n — (U\{S}). Then, for each € n, W,, #

S, in which case, by the minimality of € U > W,,, we havelV,, € S,

and so there is somg € (W, \ S) # @. Puty £ (V(£,¢)) € Fm$.

Let ¢ be theX-substitution extendinde;1/0(x;); x0/¥)icw. Then,
((0[A] Y ) - (0(9) ¥ ) = <((041[A] - 041(6)) ¥ o) s satisfied
in C’, for this is structural. Moreover, in view of thédisjunctivity of
members oM, (o[A] Y ¢) C (Fms;N(U) = U C T, in which case
(c(p) Vo) € (FmENT)=U C S,and sar(¢) € S, fory ¢ S.]

Thus, B € Mod(A[UC]). On the other hand, aS € U, there are some
A € M and soméh € hom(gmg,2A) such thatS = h~[D#], in which
caseD = (imgh) forms a subalgebra ¢, and sok is a surjective strict
homomorphism fronB ontoD = (A[D). In this way, by (2.7)I' - ¢ is not
true inD € S, as required [fo" is finitary, as botiC' andC’ are so]. [

Lemma 3.9. Let C' be aX-logic and M a finite class of finiteé2-matrices.
Suppose”' is finitely-defined by. Then,C is defined by, that is, C' is
finitary.

Proof. In that case(’ £ Cnjy; C C, for C" is finitary. To prove the converse
is to prove thatVi C Mod(C). For consider anyd € M, anyTl’ C Fm3,
any o € CO(I') and anyh € hom(gms, ) such thath[T] € DA. Then,
a £ |A] € (poo\1(w) Nw). Take any bijectior : V,, — A to be extended to
ag € hom(gm$, 2A). Then,e~! o (h|V,,) is extended to &-substitutions,

in which caser(p) € C(o[I']), for C'is structural, whiler[['U{¢}] C Fmg..
Further, as botl, M and all members of it are finite, we have the finite set
I2{(f,B)|BcM,f chom(Fmg,B)}, in which case, for eache I,
we seth; = 7r0(') B; £ m (i) and@; = 65:. Then, by (2.6), we have
0£=2= _C/ = ((Fmg x Fm$)NN;e; by i '[6:]), in which case, for every
i€ 1,0 C hi'[0;] = ker(vg,oh;), and sqy; = (Vgiohioy(;l) : (Fmg, /6) —
B;. Inthis way,e £ ([T,c; 9:) : (Fm$ /0) — ([1,c; B:) is injective, for
(kere) = ((Fmg, /0)* NN, (ker g;)) is diagonal. Henceims. /6 is finite,
for [[,c; Bi is so, and so i$a[ 1/0) C (Fmg, /0). For eache € (o[I']/0),
choose any.. € (o[l N, '[{c}]) # . PutA £ {4, | c € (o[I']/0)} €
9w (o[l]). Consider any) € o[l']. Then,A > ¢,y =& ¥, in which case
¢ € C(A), and sao[['] € C(A). In this way,o(p) € C(A) = C'(A), for
A € p,(Fmsy), so, by (2.6)g(¢) € Cny(A). Moreoverg[A] C glo[l]] =
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h[['] C DA, and soh(y) = g(a(¢)) € D+, as required. O

Corollary 3.10. LetM be a finite class of finit&-disjunctiveX-matrices,C'
the logic of M andC” a V-disjunctive extension @f. Then,C’ is defined by
S £ (S.(M) N Mod(C)).

Proof. Let € be the finitary>-calculus of all finitaryX-rules satisfied irC’,
C" the finitaryX-logic axiomatized by andS’ = (S, (M) N Mod(C")) =
(S«(M) N Mod(C)). Clearly,C"” C Cn¢,. Conversely, by Theorem 3.8 with
A = @, Cng is the extension of relatively axiomatized by ;1[C] ¥ xo.
On the other hand, by the structurality adetlisjunctivity of C’ as well as
Lemma 3.7 withX = &, (041[C] ¥ z9) C €. Moreover,C, being a finitary
sublogic ofC’, is a sublogic of””, in which case”” O Cng,, and soC” is
defined byS’, in which case”’ is finitely-defined bys’, and so is defined by
S’, by Lemma 3.9, in which case’ = C”, and s = S, as required. [J

4 SUPER-CLASSICAL MATRICES VERSUS THREE-VALUED PA-
RACONSISTENT LOGICS WITH SUBCLASSICAL NEGATION

From now on, fix any unary € X.

A Y-matrix A is said to be~-super-classical provided A = {f,b,t},
DA = {b,t}, ~*(i,i) = (1 —i,1—1), for eachi € 2, and~%*b € D4,
in which case it is three-valued as well as both weakiynegative and--
paraconsistent, whilff, t} forms a subalgebra @[ {~}, whereag2([{~})]
{f,t} is ~-classical, and se- is a subclassical negation for the logic.4fin
view of (2.7). Thus, we have argued the routine part (viz.={iji) =(i)) of
the following preliminary marking the framework of the present paper:

Theorem 4.1. LetC be aX-logic. Then, the following are equivalent:

(i) Cisthree-valued and--paraconsistent, while- is a subclassical nega-
tion for C;

(i) C is three-valued, while any three-valuédmatrix definingC' is iso-
morphic to a~-super-classical one;

(i) C is defined by a--super-classicak-matrix.

Proof. Assume (i) holds. LeB3 be any three-valuel-matrix definingC'.
Define ane : {f,b,t} — B as follows. In that casd3 is ~-paraconsistent,
so there are someb) € DB such that~Te(b) € D® and somee(f) €
(B \ DP), in which case:(f) # e(b). Next, by (2.9) withm = 1 andn = 0,
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there is some:(t) € DP such that~®e(t) ¢ D5, in which casee(f) #
e(t) # e(b). Inthis way,e : {f,b,t} — B is injective, and so bijective,
for |B| = 3. Hence, it is an isomorphism frod = (e~![B], {b,t}) onto
B. Therefore, by (2.7)¢ is defined byA. Furthermore~*b € D4, while
~%t ¢ DA, in which case~®t = f, and so, for proving that is ~-super-
classical, in which case (i) holds, it only remains to show th#f = t. We
do it by contradiction. For suppose®f # t, in which case, agl = {f, b, t},
we have the following two exhaustive cases:

1.~ =1
This contradicts to (2.9) witlhn = 0 andn = 1.

2.~ =b.
Then, as~*b € D4 = {b,t}, we have the following two exhaustive
subcases:

(@ ~*b =b.
Then,~¥~%*~2q = b € DA, for eacha € D4 = {b,t}. This
contradicts to (2.9) withn = 3 andn = 0.

(b) ~*b =t.
Then,~*~2~2f = f. This contradicts to (2.9) witim = 0 and
n = 3.
Thus, anyway, we come to a contradiction, as required. O

Remarlk4.2 (cf. Example 2 of [10]) {zo, ~x(} is a unitary equality determi-
nant for any~-superclassical-matrix. O

Throghout the rest of the paper, fix aRysuper-classical-matrix A. Let
C be the logic of4 andC™* the least non~-paraconsistent extension 6f
(viz., that which is relatively axiomatized by (2.5)).

Lemma 4.3. Let B be a~-super-classicab:-matrix ande € homg(A, B).
Then,e is diagonal. In particular,4 = B.

Proof. Then,C £ (A[{~}) = (B]{~}) is ~-superclassical, while ¢
homg(C,C), and so Lemma 3.5 and Remark 4.2 complete the proof. [

Theorem 4.4. Let B be a~-super-classicab-matrix. Supposé& is a model
of C (in particular, C' is defined by5). Then,B = A.

Proof. In that casep3 is a finite (and so finitely-generated)}paraconsistent
model ofC. Then, by Lemmas 2.1, 3.3 and Remark 4.2, there are some set
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I, somel-tupleC constituted by submatrices gf, some subdirect produf

of C and somey € hom(D, B), in which caseD is both weakly~-negative
and, by (2.7), isv-paraconsistent, fa8 is so, and so there are some& DP

such that~®a € DP and some ¢ (D \ DP), in which case: & ~®b ¢

DP C {b,t}!, for D is weakly ~-negative. ThenD > a = (I x {b}).

Consider the following complementary cases:

1. {b} forms a subalgebra &,
in which case~?b = b, and so~®c = b ¢ DB. Hence,J £ {i € I |
mi(c) =t} # @. Given anya € A2, set(agplar) = ((J x {ao}) U ((I'\
J) x {a1})) € AL Inthisway,D > a = (blb), D > ¢ = (t|b) and
D > b = (flb). Then, as{b} forms a subalgebra &, while J # &,
f={({d,(d|b)) | d € A} is an embedding afl into D.

2. {b} does not form a subalgebra #f
Then, there is some € Fmy, such thaty®(b) # b, in which case
{b, % (b),~¥p%(b)} = A, and s0D 2 {a,®(a),~°x°(a)}
{I x {d} | d € A}. Therefore, ad # @, forb ¢ DP, f
{{(d,I x {d}) | d € A} is an embedding ofl into D.

[I> 11

Then,(go f) € homg(A, B), and so Lemma 4.3 completes the argument.

Corollary 4.5. LetX’ D X be a signature and” a three-valued:’-expan-
sion ofC'. Then,C’ is defined by a uniquE’-expansion of4.

Proof. In that case(’ is ~-paraconsistent, while- is a subclassical nega-
tion for C’. Hence, by Theorem 4.1}’ is defined by a~-super-classical
Y’-matrix .A’, in which caseC is defined by the--super-classical-matrix
A%, and so(A'[Y) = A, by Theorem 4.4 completing the argument. [

5 CLASSICAL EXTENSIONS

A (2[+1])-ary [b-relative] (weak classical) conjunction fdll is any ¢ €
FmZ ! such that botlp? (f, t[, b]) = f andy™ (t, f[, b]) € {f[, b]}. (Clearly,
any binary conjunction fofl is a ternanb-relative one.)

Lemma 5.1. Let ] be a set andB a consistent nor--paraconsistent subma-
trix of A’. Suppose eithdB is ~-negative or bot has a binary conjunction
and either{f, t} forms a subalgebra ofl or L, = (A% \ ({f,t}? U {b}?))
forms a subalgebra o?(. Then, the following hold:

(i) if {f,t} forms a subalgebra o, thenA[{f,t} is embeddable int¢;
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(i) if {f,t} does not form a subalgebra &, thenL, forms a subalgebra
of 22, while (A?[L,) is embeddable inté.

Proof. We start from proving:

Claim 5.2. LetI be a set and® a consistent non--paraconsistent submatrix
of A?. Suppose: = (I x {f}) € B (thatis,b = (I x {t}) € B). Then, the
following hold:

(i) {f,t} forms a subalgebra of;
(i) Al{f,t} is embeddable int&.

Proof. (i) By contradiction. For suppos,t} does not form a subalgebra
of 2. Then, there is somg € Fm% such thato®(f,t) = b, in which
caseB 3> ¢ = ¢%(a,b) = (I x {b}), and so{c,~%c} C D5, that
contradicts to the non--paraconsistency d$, for this is consistent.

(i) As I # @, for Bis consistent, by (i){(d, I x {d}) | d € {f,t}} is an
embedding ofA[{f, t} into B, as required. O

As B is consistent] # @ and there is some € (B \ D?) # @. Next,
we prove that there is some non-emgty_ I such thaft|b) € B, where, for
everya € A2, we set(agla;) = ((J x {ao}) U((I\ J) x {a1})) € AL. For
consider the following complementary cases:

e 3is ~-negative.
Then,b & ~®a € DB C {b,t}, in which caseB > ¢ = ~Fb ¢ D5,
andsoJ = {i € I | m;(b) =t} # @. Inthisway,B > b = (t|b).

e 3is not~-negative.
Then, % (f,t) = f = ©%(t,f) € {f,t}, for somey € Fm%. Let
K2{iel|nia)=t},L={icI|ma)=F}+# 2, forag DB,
Given anya € A3, we set(aglai|as) = ((K x {ag}) U (L x {a1}) U
((I\(KUL)) x {az})) € AL. In this way,B > a = (t|f|b). Consider
the following exhaustive subcases:
— ~*b=h.
Then,B 5 b 2 ~%a = (f|t]b). Letz £ ©¥(b,b) € A. Consider
the following exhaustive subsubcases:
* x =b.
Then,B > ¢ £ ¢®(a,b) = (f|f|b). PutJ £ (K U L) # &,
for K # @. In this way,(t|b) = ~®¢ € B.
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x o =f.
Then,B 5 ¢ £ p®(a,b) = (f[f|f). PutJ £ I # @. In this
way, (t|b) = ~®c € B.
* r =1t
Then,B > ¢ £ ¢®(a,b) = (f|f|t), and soB > ~P¢ =
(t[t|f). PutJ 2 I # @. Then,(t|b) = ~u®(c,~2B¢) €
B.
- ~%b=t.
Then,B > b = ~%a = (f|t|t), and soB > ~®b = (t/f|f). Put
J £ I +# @.Then,(tlb) = ~Tp® (b, ~Tb) € B.

Further, we prove:

Claim 5.3. Suppose-Tb = t and (t|b) € B. Then,(I x {t}) € B.

Proof. Consider the following complementary cases:

1. Bis ~-negative.
Then, (t|b) € D?, in which casgt|f) = ~®~%(t|b) € D5, and so
J = I. Inthisway,(I x {t}) = (t|b) € B.

2. Bis not~-negative.
Then,p(f,t) = f = p%(t,f), for somey € Fm%. Moreover,b
(flt) = ~®(t|b) € B, and soB > ~Tb = (t[f). In this way, (I x
[t}) = ~B % (b, ~%b) € B. O

(>

Finally, consider the respective complementary cases:

(i) {f,t} forms a subalgebra é&x.
Consider the following exhaustive subcases:

1. ~*p=t.
Then, by Claims 5.2(ii) and 5.3 [{f, t} is embeddable inté.
2. ~%bh =b,

in which caseh £ (t|b) € B 3 ¢ £ ~®b = (f|b). Consider the
following complementary subsubcases:

(@) {b} forms a subalgebra &f.
Then, as] # &, {{e, (e|b)) | e € {f,t}} is an embedding of
Al{f, t} into B.
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(b) {b} does not form a subalgebra #f
Then, there is som¢ € Fmy, such that)?(b) € {f,t}, in
which case)?(f) € {f,t} > ¢*(t), for {f,t} forms a subal-
gebra ofX, and so, a${ f, t}| = 2, we have just the following
exhaustive subsubsubcases:
o ¥2(b) = (),
in which case, for some € {f,t}, (I x {z}) = (z|x) =
Y»®(c) € B, and soA[{f,t} is embeddable intd, in
view of Claim 5.2(ii).
o P¥(b) =4(1),
in which case, for some € {f,t}, (I x {z}) = (z|]z) =
¢»B(b) € B, and soA[{f,t} is embeddable intd, in
view of Claim 5.2(ii).
o (1) = 9(f),
in which case, for some € {f,t}, (I x {z}) = (z]z) =
»B(®(c)) € B, and saAl{f,t} is embeddable intd,
in view of Claim 5.2(ii).

(i) {f,t} does not form a subalgebra 2f

Then,~%b = b, in view of Claims 5.2(i) and 5.3. Therefore, ds# o,
b= (tlb) € DB % ¢ 2 ~Bb = (f|b). And what is more, there is some
¢ € Fm3 such thatp®(f,t) = b, in which casep 2 ¢(xg, ~x0) €
Fmy, and¢®(f) = b, and sap®(b) # b, for, otherwise, we would have
B > ¢®(c) = (b|b), and so we would get® (blb) = (blb) € D5,
contrary to the non--paraconsistency and consistency®f In this
way, f £ (bf) € {¢®(c),~®¢®(c)} C B, in which casg) £ ~® f =
(blt) € DB, and so, by the nor--paraconsistency and consistencyBof
we getf = ~Pg ¢ DB. Hence,J # I. Let us prove, by contradiction,
that L, forms a subalgebra dfi?2. For suppose., does not form a
subalgebra ofI2. Then,B is ~-negative. Moreover, there is sorfiec
Fm such that¢?’ ((b, ), (b, t), (f,b), (t,b)) € (A2 \ L), in which
caseB > b £ £®(f,g,¢,b) = (z|y), where(z,y) € (A%\ Ly) =
({f,t}2 U {b}?), and so either-®b' = b’ € DB if x = b = y, or,
otherwise, in which case,y € {f,t}, and sor # y, by Claim 5.2(i),
neitherd’ nor ~BY = (y|z) isin DB, for J # @ # (I'\ J). This
contradicts to the--negativity of 3. Thus,L, forms a subalgebra &f2.
Hence,as/ # @ # (I\ J), ¢ = {{{(w, 2), (w|2)) | (w,2) € Ly} isan
embedding of4?|L, into 3. O
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Corollary 5.4. LetI be a setB3 a submatrix ofd’, D a ~-classicalX-matrix
andh € hom$(B, D). Then, the following hold:

(i) if {f,t} forms a subalgebra o#{, thenA[{f, t} is isomorphic taD;

(ii) if {f,t} does not form a subalgebra &, thenL, = (A2 \ ({f,t}2 U
{b}?2)) forms a subalgebra o2, while#4" 1+ ¢ Con(22|Ly), where-
as (A2 Ly)/64° 114 is isomorphic taD.

Proof. In that casej3 is both~-negative and consistent, fris so, and so is
non-~-paraconsistent. Consider the respective complementary cases:

(i) {f,t} forms a subalgebra &f.
Then, by Lemma 5.1(i), there is some= homg(Al{f,t}, B), in which
case(h o g) € homg(A[{f,t}, D), for any ~-classical®-matrix has

no proper submatrix, and so Example 3.2 and Lemma 3.3 complete the

argument.

(ii) {f,t} does not form a subalgebra2f
Then, by Lemma 5.1(ii)L, forms a subalgebra ¢fi2, while there is
an embedding of £ £ (A?[Ly) into B, in which casey = (hoe) €
homg (€, D), for any~-classical-matrix has no proper submatrix, and
so (kerg) € Con(€). On the other handkerg) = 6 £ #¢, for D

is both false- and truth-singular, so, by the Homomorphism Theorem,

go 1/0_1 is an isomorphism frord /6 onto D, as required. O
Theorem 5.5. C'is ~-subclassical iff either of the following hold:

(i) {f,t} forms a subalgebra of\, in which case4[{f,t} is isomorphic to
any ~-classical model of”, and so defines a unique-classical exten-
sion of C;

(i) L, forms a subalgebra of(2, while 64°1%+ ¢ Con(22[L,), in which
case( A2 L,) /04 L+ is isomorphic to any--classical model of”, and
so defines a unique-classical extension of .

Proof. The “if” part is by (2.7) and the fact that the submatrices4st ap-
pearing in (i[i]), respectively, are-classical.
Conversely, consider any-classical modeD of C, in which case it is

finite, and so finitely-generated. Hence, by Lemmas 2.1, 3.3 and Example

3.2, there are some setsomeC € S(A)?, some subdirect produét of it,
in which case this is a submatrix gf’, and somé: € hom3 (B, D). Then,
(2.7) and Corollary 5.4 complete the argument. O
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On the other hand, the item (i) of Theorem 5.5 does not exhaust-all
subclassical three-valued-paraconsisterif-logics, as it ensues from:

A

Example 5.6. Leti € 2, w = (i,i), ¥ 2 {,~} with binaryw, B the ~-
classicab:-matrix with B = 2, DB £ {1} and(j w® k) = 4, forall j, k € 2,
~%b £ band
(atdmb)é w Ifa:b.,
b otherwise
forall a,b € A. Then, we have:

((b,a) ™ (b,b)) = (w,b),
((b,b) ™ (b,a)) = (b,w),
((b,a) ™ (b,0)) = (w,b),
({(a,b) ™ (b,b)) = (b, w),

for all a,b € {f,t}. Therefore,L, forms a subalgebra oli*> andh =
AL € hom$ (A2 Ly, B), in which cased’1E+ = (kerh) € Con(UA2]
L4), and soC' is ~-subclassical, by Theorem 5.5. Howevéng® t) = b, so
{f,t} does not form a subalgebra 2f O

Taking Theorem 5.5 into account, in caSds ~-subclassical, the unique
~-classical extension af is denoted byCT¢.

6 MAXIMAL PARACONSISTENCY

First, as.A has no proper--paraconsistent submatrix, by Theorems 3.8 and
4.1, we immediately have:

Corollary 6.1. Any~-paraconsistent three-valuedlogic with subclassical
negation~ is axiomatically maximally so.

Lemma 6.2. Let B be a finitely-generated--paraconsistent model of'.
Suppose eithel has a ternanb-relative conjunction of b} does not form a
subalgebra ofi. Then,A is embeddable into a strict surjective homomorphic
image ofB.

Proof. Then, by Lemma 2.1 witivl = {A}, there are some sét somel-

tupleC constituted by submatrices gf, some subdirect produét of C, some
strict surjective homomorphic imageof 5 and somey € homS(D,S), in

which case, by (2.7)P is ~-paraconsistent, and so there are same DP

such thatv®a € DP and somé € (D \ DP). Then,D > a = (I x {b}).

Consider the following complementary cases:

20



1. {b} forms a subalgebra ét.
Then, 2 has a ternanp-relative conjunctionp € Fm3. Putc £
©®(b,~®ba) € D,d 2 ~®c e D, J 2 {i c ]| mb) =t}
andK £ {i € I | m;(b) = f} # @, forb ¢ DP. Given anya € A3, set
(aolar|az) £ ((J x {ao}) U(K x {ar HU((I\(JUK)) x {az})) € A",
Then,a = (b|b|b) andb = (t|f|b). Consider the following exhaustive
subcases:

@ Spm(t’ f,b) =f,
in which case we have = (f|f|b) andd = (t|t|b), and so, since
K # @, while {b} forms a subalgebra &, f = {{(e, (e|e|b)) |
e € A} is an embedding ofl into D.

(b) @m(t’ f,b) =b,
in which case we have = (b|f|b) andd = (blt|b), and so, since
K # @, while {b} forms a subalgebra &, f = {(e, (ble|b)) |
e € A} is an embedding ofl into D.

2. {b} does not form a subalgebra #f
Then, there is some € Fmy, such thatp®(b) # b, in which case
{b, o (b),~¥p%(b)} = A, and 0D 2 {a,®(a),~°x°(a)}
{I x {e} | e € A}. Therefore, ad # @, forb ¢ DP, f
{{e,I x {e}) | e € A} is an embedding ofi into D.

[I> 11

Then,(go f) € homg(A, £) is injective, by Lemma 3.3 and Remark 4.2
Theorem 6.3. The following are equivalent [provided is ~-subclassical):
(i) C has no proper-paraconsistent{-subclassical] extension;

(ii) either2( has a ternaryb-relative conjunction or{b} does not form a
subalgebra of (in particular, ~*b # b, that is,~~xzq & C(x0));

(iiiy Lz = {{b,b), (f,t), (t,f)} does not form a subalgebra &f?;
(iv) A has no truth-singular-paraconsistent subdirect square;
(v) A% has no truth-singular--paraconsistent submatrix;

(vi) C has no truth-singular--paraconsistent model.

Proof. First, assume (ii) holds. Consider aryparaconsistent extensidrf
of C, in which caser; ¢ T = C'({zg,~x0}) 2 {z0,~70}, While, by the
structurality ofC’, (Fms:, T') is a model ofC’ (in particular, ofC), and so
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is its finitely-generated--paraconsistent submatrix 2 (Fm%, T N Fm%),
in view of (2.7). Then, by Lemma 6.2 and (2.7,is a model ofC’, and so
C’ = C. Thus, (i) holds.

Next, (iv)=-(iii) is by the fact~®b € {b,t}, (L3 N {b,t}?) = {(b,b)} #
Lz andmo4q)[Ls] = A, while (iv) is a particular case of (v), whereas )
(v)is by (2.7).

Now, let B € Mod(C') be both~-paraconsistent and truth-singular, in
which case the ruleg - ~z is true in3, and so is its logical consequence
{0, x1,~x1} F ~x0, NOt being true ind under(zq /t, z1 /b] [but true in any
~-classical modet’ of C, for C’ is ~-negative]. Thus, the logic df3[, C’|}
is a proper~-paraconsistent}-subclassical] extension @f, so (i}=(vi).

Finally, assumell has no ternanp-relative conjunction andb} forms
a subalgebra off. In that case~%b = b. Let B be the subalgebra of
A2 generated byl.;. If (f,f) was in B, then there would be some €
Fm?, such thatp®(f,t,b) = f = ¢%(t,f,b), in which case it would be
a ternaryb-relative conjunction fo®l. Likewise, if either(b,f) or (f,b)
was in B, then there would be some € Fm3, such thaty®(f,t,b) = f
and p*(t,f,b) = b, in which case it would be a ternatyrelative con-
junction for . Therefore, asv*t = f and~%b = b, we conclude that
({(f,b), (t,b), (b, t}, (b, f), (f,f), (t,t)} N B) = @. Thus,B = L3 forms a
subalgebra o®(2. In this way, (iii)}=(ii) holds, as required. O

Theorem 6.3(B=(ii[i]) is especially useful for [effective dis]proving the
maximal~-paraconsistency af [cf. Example 8.10].

6.1 Maximal paraconsistency versus subclassical consistent extensions
Theorem 6.4. Suppos€ is ~-subclassical [in particular{f, t} forms a sub-
algebra of2(, in which caseC° is defined byA[{f, t}; cf. Theorem 5.5(i)].
Then, (iiix=(iv)=(v)(vi)=(i)=(ii) < [=](iii), where:

(i) C has a consistent nor-subclassical (viz, not being a sublogic of
C"C; cf. Theorem 5.5) extension;

(ii) 24 has no binary conjunction, in which caé&has a proper~-paracon-
sistent~-subclassical extension (cf. Theorem 6.3);

(iiiy Lo = {(f,t), (t,f)} forms a subalgebra of2[[{f, t}])?;
(iv) (A[I{f,t}])? has a truth-empty submatrix;

(v) CP¢l has a truth-empty model;
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(vi) CP€I has no theorem.

Proof. First of all, note that, the non-“[]"-optional versions of the items ([iii]-
iv) hold if[f] the “[]"optional ones do so.

Next, assumé&l has a binary conjunction. Consider any consistent exten-
sionC’ of C. In caseC’ is ~-paraconsistent, by Theorem 6@, = C C
C™C. Now, assumé&" is non~-paraconsistent. Then, 6% is consistent, we
havez, ¢ C'(2), while, by the structurality of”, (§ms:, C’(2)) is a model
of C’ (in particular, ofC), and so is its consistent finitely-generated submatrix
B £ (Fmy, Fmy, NC'(2)), in view of (2.7). Hence, by Lemma 2.1, there are
some sef, someC € S.(A)! and some subdirect produbtof it such that
B is a strict surjective homomorphic counter-image of a strict surjective ho-
momorphic image oD, in which caseD is a consistent model @’, in view
of (2.7), and so, a noR~-paraconsistent submatrix of!. Then, by (2.7),
Lemma 5.1 and Theorem 5.5 Yamatrix definingCT¢ is embeddable into
D, in which case”’ C CPC, and so (i} (ii) holds.

Further, [as~*t = f] (iii) = [«<](ii) as well as (jiiy=(iv)=(v)<(vi) are
immediate, by (2.7) and the fact that, by the structurality of BApgic C’,
(Fms, C’'(w)) is a model ofC’.

Finally, assume (v) holds. L& be a truth-empty model af’, in which
case the logic oB is an extension of’ without theorems, and so a consistent
one. Moreover, the rule, - z; is true in3 but is not so in any both consistent
and truth-non-empty (in particulas;-classical)>-matrix, so (i) holds. O

As it is demonstrated by the following immediate counterexample, the
item (i) of Theorem 6.4 does not holohconditionally

Example 6.5. Let ¥ = {~}, in which case{f, t} forms a subalgebra &1,
while B = {(f,t), (t,f)} forms a subalgebra ¢#?, and so, by Theorems
6.4 and 5.5,C, being ~-subclassical, has a consistent nersubclassical
extension. O

7 WEAKLY CONJUNCTIVE THREE-VALUED PARACONSIS-
TENT LOGICS WITH SUBCLASICAL NEGATION

Fix (in addition to~) any (possibly, secondary) binary connectivef X.

Example 7.1. Suppose eithed is weaklyA-conjunctive or botHf, t} forms
a subalgebra oft and A [{f,t} is weaklyA-conjunctive. Then(zo A z1) is a
binary conjunction fofl. O
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By Theorems 4.1, 6.3 and Example 7.1, we immediately get the following
corollary, subsuming the reference [Pyn 95b] of [7]:

Corollary 7.2. Any three-valued--paraconsistent weakly-conjunctiveX-
logic with subclassical negatior is maximally~-paraconsistent.

7.1 Subclassical weakly conjunctive three-valued paraconsistent logics

Remark7.3. If AisweaklyA-conjunctive, then we havgA?b) = f = (bA?

f), in which case we ge((f, b) A (b,f)) = (f,f) & Ly D {{f,b),(b,f)},

and soL, does not form a subalgebra 4¥. O
By Theorem 5.5 and Remark 7.3, we immediately have:

Corollary 7.4. [Providing C' is weaklyA-conjunctive (viz.,A is so)] C is

~-subclassical if[f]{f, t} forms a subalgebra of(, in which caseA[{f,t}

is isomorphic to any~-classical model of”, and so defines a unique-
classical extension af, that is,CC.

Likewise, by Theorem 6.4 and Remark 7.1, we immediately have:

Corollary 7.5. LetC” be a consistent extension 6f. Supposéf,t} forms a
subalgebra ofdl and A[{f, t} is weaklyA-conjunctive (in particularA [viz.,
C]is so0). Then,A[{f,t} is a model o’ (i.e.,CT is an extension of”; cf.
Theorem 5.5).

Example 6.5 shows that the condition of the weakonjunctivity cannot
be omitted in the formulation of Corollary 7.5.

8 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Fix (in addition to~ andA) any (possibly, secondary) binary connectivef
3.

Lemma 8.1. Let B be a false-singular (in particular~-[super-]classical)
Y-matrix andC’ the logic of 3. Then, the following are equivalent:

(i) C’is VY-disjunctive;
(iiy Bis Y-disjunctive;
(ii) (2.2), (2.3)and(2.4)are satisfied inC’ (viz., are true in3).

Proof. First, (ii)=(i)=(iii) are immediate. Finally, assume (iii) holds. Con-
sider anya, b € B. In case(a/b) € D5, by (2.2)/(2.3), we havéa VP b) €
DE. Now, assumé{a,b} N DB) = @. Then,D® % a = b. Hence, by (2.4),
we getD? # (a V® a) = (a Y b), so (i) holds, as required. O
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8.1 Disjunctive extensions
By CMP we denote the extension 6f relatively axiomatized by th#odus
Ponengule for thematerialimplication~xq V¥ x;:

{zo, ~zo Y21} F 1. (8.1)

Likewise, byC® we denote the extension 6f relatively axiomatized by the
Resolutiorrule:

{I0!I17N$0¥$1} "Il. (82)
Clearly, CN? ¢ CMP C CR, by (2.2), whenevef is V-disjunctive. Gener-
ally speaking, the converse inclusions need not hold, as we show below.

Remark8.2 Given anyV¥-disjunctiveX-logic, by (2.4)(2.3), applying[z1/
xo, Ta/x1, To/21]|[21/%0, 0 /21] tO (041(2.5) Y 20)|(8.2), any extension of
C’ satisfies (8.3)0+1(2.5)Y x), whenever it satisfie&r1(2.5)Y z4)|(8.2).
Hence,C® is the extension of relatively axiomatized by ;(2.5)Vzo. O

Theorem 8.3. LetC’ be an extension af'. Suppos€ is V-disjunctive (viz.,
Ais so; cf. Lemma 8.1). Then, the following are equivalent:

(i) C’is~-classical;
(iiy C'is proper, consistent and-disjunctive;
(i) {f,t} forms a subalgebra ol andC" is defined byA[{f,t};
(iv) Cis ~-subclassical and’ = CT¢;
(v) ¢’ = C®is consistent;
(vi) C’is consistent, nor--paraconsistent and-disjunctive.

In particular, C® is consistent ifC is ~-subclassical, in which case® =
C™C. Moreover,C' has no consistent nor-classical (in particular~-para-
consistent) propeY-disjunctive [in particular, axiomatic] extension.

Proof. First, (i/ii) is a particular case of (iv/vi) respectively. Next=iii) is
by Lemma 8.1. Further, (ii3-(iv) is by Theorem 5.5.

Now, assume (ii) holds. Then, by Corollary 3.10, is defined by some
S C S.(A), inwhich cased ¢ S # @. Consider any3 € S. Then,f € B,
for Bis consistent, in which case= ~*f € B,and so, a® # A, B = {f,t}
forms a subalgebra &, while S = { Al{f,t}}. Thus, (iii) holds.
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Furthermore, in case (iii) holds, a§is ~-paraconsistent4[{f,t} is the
only non-~-paraconsistent member 8f.(.4), and so (v) is by Theorem 3.8
and Remark 8.2.

Finally, (v)=(vi) is by Theorem 3.8 and Remark 8.2. O

Corollary 8.4. Suppose” is V-disjunctive (viz.,A is so; cf. Lemma 8.1).
Then, the following are equivalent:

(i) NP is an axiomatic extension ¢f;
(i) CNPis V-disjunctive;
(i) CNP isinconsistent;
(iv) CNP = CR.

Proof. First, (iii)=(iv) is by the inclusionCN? C CR. Next, (iii)=-(i)=(ii)
are immediate. Further, (i¥)}(ii) is by Theorem 3.8 and Remark 8.2. Finally,
(i)=>(ii) is proved by contradiction. For suppo&&'" is bothY-disjunctive
and consistent. Then, by Theorem 8.3&xjii,v), {f,t} forms a subalgebra
of 21, in which caseB = (A x (A[{f,t})) € Mod(C) (cf. (2.7)) is not
~-paraconsistent, fad [ {f, t} is ~-negative, and s € Mod(CNF), while
CNP = CR, whereas (8.2) is not true i under[zo/(b,t),z1/{f,t)]. O

8.2 Subclassical disjunctive three-valued paraconsistent logics
First of all, by Theorems 5.5 and 8.3, we immediately have the following
“disjunctive” analogue of Corollary 7.4:

Corollary 8.5. [Providing C' is Y-disjunctive (viz.,A is so; cf. Lemma
8.1)] C'is ~-subclassical if[f]{f, t} forms a subalgebra o, in which case
Al{f,t} isisomorphic to any--classical model of’, and so defines a unique
~-classical extension af, that is,CTC.

Corollary 8.6. Supposed is J-implicative (and so i¥5-disjunctive), where
Jis a (possibly, secondary) binary connectivegfandC' is ~-subclassical.
Then,CTC is a unique proper consistent axiomatic extensiorCoénd is
relatively axiomatized by thiex Contradictione Quodlibetxiom:

~Tqo ] (JJO - Jil). (8.3)

Proof. In that case, by Corollary 8.5f,t} forms a subalgebra &, while
B £ (A[{f,t}) definesCFC. On the other handj3 is the only consis-
tent proper submatrix ofA. Moreover, it, being both--negative andz-
implicative, is a model of (8.3) not being true #under[z, /b, x; /f], for it
is J-implicative. Then, Theorems 3.8 and 8.3 complete the argument]
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Next, combining Remark 2.3 with Corollaries 8.5 and 7.5, we get the fol-
lowing “disjunctive” analogue of the latter:

Corollary 8.7. Suppos€& is V-disjunctive (viz.,A is so; cf. Lemma 8.1) and
~-subclassical. Then, any consistent extensiafi &f a sublogic ofCT°.

Example 6.5 shows that the condition of tHeconjunctivity cannot be
omitted in the formulation of Corollary 8.7.

On the other hand, Corollary 8.5 equally ensues from Lemma 8.1 and the
following interesting result:

Theorem 8.8. C has a [Vdisjunctive]~-classical extension (viz., model [cf.
Lemma 8.1]) if[f] {f,t} forms a subalgebra of(, in which caseA{f,t}

is isomorphic to any~-classical model of”, and so defines a unique-
classical extension af'.

Proof. The “if"+“in which case” part is by Theorem 5.5. [Conversely, let
D be aV-disjunctive ~-classical model of”. We prove that{f,t} forms

a subalgebra ofl by contradiction. For supposff,t} does not form a
subalgebra of. Then, by Theorem 5.5[, forms a subalgebra o2,

B £ (A2%]L,) beingV-disjunctive, forD is so. Therefore, aé,t) € D5,
we have{(b,t) V® (f b), (f,b) Y® (b,t)} C D5, in which case we get
{bV¥f V¥ b} C D4, and so we eventually gétf,b) V® (b,f)) € D5,
This contradicts to the fact théf(f, b), (b, f)} N D¥) = &, as required.] O

Itis remarkable that the-disjunctivity of C'is not required in the formula-
tion of Theorem 8.8, making it the right algebraic criterior(8$ being “gen-
uinely subclassical” in the sense of having@nuinely(viz., functionally-
complete) classical extension.

By Theorems 4.1, 6.3, Lemma 8.1, Corollary 8.5, Example 7.1 and Re-
mark 2.3, we eventually obtain the following one margversalmaximality
result, being essentially beyond the scopes of the reference [Pyn 95b] of [7]:

Corollary 8.9. Any three-valued’/-disjunctive~-subclassical~-paracon-
sistent>-logic is maximally~-paraconsistent.

The following counterexample shows that the condition of beingub-
classical in the formulation of Corollary 8.9 is essential:

Example 8.10. Let ¥ = {~[, 4]} [wherew is binary], while~*b = b
[whereas:

ifa=">
(aup =% "7
b otherwise
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forall a,b € A, in which case (2.2), (2.3) and (2.4) are truednand so, by
Lemma 8.1 is W-disjunctive, in which case this has no propedisjunctive
~-paraconsistent extension; cf. Theorem 8.3]. Bitforms a subalgebra of
2A2, so, by Theorem 6.3 is not maximally~-paraconsistent [and so is not
~-subclassical, by Corollary 8.9]. O

9 THREE-VALUED PARACONSISTENT LOGICS WITH SUBCLA-
SSICAL NEGATION AND LATTICE CONJUNCTION AND DISJ-
UNCTION

A Y-algebra® is said to be gdistributive] (A, V)-lattice, provided it satisfies
[distributive] lattice identities for andV, that is,(B, A®, V®) is a [distribu-
tive] lattice (in the standard algebraic sense; cf. [5]), whose partial ordering
is denoted by<™.

Throughout this subsection, it is supposed that:

e 2isa(n,Y)-lattice, in which caséA, <?) is a chain poset faid| = 3,
and sal is a distributive(A, V)-lattice;

e f is the least element of the poset involved or, equivalendlyis A-
conjunctive¥-disjunctive, that isC is so/, in view of Lemma 8.1, and
soC' is maximally~-paraconsistent (cf. Corollary 7.2), while it4is-
subclassical iff{f,t} forms a subalgebra @1, in which caseC*° is
defined byA[{f,t} (cf. Corollary 7.4).

Remarl9.1 SinceA is V-disjunctive, whilef is the least element of the poset
(A, <), we havg(~(xgYz1)Vay) € C(~xoYay). Therefore, any extension
of C satisfies (8.2), whenever it satisfies (8.1). In partic@ldff = C®. O

Lemma 9.2. Let I be a finite setC € S.(A)! and B a consistent non--
paraconsistent subdirect product 6f Then,{f,t} forms a subalgebra of(
andhom(B, A[{f,t}) # @.

Proof. Then, ag/ 4, <*) is a chain, we have(< / >)%t. Moreover~%b ¢
DA = {b,t}. Thereforeb(< / >)*~*b. Let us prove, by contradiction,
that there is someé € I such thato ¢ C;. For suppose, for eache I,
b € C;. By induction on the cardinality on any C I, let us prove that there
is somea € (B N {f/t,b}!) including J x {b}. First, in case/ = @, by
Lemma 3.1, we havé = (I x {f}) € B,andso(J x {b}) = @ Ca =
(d/~®d) = (I x {f/t}) € (BN {f/t,b}!). Now, assume/ # &, in which
case there is somee J C I, and soK = (J \ {j}) C I, while |K| < |J|.
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Hence, by induction hypothesis, there is same (B N {f/t,b}!) including
K x {b}. Moreover, agi € I, we haveb € C; = m;[B], in which case
there is someé € B such thatr;(b) = b, and sac = (b(A/V)2~%b) € B,
while, for everyi € I, m;(c) = b, if m;(b) = b, andm;(c) = (f/t), otherwise,
in which caser € {f/t,b}!, while 7;(c) = b, and so, ag/ = (K U {j}),
we eventually getJ x {b}) C (a ¥Y® ¢) € (BN {f/t,b}!), as required.
In particular, when/ = I, we havea = (I x {b}) € B, in which case we
get{a,~%a} C DB, and soB, being consistent, is-paraconsistent. This
contradiction shows that there is somec I such thatb ¢ C;, in which
caseh = (m;|B) € hom(B,C;), while C; forms a subalgebra &, whereas
Ci = (A[C;). Finally, asC; is consistent, in which casee C;, and so
t = ~¥f € C;, we eventually conclude that; = {f,t}, forb ¢ C;. O

Theorem 9.3. CNY is consistent ift” is ~-subclassical, in which cas, t}
forms a subalgebra o?l and CNY is defined by4d x (A[{f,t}).

Proof. First, assumé&' is ~-subclassical.

Then, any~-classical extension af' is a both consistent and nenpa-
raconsistent extension ¢f, and so a consistent extension@¥*’, in which
case this is consistent too.

Moreover, by Corollary 7.4{f, t} forms a subalgebra @&, in which case
we have thez-matrix B £ (A x (A[{f,t})). Consider any finite set, any
C € S.(A)! and any subdirect produ@® € Mod(C™Y) of C, in which
caseD is not ~-paraconsistent. Put = hom(D, B). Consider anyu €
(D\ DP), in which caseD is consistent, and so, by Lemma 9.2, there is some
g € hom(D, Al{f,t}) # &. Moreover, there is somec I, in which case
f = (m1D) € hom(D, A), such thatf(a) ¢ D*. Then,h = (f x g) € J
andh(a) ¢ DB. In this way, ([[As) € homg(D,B”). Thus, by (2.7)
and Theorem 2.2;N" is finitely-defined by the six-valuel, and so, being
finitary, for both the three-value@ and (2.5) are so, is defined Iy

Conversely, assum@™? is consistent, in which case ¢ T = CNP(2),
while, by the structurality o0, (m, T) is a model of CNP (in par-
ticular, of C), and so is its consistent finitely-generated submafix=
(Fmy, T N Fmy), in view of (2.7). Hence, by Lemma 2.1, there are some
finite setl, someC € S, (A)!, some subdirect produ of it, being a strict
surjective homomorphic counter-image of a strict surjective homomorphic
image of B, in which case, by (2.7)D is a consistent model af’NF, so
it is not ~-paraconsistent. Thus, by Lemma 9.2 and Corollary T.4s ~-
subclassical, as required. O
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Lemma 9.4. Suppos€f,t} forms a subalgebra o (i.e., C is ~-subclassi-
cal; cf. Corollary 7.4). Then, ((B>(ii) and) (ii)=(iii) =(iv), where:

(i) Aisregular;

(i) Ksi1y) £ {(f.f),(b,f),((b,t),)(t,t)} forms a subalgebra of?;
(i) Cngpge (@) = Cna(@);
(iv) Ais notimplicative.

Proof. (First, assume (i) holds. L& be the subalgebra @2 generated by
K4, in which case it is a subalgebrafifx (A[{f,t}), for {f,t} = m [K}4]
forms a subalgebra &. If (t,f) was inD, there would be somg € Fmy,
such that bothp® (f, b, b, t) = t and®(f,f,t,t) = f, in which case, since
a C b, for everya € {f,t}, by the regularity of2, we would getf C t.
Therefore, as-® (f/t) = (t/f), we conclude thab = K, and so (ii) holds.)

Next, assume (ii) holds, in which caseq1)[K341)) € hom[ss] (A?]
K341y, A[I{f, t}]), and so (2.7) and (2.8) yield (iii).

Finally, (iii)=-(iv) is by (2.1) and Corollary 8.6. O

Lemma 9.5. Supposdf,t} forms a subalgebra o# (i.e., C is ~-subclassi-
cal; cf. Corollary 7.4). Then, (& (ii) <(iii) =(iv), where:

(i) neither~*b = b (thatis,C(xg) = C(~~xg)) norb <* t;
(i) Ls 2 ((Ax {f,t})\ {(b,f)}) forms a subalgebra o#(?;

(iv) CNP has a proper non-axiomatic extension being both that'and a
proper sublogic of>™¥ | being, in its turn, an axiomatic extension(f
and so ofCNF,

Proof. First, (i}=(ii) is immediate.

Next, if (~®b = b)/(b <2 t), then we have~2" (b, t)/((b,t) A%’
(t,f))) = (b,f) & L5, in which caseLs 2 {(b,t), (t,f)} does not form a
subalgebra o2(2, and so (iii}=(ii) holds.

Further, assume (iii) holds, in which case (ii) holds too, as it has been
proved above. Then, by (2.7) and Theorem 9.3, the consistéogic C’ of
the consistent submatriR £ (A2[Ls) of B = (A2[(A x {f,t})), defining
CNP is a consistent extension 6f"*! and so a sublogic af”¢ = CMP (cf.
Corollary 7.5, Theorem 8.3 and Remark 9.1). Moreover, (8.1) is not trike in
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underzo/(b,t), 1 /{f,t)], and saC’ is a proper sublogic af™¥. And what
is more, since, foralk € D = L, itholdsthat ~®a € DP) = (a = (f,f)),
while A is V-disjunctive, whereag ¢ D4, we conclude that

{~xo,2o Y21} F 29 (9.1)

is true inD. However, (9.1) is not true i under|zy/(b, ), z1/(f,t)], and
so(" is a proper extension a1, In addition,(m [ D) € hom®(D, A), in
which case, by (2.8), we hawg(@) C CNP(@) C ¢'(@) C C(@), and so
C' is not an axiomatic extension NP1, Finally, by (ii), A is —-negative,
where—zy = ~(z¢ A (~~zo ¥ ~x0)), in which case it, beiny-disjunctive,
is TJ-implicative, where(zq 3 x1) £ (-2 Y x1), and so Corollary 8.6
completes the argument of (iv), as required. O

Lemma 9.6. Let C’ be an extension af’. Suppos€8.1)is not satisfied in
C’ and L5 does not form a subalgebra @f? (in particular, ~(xg A ~zg) €
C(2), i.e., either~®b = b — that is,C(zg) = C(~~mzg) —orb < t; cf.
Lemma 9.5(iii}s(ii) < (i)). Then,C’ is a sublogic of0™NF.

Proof. The case, whed'™" is inconsistent, is evident. Otherwise, by Theo-
rem 9.3,C is ~-subclassical, in which cadd, t} forms a subalgebra &,
CNP being defined by the submatrix = (A x (A[{f,t})) of .42, and so
it suffices to prove thats € Mod(C’). On the other hand, a8’ does not
satisfy (8.1), by Theorem 2.2, there are some finitefsebmeC € S, (A)!
and some subdirect produBte Mod(C”) of it not being a model of (8.1), in
which case there are somes DP C {b,t}! and somé € (D \ DP) such
that(~®aV®b) € DP,andsoJ £ {i € I | mi(a) =b} DK = {i € 1|
mi(b) =f} # @. PutL 2 {i € I | 7;(b) = t}. Then, given anyi € A®, set
(aolarlazlaslas) £ ((I\(LUK)NT) % {ao}) U((T\ (LUT)) x {ar})U
(L\J) x{ax})U((LNJ) x {a3z}) U (K x {as})) € AL. In this way:

D > a = (b|t|t|b|b), 9.2)
D > b = (b|b|t]t|f). (9.3)

Moreover, by Lemma 3.1, we also have:

D > f = (fIf|f|f|f), (9.4)
D >~ f = (tlt|t|t]t). (9.5)

Consider the following exhaustive (as'b € D4 = {b,t}) cases:
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1. ~%b=bh.
Then, in casé <* t, by (9.2) and (9.3), we have:

D 3 e2 (an®b) = (b|bt|blf), (9.6)
D 3 ~®e = (blblf|bt), (9.7)
D3 c2 (eV® ~®b) = (bb|t|blt), (9.8)
D 5 ~®¢ = (b|blf|blf). (9.9)
Likewise, in caséb(< / >)*t, by (9.2) and (9.6)/(9.3), we have:
D >d=2 ((e/b) Y® ~®a) = (b|blt|b|b), (9.10)
D 5 ~®d = (b|b|f|b|b). (9.11)

Consider the following complementary subcases:

(& L CJ.
Then, sincel O K # @ = (L \ J), by (9.4), (9.5) and (9.10),
(9,1 x{g}) | g € A} is an embedding ofd into D, in which
case, by (2.7),A is a model ofC’, for D is so, and so i3, for
{f, t} forms a subalgebra &f.
(b)y LZJ.
Then, consider the following complementary subsubcases:
i. there is some € Fmy, such thato® (b, f) = f andp®(f, f)
= t'
in which case, by (9.4) and (9.11), we have:

D 3 p®(~%d, f) = (f|f|t[f|f), (9.12)
D 3~ (~2d, f) = (t]t|f|t]t). (9.13)

Then, sincg L\ J) # @ # K, taking (9.4), (9.5), (9.10),
(9.11), (9.12) and (9.13) into account, we see that

{{(g,h), (glglhlglg)) | (g,h) € B}

is an embedding oB into D, and so, by (2.7)B is a model
of C’, for D is so.

ii. there is nop € Fm3, such thatp® (b, f) = f andp®(f,f) =
t,
Then,b <* t, for, otherwise, we would have < b, in
which case we would gep®(b,f) = f andp*(f,f) =
wherep £ ~(zo A ~x1) € Fm%. Consider the following
complementary subsubsubcases:
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A (UN(LUK)YNJH)UTN\ (LUD))U(LNJ)) =@.
Then, taking (9.6), (9.7), (9.8), (9.9), (9.10) and (9.11)
into account, af # & # (L \ J), we conclude that
{{{g, h), (blb|h|blg)) | (g9,h) € B} is an embedding of
B into D, and so, by (2.7)3 is a model ofC’, for D is
Sso.

B. (N(LURK)NJ)UI\(LUD)U(LNJ)) #@.
Let & be the subalgebra @ x 2 generated byB +
2) £ ((B x {b}) U {{(i,q),i) | i € {f,t}}). Then, as
(N (LUK)NJ)U I\ (LUJ))U(LnJ)) #
o ¢ {K,L\J}, by (9.4),(9.5),(9.6), (9.7), (9.8), (9.9),
(9.10) and (9.11), we see thi((g, ). ), (il|hj]9)) |
{{g,h),7) € G} is an embedding of = ((B x A)|G
into D, in which case, by (2.7); is a model ofC’, for D
is so. Let us prove, by contradiction, tHaD” x {f}) N
G) = @. For supposé(DB x {f}) N G) # @. Then,
there is some) € Fm$, such that)®(t, b, b, b, b, b, b, f)
= fandy®(t,t,t,t,f,f,f,f) = t, for m [DB] = {t}.
Letp £ (~xy, ~xg, ~Tg, ~Tg, To, To, To, T1) € FmE,.
Then,*(b,f) = f andp®(f,f) = t. This contradic-
tion shows that(D? x {f}) N G) = @, in which case
(m0]G) € hom (G, B), and so, by (2.7)3 is a model of
C’, for G is so.

2.~ =t,
Consider the following exhaustive (44, <?) is a chain poset) sub-
cases:

(a) b <*t.
Then, by (9.2) and (9.3), we get:

D3¢ 2 (aY®b) = (blt|t|t]b), (9.14)
D> d 2 ~2 = (tf|f|f|t), (9.15)

D >¢e 2 ~2d = (flt|t)t[f), (9.16)
D> f' 2 (¢ A® d') = (blf[f|f|b). (9.17)

Consider the following complementary subsubcases:

i. (I\N(LUJ)U(L\JHU(LNJ))=2.
Then, sincel O K # &, by (9.4), (9.5) and (9.14), we see
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that{(g,I x {g}) | g € A} is an embedding afl into D, in
which case, by (2.7)4 is a model ofC’, for D is so, and so
is B, for {f,t} forms a subalgebra &X.
i. (UN(LUJ)U(L\J)U(LNJ))#a.
Then, asK # @, by (9.4), (9.5), (9.14), (9.15), (9.16) and
(9.17), we conclude thdt{{g, k), (g|h|h|h|g)} | {g,h) € B}
is an embedding oB into D, in which case, by (2.7)3 is a
model ofC’, for D is so.
(b) t <*b.
Then, by (9.2) and (9.3), we get:

D> 2 (aY®b) = (blblt|blb), (9.18)
D> d" & ~P = (tt|f|t]t), (9.19)
D3 e 22" = (fIf[t[f]f). (9.20)

Consider the following complementary subsubcases:

i. LCJ.
Then, asl # @ = (L\J), taking (9.4), (9.5) and (9.18) into
account, we see thétg, I x {g}) | g € A} is an embedding
of A into D, in which case, by (2.7)4 is a model ofC’, for
Dis so, and so i, for {f, t} forms a subalgebra &X.

i. LEJ.
Then, asL; does not form a subalgebra %, and so of its
subalgebras, there is some € Fm3, such thatp®(f, t, f,
b,t) = b andp*(f,f,t,t,t) = f, in which case, by (9.4),
(9.5), (9.18), (9.19) and (9.20), we get:

D> f" £ °(f,d",e",c",~® f) = (blblf[blb), (9.21)

and so, a¥ # @ # (L '\ J), taking (9.4), (9.5), (9.18),
(9.19), (9.20) and (9.21) into account, we see that

{{(g,h), (glglhlglg)) | (g,h) € B}

is an embedding oB into D, in which case, by (2.7%3 is a
model ofC’, for D is so. O

Theorem 9.7. Suppose&” is [not] non—~-subclassical. Then, extensions of
C form the(2[+2])-element chairC' C CNP = [Cn%, (4141.4y) SICMPIR =
[CPC = Cn% (ryy ) Cng, CNF [not] being axiomatick-disjunctive, [iff
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Ls does not form a subalgebra &f? (in particular, ~(z¢ A ~z0) € C(9),

i.e., either~®b = b — that is,C(xy) = C(~~zg) — orb <* t), in
which caseCT¢ is V-disjunctive, while, providingd is TJ-implicative, where

3 € FmZ,/ K3(41) forms a subalgebra of(? (in particular, 2l is regular),
CTC is relatively axiomatized b{B.3y C*C(@) = C(2), in which caseCT¢

is an axiomatic extension @f/ both proper consistent extensiongbére not
axiomatic, and s@' has a unique/no proper consistent axiomatic extension].

Proof. By Theorems 8.3, 9.3, Lemmas 9.4, 9.5, 9.6, Corollaries 7.2, 7.4, 7.5,
8.4, 8.6 and Remark 9.1. O

Concluding this subsection, we briefly discuss various representative in-
stances, assuming that O Z(ND[’)OU £ ({A,V(,D)], L, T]}), where bothv
and A (as well asD) are binary [while bothL and T are nullary, whereas
1% =fandT* =1].

First of all, taking Corollary 4.5 into account, the case, whétb = b,
A=A, Y =Vandb <% t, covers arbitrarghree-valuedexpansions of the
Y -logic of paradoxL P [6] (cf. [7] for the equivalent matrix definition of
it tacitly used here), including those by constants — as regular ones — (in
particular, theboundedX.., o;-expansionL Py, of LP) as well as arbitrary
three-valuedexpansions of th&2-logic of antinomies. A [1], when(a >*

b) = (max(1 — ag, bp), max(1 — ag, b)), foralla, b € A, inwhich cased is
D-implicative (in particular, theboundedEEm-expansionLAm of LA). In

this way, Theorem 9.7 subsumes respective results obtained originally in [7],
[8] and [11]ad hoc Moreover, this case covers the axiomatic extensions of
arbitrary non-maximally~-paraconsistent four-valued logics studied in [12]
by theExcluded Middle Lavaxiomzq \VV ~xq including L(P/A)o1).

Likewise, taking Corollary 4.5 into account, the case, whétb = b and
A is a (A, V)-lattice with zerob and unitt (in which caseA is neithera-
conjunctive notv-disjunctive, though), and so(a, V)-lattice, wherexn = A
andY = V (cf. Remark 2.3), with zeré and unitb (it is this non-artificial
instance that warrants regarding the case, whe® b), in which caseA is
J-implicative, where(zg 3 1) £ ((~x9 A ~x1) V 1), covers arbitrary
three-valuedexpansions of th&, _-logic HZ [3]. In this way, Theorem 9.7
subsumes respective results obtained originally in [9] and4d@iljoc

And what is more, the case, whewb = t, in which case~* is not
regular,A = A, Y = vV andb <* t (as well as(a D% b) = min{c € A |
b < max(c,a)}, forall a,b € A), in which case, whelt = 2931, {f,t}
forms a subalgebra &, while K5 1, does{not} form a subalgebra cii*

— itis this case that warrants involvirfgs in addition toK 4, and saA is not
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(D-)implicative, in view of Lemma 9.4, is equally covered by Theorem 9.7.
In this connection, the subcase, when= 29731, and soC' is actually dual

— via both the lattice duality and the truth predicate complement — to the
Y. o1-fragment of (resp., to) Gdel’s three-valued logic [2] (itself), deserves
a particular emphasis. Theff,t} forms a unique subalgebra f while

Ay = (AJ{f, t}) satisfies the identity:

(20 A ~) & L, (9.22)

not being true irkl under[x/b]. Therefore, that subprevariey of the pre-
variety P; generated by, which is relatively axiomatized by the (9.22),
is generated byl — the reader is referred to [8] as for the conception
of prevariety Moreover,2 /2, is embeddable into any/ non-one-element
member of(P3 \ P2)/Ps, respectively. HenceR- is the only subprevari-
ety of P53 distinct from this and containing a non-one-element algebra. On
the other hand, according to Theorem 97 has two distinct proper con-
sistent extensions. In this way, as opposed to the above instances, when
DA =1{ac A| A (x0 = (g V ~x0)[a]}, the general study [8] is
not applicable to the one under consideration. This highlights a particular
value of Theorem 9.7 as well as of the case involved, though being, to some
extent, rather artificial.

After all, the following counterexample collectively with Lemma 9.5(iii)
=(iv) show that the condition of 5’s not forming a subalgebra @f? cannot
be omitted in the formulations of Lemma 9.6 and Theorem 9.7:

Example 9.8. LetY = X, ~*b =t,A = A, ¥ = vandf <* t <% b,
in which case{f,t} forms a subalgebra & (i.e., C is ~-subclassical; cf.
Corollary 7.4), whileL; forms a subalgebra &f>. O

10 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION AND CLASSICALLY-VAL-
UED CONNECTIVES

An n-ary, wheren € w, operationf on A is said to beclassically-valuedif
(img f) C {f,t}.

Throughout this subsection, it is supposed thais V-disjunctive (that
is, A is so; cf. Lemma 8.1) and all primary operations0are classically-
valued, in which case:

o ~Ap=1t;
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e {f,t} forms a subalgebra df, and soC is both ~-subclassical (cf.
Corollary 8.5) and maximally--paraconsistent (cf. Corollary 8.9);

¢ A is both—-negative A-conjunctive andd-implicative, where:

) é N(.’L‘O Y fﬂo),

(l‘oKJEl) _|(_|$0¥_\I1),

> 1>

(.Qiozll‘l) (—\aj()!xl),

and saC"C is an extension of any consistent extensiof'dtf. Corol-
lary 7.5) and the only proper consistent axiomatic extensiofi ¢tf.
Corollary 8.6), whiles? £ {~fz; 3 ~fz_; | i,j € 2} is an ax-

iomatic binary equality determinant fot (cf. Remark 4.2).

It is remarkable thav® = Y%, while the D-implicative ~-super-classical
{~, D}-matrix S with ~b = t and>® = 3% defines the/~, D}-logic P*
[13]. In this way, P! is a term-wise definitionally minimal instance of the
case under consideration.

Theorem 10.1. There is an increasing countable chain of finitary extensions
of C, and so such finitary extension 6f that is not (relatively) finitely-
axiomatizable, in which case this is consistent.

Proof. We use Theorem 2.2 witli £ Mod(C) tacitly.

Letn € (w\ 1) andC,, the finitary (forC, being three-valued, is so) ex-
tension ofC relatively axiomatized by the finitary rulg,, = (({~x; | i €
n}U{¥(z:)ien}) F z,). Then, ag’, being¥-disjunctive, satisfies (2.3), and
sodoes any € K, whenR,, is nottrue in3 underany : V,,. 1 — B, for ev-
erym € (w\n), Ry, isnottrue in3 undervU[z; /v(z0); T /v(2n)] je(m\n)-
S0,(C):cn is an increasing denumerable chain of finitary extensiorgs. of

Claim 10.2. For anyn € (w \ (1(+1))), there is a consistent subdirect
power A,, € Mod(C) of A such thatR,, is [not] true in A,y (and
DA = {n x {t}}).

Proof. Since all primary operations @f are classically-valued, the sdt, £
({87 U {0, b)) U ((n\ {i}) x {f}) | i € n}) > (n x {f}) forms a
subalgebra of(™, so we have the consistent (far#£ 0) subdirectn-power
A, 2 (A"A,) € Mod(C) (cf. (2.7)) of A with DA» = {n x {t}},
whenevem # 1. Then, asA is V-disjunctive, R,, is not true inA,, under
[/ ({(2,6)} U ((n\ {i}) x {F})); @/ (n x {f})]icn bUtis true ind, 1. O
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Then, by Claim 10.2, the increasing chdifl,, )¢ .\ 1) is injective, and
so countable, in which case the finitary (for bath being three-valued, and
all R,, n € (w\ 1), are so) extensiof,, of C relatively axiomatized by
{R, | n € (w\ 1)} is a proper extension af,,, for anyn € (w \ 1), and so,
by the Compactness Theorem for classes of algebraic systems closed under
ultra-products (cf. [5]) — in particular, finitary logic model classes, being
universal Horn model classes axiomatized by calculi of all rules satisfied in
finitary logics,C,, is not (relatively) finitely axiomatizable, as required.C]

As it has been demonstrated in the previous section, the conditi@i’s of
primary operations’ being classically-valued cannot be omitted in the formu-
lation of Theorem 10.1. It is remarkable thRf = (2.5), in which case
C; = CNP, while C,, being a consistent extension ©f is a sublogic of
C?C, and so the infinite chain involved appears intermediate betwéen
andC"™¢, in contrast to Theorem 9.7. And what is more, we have:

Proposition 10.3. There is nap € Fm% such that the identities:

o(xo,0) =~ 0, (10.1)
o(zo,r1) =~ @(x1,20) (10.2)

are true in%.

Proof. By contradiction. For suppose there is somec Fm% such that
(10.1) and (10.2) are true #. Then,p € V%, for, otherwise, (10.1) would not
be true in2( under[z/b], because all its primary operations are classically-
valued. However, in that case, (10.2) is not tru@liaonder[z, /f, 21 /t]. This
contradiction completes the argument. O

This makes the present section essentially disjoint with Section 9. In addi-
tion, in contrast to Lemma 9.2, we have:

Lemma 10.4. B & Ay € Mod(CMF) C Mod(CNP) (cf. Claim 10.2) is a
consistent subdirect square dfsuch thathom (B, A[{f,t}) = @.

Proof. Then,B £ A, € Mod(C) is a consistent subdirect square 4f
Moreover, a® ¢ 2, DB = {(t,t)}, while, for everyb ¢ B, it holds that
(~B(t,t) VB b) = ((f,f) VB b) € DB impliesb € D5, in view of the V-
disjunctivity of A and the fact that ¢ D. Hence, (8.1) is true i8. Finally,
let us prove, by contradiction, thabm(B, Al{f,t}) = @. For suppose
hom(B, Al{f,t}) # @. Take anyh € hom(B, Al{f,t}), in which case
h({t,t)) =t, for (t,t) € DB. Therefore, if, for any: € {(b,f), (f,b)} C B,
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it did hold thath(a) = t, we would havef = ~*t = h(~%a) = h((t,t)) =
t. Henceh((b,f)) = f = h((f,b)). Then, we gef = (f V¥ f) = h((b,f) V¥
(f,b)) = h((t,t)) = t. This contradiction completes the argument. [

As a consequence, in contrast to Theorem 9.3/both Theorem 8.3 and Re-
mark 9.1, we get:

Corollary 10.5. CNP/MP is not defined byp 2 ((A x (A[{f,t}))/(A{f,
t}))./ In particular, CM?P =£ C® is not V-disjunctive.

Proof. By contradiction. For suppos€N"/MP is defined byD. Then, by
Lemma 10.48 £ A, € Mod(CNP/MP) is a consistent subdirect square

of A such thathom(B, Al{f,t}) = @, in which case it is finite, ford is

so, and so is a finitely-generated consistent model'Sf/M?/, in which

case this is consistent. Therefore, by Lemmas 2.1, 3.3, 3.4 and 3.6, there
are some sef, someC € S(D)!, some subdirect produét of it and some

g€ homg(& B), in which casef is consistent, foB is so (cf. (2.7)), and so

I # @. On the other hand, by Lemmas 3.3, 3.4 and 3.8,injective, and so
((m1/Agey) om0 g~ ') € hom(B, Al{f,t}) = @, wherei € I # @. This
contradiction/ and Theorem 8.3 completes/complete the argument. [

Finally, P! collectively with Theorem 10.1 show that, despite of Theorem
9.7, three-valued (even both conjunctive, disjunctive and subclassical) para-
consistent logics with subclassical negation need not have finitely many (even
merely finitary) extensions.

11 CONCLUSIONS

Aside from quite useful non-trivial general results and their numerous illus-
trative applications, the present paper (like [12]) demonstrates a special value
of the conception of equality determinant initially suggested in [10] just for
the sake of construction d#o-sidesequent calculi fomanyvalued logics,
within the framework ofilgebraic aspects of MV.L

And what is more, the principal advance of the present study with regard
to the reference [Pyn 95b] of [7] consists in proving both the maximal para-
consistency of subclassical disjunctive three-valued paraconsistent logics and
inheritance of the maximal paraconsistencythyee-valuedexpansions of
maximally paraconsistent three-valued logics with subclassical negation, be-
cause both paraconsistency, subclassical negation and térnalative con-
junction are inherited by expansions, while the property of being subclassical
is not, generally speaking, so.
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After all, various effective algebraic criteria definitely make the paper
well-related toSoft Computing
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