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Schism
A Self-Hosting Scheme to WebAssembly Compiler

ERIC HOLK, Google, Inc., USA

Schism is a small, self-hosting compiler from a subset of R6RS Scheme to WebAssembly, a new portable low-level binary format
primarily targeting Web applications. The compiler was under one thousand lines of code when it first became self-hosting,
and has since grown to support additional Scheme features. While currently far from a complete Scheme, Schism supports
basic control flow, most basic data types and first class procedures. Schism provides an example of a small implementation of
a language targeting WebAssembly and demonstrates techniques that may be useful to other languages implementors. As a
dynamically typed functional programming language, Scheme is markedly different than languages with good WebAssembly
support, like C and C++, and thus shows that WebAssembly has achieved its goal of being able to support a variety of
languages. Still, Schism would greatly benefit from new capabilities in WebAssembly such as a proper tail call instruction
and garbage collection. Given Schism’s small size, it is well-positioned to provide early implementation experience to the
WebAssembly standardization process for these new features. In this paper we will discuss the design and implementation of
Schism, including compromises made to enable a quick and small implementation, as well as plans for future development on
Schism and influence on the WebAssembly standard.
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1 INTRODUCTION

Schism! is a small, self-hosting compiler from a subset of R6RS Scheme to WebAssembly. At the point that Schism
became self-hosting, it was under one thousand lines of Scheme code. Admittedly, this version lacked important
features such as first class procedures, leading one Redditer to ask “what kind of Scheme is this? [12]” Since
the initial release, Schism has continued to gain features and now includes first class procedures, rudimentary
garbage collection and experimental support for WebAssembly’s upcoming tail call instructions. The compiler is
currently about 1500 lines of code, so it remains a compact example of a standalone language implementation
targeting WebAssembly.

WebAssembly is designed to be a language-independent compilation target. Most of the work so far has been
towards C and C++ support, along with significant enthusiasm from the Rust community. What these languages
have in common is that they have very few requirements from their host environment. Indeed, all of three of
these languages can run without an operating system. Unfortunately, the first release of WebAssembly presents
challenges to languages that require features such as garbage collection, dynamic typing, and stack switching.
There are proposals to add support for all of these features to WebAssembly, but these would benefit greatly from
implementation experience. Languages such as C# and Go are working on WebAssembly implementations, but
they are large, mature projects and may not be well-suited for experimenting as new WebAssembly features are
under development.

Schism has a role to play here. Scheme is a language that is sufficiently different from C and C++ to present
interesting implementation issues. It must support features such as dynamic typing, first class procedures, proper
tail calls, and first class continuations. These features can be emulated with existing WebAssembly instructions,
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but often at a significant performance penalty. Because of Schism’s small size, it is feasible to do implementations
using both existing WebAssembly features and features that are under development. This leads to early feedback
into the design process as to whether a new features is usable in language implementations, and whether the
benefits of adding the feature outweigh the costs of additional complexity in the WebAssembly specification and
host implementations.

When Schism first became self-hosting, it supported a very small subset of Scheme. It has since grown to
support more features such as first class procedures and a limited form of garbage collection. Still more features
remain to be implemented, including proper tail call handling, macros and first class continuations.

This paper discusses the design and implementation of Schism. We start with a brief tour of WebAssembly
(Section 2). Next we will see the initial design decisions to bootstrap Schism quickly (Section 3), followed by
design changes and features that have been added since achieving self hosting (Section 4). Finally, we will see
how additional Scheme features might be added and ways that Schism’s implementation experience can inform
further developments in WebAssembly (Section 5).

2 ATOUR OF WEBASSEMBLY

WebAssembly is a portable, load time efficient binary format for web applications. For a thorough treatment of
the design of WebAssembly, see [8]. We review the relevant aspects of WebAssembly here.

WebAssembly grew out of a desire for faster web apps built from lower level code. There have been several other
efforts in this area, including ActiveX [5], Native Client [2, 18], and asm.js [9]. In many ways, WebAssembly grew
directly out of the work on asm.js, and in fact reuses several components such as the Emscripten toolchain [19].
WebAssembly has already gained significant support across the industry and is already included in most major
web browsers. Although web browsers have been the primary use case, WebAssembly was explicitly designed to
support other embeddings, such as on the server or even on blockchains [15]. The current version of WebAssembly
features a relatively simple architecture and features a formally specified semantics and sound type system.

Modules in WebAssembly are made up of code and items such as function imports and exports, function tables,
and data initializers. The code is split into separate functions, each of which carry their own type signature.
Functions each take some number of parameters, declare a number of local variables, and contain a sequence of
instructions. Instructions for the most part operate on specific types and perform a single operation. For example,
i32.add does an addition of two 32-bit integers. Other instructions, such as get_local and set_local, are
polymorphic and their types are determined from other sources, such as the variable declarations in the case of
get_local and set_local. The type system has only four types: 132, 164, f32, and f64, although more types
will probably be added in the future. Pointers are represented using the i32 type, although 64-bit memory address
support may be added in the future. WebAssembly has structured control flow, so it has control instructions such
as if and loop, but no general goto. Thus, it is not possible to make irreducible control flow graphs.

Modules are similar to libraries such as ELF .so files. They contain code, definitions and data, but cannot be
executed without first being instantiated. A WebAssembly instance is thus similar to an operating system process.
Instantiation involves loading a module, resolving any imported functions, and setting up the instance’s memory.
In the usual web context, imported functions may be implemented in JavaScript or by another WebAssembly
instance. Other embeddings will have their own mechanism for resolving imports.

WebAssembly is specified as a stack machine. Instructions consume their arguments from the stack and leave
their result on the stack. For example, the following instruction sequence adds two numbers.

(i32.const 5)
(i32.const 6)
i32.add
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The standard text format for WebAssembly is an S-expression format. For easier readability, arguments can be
folded into the instruction. Thus our previous example can also be written as

(i32.add (i32.const 5) (i32.const 6))
or even

(i32.const 5)
(i32.add (i32.const 6))

Most existing code generators largely ignore the stack machine nature of WebAssembly and instead use local
variables as registers. Schism takes advantage of the stack in several cases.

Besides local variables and the stack, WebAssembly provides a linear memory as well. This is accessed using
load and store instructions, and is simply a flat array of bytes. In the web embedding, the linear memory is
backed by a JavaScript array buffer. Schism uses the linear memory for heap-allocated values. The embedder, or
WebAssembly host, is responsible for bounds-checking accesses to the memory, in order to protect itself from
rogue WebAssembly programs.

WebAssembly has structured control flow. Thus control is specified in terms of properly nested blocks, loops,
if expressions, and other control instructions. While this can be challenging for producers coming from a
less structured language, WebAssembly’s structured control flow is a good fit for Scheme. For example, C to
WebAssembly compilers such as Emscripten must be able to convert unstructured control flow into structured
constructs such as loops and if statements, sometimes even requiring auxiliary variables to correctly implement the
control flow. On the other hand, Scheme’s basic control flow operators such as if map directly onto WebAssembly
instructures.

3 BOOTSTRAPPING SCHISM

The initial goal for Schism was to develop a small, self-hosting compiler targeting WebAssembly. For each feature,
we had to ask whether the effort to implement it would be less than the effort saved by using it on the way to self
hosting. This led to some unexpected choices.

For example, the first self-hosting version did not support lambda. Lambda took a relatively high amount of
effort to implement, but the most helpful uses for lambda in the compiler could usually be easily rewritten using
a helper function. Instead of writing (map compile-expr exprx*), we simply did:

(define (compile-exprx exprx)
(if (null? exprx)
'O

(cons (compile-expr (car expr*) (compile-exprx (cdr exprx))))))

Similarly, we were able to avoid a garbage collector by simply never freeing memory. Current WebAssembly
implementations allow WebAssembly programs to use nearly 2GiB of memory, which was enough for a Schism
to compile itself. Schism got surprisingly close to this limit because of an extremely inefficient representation of
strings and quoted symbols (Sections 3.5, 3.6). As Schism has gained additional features, we have added a simple
garbage collector, but even this is just enough to let the compiler work.

Schism is a standalone compiler. It uses nothing beyond a WebAssembly implementation and a small runtime
library. The runtime is currently implemented in JavaScript, but it would be easy enough to port to other hosts,
such as the WebAssembly reference interpreter [17]. Schism’s output is a binary WebAssembly module that it
generates directly without using external tools like Emscripten or the WebAssembly Binary Toolkit, WABT [16].

From the beginning, Schism was written in Scheme. We used an existing R6RS Scheme implementation (in
our case, Chez Scheme) to develop the compiler. Once the compiler was complete enough to compile itself, we
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switched to using previous snapshots of Schism to develop improved versions of Schism. The first version to
self-host can be seen on the Github repository under the Git tag self-host.?

The compiler is structured as a multi-pass compiler inspired by the NanoPass framework [10]. Each pass takes
a higher level form and translates it to a lower level version until finally we have a form that can be directly
converted to WebAssembly. Many of the passes are done as local, top-down transformations but some require
an analysis step. Analysis passes produce some data structure that can be used by subsequent passes. We will
see examples of this transformation process in the next few sections as we discuss how various features were
implemented. As much as possible, the goal was to have at all times a complete compiler that is able to translate
some subset of the input language into a correctly functioning WebAssembly module. Expanding the input
language subset typically involves adding new passes to the compiler or expanding existing passes to handle
more cases. Because features were added generally in order of increasing complexity, we generally added passes
from back to front. As the backend of the compiler is completed, additional language can often be added simply
by elaborating them into forms the compiler backend already understands.

3.1 First Steps
To first make progress, we started working on a compiler that could correctly compile the following program:
(library (trivial)

(export return_5)

(import (rnrs))

(define (return_5) 5))

This is a simple R6RS library that exports a function that returns the value 5. The library, once compiled to
WebAssembly, should similarly have have an exported function called return_5 that when called by the host
returns 5, or at least Schism’s representation of 5.

The first step was to be able to generate an empty WebAssembly module. The simplest module is, shown
as a list of bytes, (#x00 #x61 #x73 #x6d #x01 #x00 #x00 #x00), which is just a header consisting of the
null-terminated string "ASM" and the version number, 0x1. The rest of a WebAssembly module consists of sections
which describe function declarations, type signatures, imported and exported functions, as well as the actual
code for the functions.

Since just generating a header is boring, the next step was to add an empy types section. To do this required
the ability to generate LEB128-encoded numbers [7], which are a variable length number encoding used in
the DWARF debugging information format and also adopted by WebAssembly. We do this using the following
function:

(define (number->leb-u8-list n)
(if (and (< n #x80) (> n (- #x80)))
(list n)
(cons (bitwise-ior #x80 (bitwise-bit-field n @ 7))
(number->leb-u8-list (bitwise-arithmetic-shift-right n 7)))))
The ability to encode numbers gave us almost all the functionality we needed to encode the rest of a WebAssembly
module. The next few steps were to fill out the rest of a WebAssembly module. This included encoding types, a
function section and finally an empty function body.
At this point, it was time to compile our function body. The bulk of the work is done by a function called,
surprisingly enough, compile-expr. Since the compiler only supported numbers at this point, the function was
pretty simple:

Zhttps://github.com/google/schism/tree/self-host
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<library> := (library (name) (export <id> ...) (import <import spec> ...) <define> ...)
<define> := (define (<id> <id> ...) <expr> ...)
|  (%wasm-import <string> (<id> <id> ...))
<expr> := () | <number> | #t | #f | <char> | <string> | '<list> | ‘<quasiquoted list>
| (if <pred> <expr> <expr>) | (let ((<id> <expr>) ...) <expr>)
|  (begin <expr> ...) | (<intrinsic> <expr> ...) | (<expr> <expr> ...)
| (or <expr> ...) | (and <expr> ...) | (not <expr>)
| (cond (<expr> <expr) ... (else <expr>))
<pred> := #t | #f | (eq? <expr> <expr>) | (< <expr> <expr>) | <expr>
<intrinsic> := %read-mem | %store-mem | %get-tag | %set-tag | %as-fixnum | bitwise-and

| bitwise-not | bitwise-ior
| bitwise-arithmetic-shift-left | bitwise-arithemtic-shift-right | eof-object
| + | x| - | set-car! | set-cdr!

Fig. 1. The grammar supported by Schism when it first self-hosted.

(define (compile-expr expr env)
(cond
((number? expr) (list 'i32.const expr))))

This function simply translates numbers into WebAssembly constant instructions.

A little extra bookkeeping was needed to make sure this function was exported correctly, and we added a test
runner to make it easy to add and run additional tests like this one.

Now that we have a minimally functional compiler, we can get a general idea of what features are needed for
this compiler to self-host. These include:

o Multiple top-level functions

e Control flow, such as if and cond

e Predicates and boolean operators, such as eq?, and, or, not, <, etc.

e Variables

e Basic pair support, such as cons, car and cdr

e Quoted lists, symbols and numbers

o Basic string support (symbol->string and string->list)

e Character support, including char->integer

o A reader capable of handling basic S-expressions, symbols, numbers in base 10 and base 16, and comments.

It is certainly possible to build a self-hosting compiler without many of these features, but these provide reasonable
ergonomics without being overly difficult to implement. Figure 1 shows the grammar that was supported by the
first self-hosting version of Schism.

This feature list served as a roadmap for further development on the compiler. Sometimes, these features added
further dependencies. For example, the reader required further improvements to string handling.

3.2 Types and Data Representation

Scheme is a dynamically typed language. On the other hand, WebAssembly is statically typed. This difference
required some care in structuring the compiled output, although not too much beyond what is needed when
compiling Scheme to native machine code.
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Schism represents all Scheme objects as 32-bit integers. The three least significant bits contain a type tag
and the remaining 29 bits are the value of the object. For example, numbers are tagged with 0 and the 29 most
significant bits store the value of the number. This is a standard implementation technique for dynamically typed
languages.

Functions require some more care, because functions in WebAssembly are statically typed. We take advantage
of two simplifications:

o The only function definition form allowed is (define (foo a_1 a_2 ...) ...),
e all values are represented as 132,
e and all functions are assumed to return exactly one value.

These simplifications mean that for a function (define (foo a b c¢) ...), we can assign it the type (i32
i32 i32) -> (i32).Schism assumes functions are used correctly, so we do not perform any checking at the
call-site. The WebAssembly validator ensures functions are called correctly. Sometimes this leads to surprising
and confusing error messages, because it causes the WebAssembly stack to not match up like it should.

3.3 Control Flow

Almost all of Scheme’s control flow and logical operators can be built from if. WebAssembly provides several
control flow mechanisms. Control flow in WebAssembly is generally built out of nested, labeled blocks. There are
two kinds of blocks: normal blocks and loop blocks. Normal blocks are similar to a begin expression in Scheme,
but with the option to break out early. WebAssembly’s break instruction, br, takes a numeric immediate value
which specifies the break depth. The break depth specifies which nested block to break out of. Consider the
following examples.

(block (block
(block (block
(br @)) (br 1))
;3 br transfers control flow to here ;; br transfers control flow to here
L)

Loop blocks are similar, except loop blocks define two labels. One label transfers control to the beginning of the
loop, similar to a continue statement in languages like C. The other label is used to exit the loop early, similar to
a break statement in C.

In addition to unconditional breaks, WebAssembly provides br_if. This instruction consumes the value on the
top of the WebAssembly stack. If that value was non-zero, then br_if breaks out to the specified block depth.
Otherwise, control continues with the following instruction.

While these control flow structures are used heavily by the LLVM-based C/C++ toolchain, WebAssembly also
provides an if instruction that is roughly equivalent to Scheme’s if expression. Thus, Schism compiles Scheme
if expressions to WebAssembly if instructions in the straightforward way.

At this point, we must discuss the representation of conditions and booleans. WebAssembly’s control flow
mirrors C, where 0 is considered to be false and any nonzero value is true. On the other hand, in Scheme only #f
is false, and any other value is true. One obvious choice, then, is to represent #f as the constant 0. Using our
three-bit tagging representation, this would require #f to have the tag 0. This conflicts with a previous design
choice, however, where fixnums are tagged with @ to allow some arithmetic operations to avoid any untagging
and tagging steps. Given that conditionals in Scheme also tend to be common, it would be worth measuring
whether the performance is better when #f has the same representation as a WebAssembly false value.

Instead, Schism reserves the tag 1 for constants such as #f, #t, and #<void>. We assign the value 0 to #f, so #f
is represented as the 132 constant 0x00000001. Using this representation, we can see how a simple if expression
is translated to WebAssembly. Consider the following example.
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(if (check-condition)
(if-true)
(if-false))
In WebAssembly, this expression would be translated roughly to the following.

(if (i32.ne (call check-condition) (i32.const 0x00000001))
(call if-true)
(call if-false))

This explicit comparison against #f can be avoided in many cases. Schism’s internal grammar makes a
distinction between expressions and expressions in predicate position (called preds from now on). For example,
the grammar for if is:

(if <pred> <expr> <expr>)

The <pred> nonterminal then has productions for some primitive comparison operators. For example, we
can recognize equality comparisons by having a production from <pred> to (eq? <expr> <expr>). Thus an
expression such as
(if (egq? 1 2)

(if-true)

(if-false))
is compiled to

(if (i32.eq (i32.const 0x00000008) (i32.const 0x00000010))
(call if-true)
(call if-false))
rather than the more general version shown below.
(if (i32.ne
(i32.eq (i32.const 0x00000008) (132.const 0x00000010))
(i32.const 0x00000001))

(call if-true)
(call if-false))

There are other control flow structures that Schism supports, but these are all implemented as macro expansions
to if expressions (Section 3.7).

3.4 Cons, Car and Cdr

Scheme programs build many of their data structures out of pairs. In Schism, pairs are also used to build other
data types. We will see in the subsequent sections how to implement strings and symbols by building on the
functionality provided by pairs.

Pairs are different from the data types we have seen so far because they require allocation. For WebAssembly,
this means we must also declare a memory. The memory declaration specifies minimum and maximum sizes of the
memory in multiples of WebAssembly’s 64KiB page size. Memories can either be defined internally to the module,
or imported from outside. Internally-defined memories can also be exported, which allows host code to access
WebAssembly’s memory and also allows other WebAssembly instances to import the same memory. Schism
modules always import their memory. The reason for this is to simplify the way the runtime can coordinate
memories between different Schism modules.

Initially, Schism did not make any attempt at garbage collection. Since the goal was to self-host as quickly
and easily as possible, we instead chose to declare an extremely large memory and hope that the compiler can
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complete without running out of memory. This strategy was enough for Schism to self-host, but did not last long
afterwards. Schism now has an ad hoc collector (Section 4.4) that runs between certain compiler passes. A proper
garbage collector is planned, as the current strategy will not last indefinitely.

Allocation is accomplished by a simple bump allocator. The first two 32-bit words in memory are reserved as
the system pair, which contains both the allocation pointer and a pointer to the symbol table. We will discuss
Schism’s handling of symbols in Section 3.6. These two pointers could also be represented as WebAssembly
globals, but storing them in memory allows us to avoid any handling of globals at all in Schism. We assume that
allocations always consist of an even number of words. In other words, allocations are always aligned to eight
byte boundaries. This means to go from a tagged ptr to a memory address, all that is needed is to mask off the
three low tag bits and avoid doing any additional shifting.

The cons procedure is implemented in terms of a new %alloc compiler instrinsic, as well as set-car! and
set-cdr!. Below is its initial implementation.

(define (cons a d)

(init-pair (%alloc (pair-tag) 2) a d))
(define (init-pair p a d)

(set-car! p a)

(set-cdr! p d)

P))

Here, the %alloc function takes a tag to apply to the newly allocated pointer and the number of words to allocate.
In this case, we allocate two words, one for the car and one for the cdr of the pair. At the time this was written,
Schism did not support let. The usual workaround is the so-called “left-left-lambda” expansion, which rewrites
(let ((x e) b) as ((lambda (x) b) e).Unfortunately, Schism also did not support lambda at this time.
Instead, we use a new top-level function as an imitation let-binding to hold the result of the allocation so that
we can assign both the car and cdr before returning.

Later in the compiler, %alloc, set-car! and set-cdr! are replaced by direct WebAssembly memory instruc-
tions. As an example, here is the expander for set-car!:

(cond
((eq? tag 'set-car!)
(let ((p (compile-expr (cadr expr) env))
(x (compile-expr (caddr expr) env)))
“(i32.store (offset @) (i32.and ,p (i32.const -8)) ,x)))
L)

The car and cdr procedures are similar, except that they translate to WebAssembly memory read instructions.

3.5 Strings

In the same way that pairs can be used to build lists, trees and other data structures, Schism uses pairs to implement
some Scheme’s other primitive data types. Note that this is not the highest performance implementation, but it
was sufficient to get the compiler to self-host. This implementation should be replaced by a more efficient one in
the future.

Strings in Schism are simply represented as a list of characters, but the first ptr in the list is tagged with the
string tag rather than the pair tag. This representation makes the implementation of functions like 1ist->string
and string->list trivial, as they only needed to changed the tag on a list of characters. This representation
also leads to some surprising handling of string literals:

(cond
((string? expr)
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(list 'call 'list->string (parse-expr (cons 'quote (string->list expr)))))
L)

In other words, any string literal is expanded into a quoted list of characters at compile time. This quoted list is
then passed at run time to list->string. Written more compactly using quasiquote, this is essentially replacing
a string literal s with:

‘(list->string , (string->list s))

It is almost as if strings are implemented in terms of themselves.

3.6 Symbols

Schism’s support for symbols builds on the theme of making simple representations from simpler, existing
structures. At first glance, it may seem that we could do a similar trick to what we did for strings and represent
symbols as lists of characters with a symbol tag instead of a pair tag. Such a representation destroys a key
aspect of symbols, which is that it must be possible to compare them with eq?. In other words, by testing for
reference equality. The expression (eq? (string->symbol "a") (string->symbol "a")) needs to evaluate
to #t. Unfortunately, this does not hold for strings:

> (eq? (list->string '(#\a)) (list->string '(#\a)))
#f

In order to facilitate proper comparison for symbols, Schism keeps a symbol table that is simply a list of all
symbols in the program. The symbol table is reachable from the symbol table entry of the system pair. Each
entry in the list is a string and a pointer to the rest of the list. If a program executed (1ist ’a ’b ’c) then the
symbol table would be something like ("a" "b" "c"). Symbols are then represented as a pointer to its entry in
the list, but tagged with the symbol tag instead of the pair tag.

When converting a string to a symbol, Schism searches the symbol table for an entry matching the same string.
If an entry is found, then this is returned as the symbol. Otherwise, a new entry is added.

A useful feature in writing compilers is gensym, which creates a unique symbol that is used nowhere else.
These symbols are useful, for example, for naming temporary variables that are introduced during the course
of compilation. Schism supports these by adding an entry to the symbol table where the name is #f. The code
for searching for a symbol by string ignores these, so no gensym will ever match a symbol typed or generated
programmatically. These symbols currently are just opaque tokens, but it is common in other Schemes to add a
descriptive label. For example, (gensym "t") might generate t.9, then t.1, and so on. This behavior could be
added to Schism by augmenting the symbol table with a field for a name on generated symbols.

3.7 Macros and Quasiquote

Scheme macros are extremely powerful and can simplify the developer’s life in many ways. For example, many
of Scheme’s seemingly primitive logical operators and control structures such as and, or and cond can be
implemented using macros. On the other hand, correctly implementing Scheme’s macro system and especially
macro hygeine is non-trivial. In order to strike a balance between making the Schism implementors’ lives easier
and not complicating the compiler more than is necessary, Schism supports several hard coded macros. By
implementing operators such as and, or and cond as macros, we can use these in Schism’s own code. These
operators do not have to be supported by all passes of the compiler, however, because they are eliminated at
macro expansion time. Macros are expanded even before parsing Scheme code into an abstract syntax tree,
making it easy to add more forms as needed.

Quote and quasiquote are also supported for similar reasons and by a similar mechanism. For example, the
quoted list > (1 2 3) expands into direct calls to cons:
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(cons 1 (cons 2 (cons 3 '())))

Although it would be possible to write the compiler entirely with cons, being able to write patterns using
quasiquote not only makes the code shorter but also easier to read. Thus overall it seems adding support for
quasiquote saved more effort than was needed to implement it.

3.8 Recursion Limits

We have touched in several places so far on steps that were taken to avoid limits in either Schism or in Web-
Assembly. One particular case is in the use of recursion. Schism supports only recursion as its means of doing
any kind of iteration. WebAssembly implementations, however, normally have a limited amount of space for
the program stack. Furthermore, Schism does not yet properly handle tail calls, so even tail-recursive loops will
eventually run out of stack space.

For the most part, this was not a problem. Schism’s data structures do not get too deep, so a straightforward
recursive traversal is generally not a problem. One case where we did run into trouble was in generating the
final output. At first, Schism generated a list of bytes and then iterated over these bytes, writing each out to the
output file. Before long, the size of Schism’s generated programs grew too large and this ran into recursion limits.
Instead, Schism now gathers the generated bytes into a tree instead of a list, simply by replacing calls to append
on the bytes of two sub expressions with a call to cons.

3.9 Standard Library

Schism implements some of the R6RS standard libary. Currently this is done by prepending any compiled program
with the code for the standard library. This library is implemented in terms of low level compiler intrinsics. For
example, cons, car and cdr are implemented in terms of functions that directly allocate and manipulate memory.
These intrinsics are then replaced by sequences of WebAssembly instructions late in the compiler. This style
of implementation keeps the core compiler simpler and makes it easy to quickly add library features. In the
future, Schism should support propery library loading so that the standard library could be compiled and linked
separately from the programs that use it.

3.10  JavaScript Runtime

WebAssembly programs are meant to be embedded in a host environment. This is most often a web browser,
though other environments such as node.js or even native environments are possible. A goal for Schism is to
implement as much as possible in the language, without relying on an extensive runtime library. Still, interfacing
with the outside world requires some glue code written in JavaScript. Schism’s requirements are small, consisting
of little more than reading a byte of input and writing a byte of output. By contrast, the Emscripten runtime
library includes JavaScript implementations of most of the Linux system calls.

The runtime library also provides functions to compile and run Scheme programs in JavaScript. This function-
ality is packaged as a Schism engine. Below is an example of how to use the engine to run a compiled Scheme
program.

async function runScheme(module_bytes, fn_name) {
const engine = new Schism.Engine;
const wasm = await engine.loadWasmModule(module_bytes);
wasm.exports[fn_namel();

b

This code creates a new instance of the Schism engine, which encapsulates all the state needed to load and run
Schism programs. Like many new Web technologies, the WebAssembly interface is based around JavaScript’s
asynchronous Promises, so this code makes heavy use of async and await. The loadWasmModule function
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imports a compiled Wasm module containing Scheme code into the engine instance, returning a reference to
this Scheme module. The resulting reference provides an array of functions exported from Scheme. Looking up
the function by name in this array returns a function that is then callable by JavaScript to execute the exported
Scheme code. Schism’s runtime library also provides simple operations for converting between Schism and
JavaScript’s representation of values.

4 SUBSEQUENT IMPROVEMENTS

Since successfully becoming a self-hosting compiler, Schism has gained several significant improvements.

4.1 Error Checking, Runtime Type Safety, and Debuggability

As is often the case, early Schism development assumed all of its input was correct. Unfortunately, completely
correct inputs is a luxury that is rarely afforded. This is especially true when one of the compiler’s inputs is itself
an in-development compiler. While limited error handling was sufficient to achieve self-hosting, further progress
was definitely aided by more defensive coding.

Most of this functionality consists of simple type checks as part of the various constructors and accessors.
Once something goes wrong, it is useful to be able to see where things went wrong. Schism, and WebAssembly
in general, do not yet have in-depth debugging features such as being able to inspect local variables, but most
WebAssembly implementations are able to provide stack traces. Schism generates a Name Section in its output
binaries which allows WebAssembly stack traces to have human-readable function names. Even this little bit of
information makes it easier to diagnose problems in the compiler.

Finally, Schism also has basic support for printf-style debugging by including a limited version of display.

4.2 Local Variables

Although we saw in Section 3.4 that the lack of let-binding can be worked around, supporting proper local
variables makes the language much more usable. One option is to first implement support for closures and then
replace all variable bindings with immediately applied 1ambda expressions. This is sub-optimal for several reasons.
First, Schism did not support lambda when let-binding support was added. Furthermore, having the ability for
the compiler to create temporary variables would be useful to implement closures. Second, local variables should
be inexpensive and not require a heap-allocated closure and an indirect function call.

Instead, we choose to map let-bound variables to WebAssembly locals. This approach avoids the two downfalls
of a 1ambda expansion. In fact, most WebAssembly implementations will try to store local variables in registers.

Schism creates WebAssembly local variables for any let-bound variables and tracks a mapping from the
Scheme variable to the WebAssembly variable. The right hand sides of the let expression are evaluated and the
result is then assigned to the correct variable. Variable references are then replaced with get_local instructions.

The obvious way to assign Scheme variables to WebAssembly variables would be to create a unique Web-
Assembly variable for every Scheme binding. Instead, Schism uses something more like lexical address [1], which
allows Schism to assign Scheme variables to WebAssembly variables by only keeping track of the number of
bindings passed through while traversing the syntax tree. There is no need to consider sibling expressons with
this strategy. As an example, consider this Scheme program.

(let ((a 1))
(let ((b 2))
(display b)
(let ((c 3))
(let ((d 4))

(+ cd)))
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For this expression Schism would declare three variables because the deepest chain of bindings is of length three:
a-c-d. The compiler would assign a to variable index 0, b and c to variable index 1, and d to variable index 2.
Schism translates the above expression into WebAssembly resembling the following:

(block
(i32.const 1) ;; evaluate RHS of a
(set_local 0) ;; store value of a
(i32.const 2) ;; evaluate RHS of b
(set_local 1) ;; store value of b
(get_local 1) ;5 put argument to display on stack
(call s$display)
(i32.const 3) ;; evaluate RHS of ¢
(set_local 1) ;; store value of c, clobbering b
(i32.const 4) ;; evaluate RHS of d
(set_local 2) ;; store value of d
(i32.add (get_local 1) (get_local 2))) ;; add the top two values on the stack

Because WebAssembly implementations do their own register allocation, either approach to assigning Scheme
variables to WebAssembly variables should be roughly equivalent in the end.

Sharing storage for variables still requires care in the compiler to implement it correctly. Consider the following
example.

(let ((a 1)
(b (let ((c 2))
(+c 1))
a)

This expression should evaluate to 1. Earlier versions of Schism instead produced code that returned 2 instead.
Originally Schism evaluated the right hand side of a and then immediately assigned it to its variable slot. Then,
in evaluating the right hand side for b, Schism had to choose a location for c. Because a is not visible at that point
in the program, Schism assigned both a and ¢ to WebAssembly variable 0. The value of ¢ was assigned after a’s
binding was already fully evaluated, which is why the value 2 overwrote the value that had been stored in a.

The solution is to evaluate all of the right hand sides and store them in a temporary location, and then assign
the values to their final location after all the right hand sides are fully evaluated. While this could be done with still
more temporary variables, WebAssembly’s stack gives a convenient temporary location. Thus, Schism generates
code that first fully evaluates all the right hand sides of a 1et binding, leaving the results on the WebAssembly
stack, and then assigns all of these values to local variables.

4.3 Lambda

First class procedures were a somewhat late addition to Schism. Although they were not necessary to make
a self-hosting compiler, first class procedures have been useful since their introduction. For example, Schism
contains many functions like this one:

(define (parse-body* bodyx*)
(if (null? body*)
O
(cons (parse-expr (car body*)) (parse-body* (cdr bodyx*)))))
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With first class procedures, that function can be eliminated and calls to parse-body* can be replaced by (map
(lambda (body) (parse-body body)) body*).In the future this expression could be further reduced to (map
parse-body body=), but at the moment top level function in Schism are not first class.

First class procedures in Schism are implemented using standard techniques [3]. Schism eliminates 1ambda
expressions fairly early in the compiler, instead translating them to more primitive forms. At first, Schism
annotates all 1ambda expressions with a list of their free variables. Then the bodies of these expressions are lifted
into a top-level function. The top level function gains a new argument representing the closure. Before executing
the body, all free variables are unpacked from the closure and let-bound so that the body can execute as though
it were running in its normal context. As an example, consider the following function.

(define (foo)

(let ((a 5))

(let ((add-a (lambda (b) (+ a b))))
(add-a 6))))

After 1lambda elimination, this program would be translated into something like:

(define (lambda-0@ closure b)
(let ((a (read-closure closure 0))
(+ a b))
(define (foo)
(let ((a 5))
(let ((add-a (make-closure @ a)))
(call-closure add-a 6))))

Here, make-closure would allocate two words on the heap. One of these words is for the function index, and
the other is to hold the captured value of a.

Unlike native code targets, WebAssembly does not allow direct access to function addresses. Instead, Web-
Assembly modules include a function table and a call_indirect instructions that allows dynamically calling
into the function table. The call_indirect instructions works like the call instruction, except that it takes an
additional index argument that specifies which entry of the function table to call. As with the call instruction,
call_indirect has a type signature. At runtime, WebAssembly implementations must ensure that the signature
matches the target function, as there is only one function table rather than one per signature. As with normal
procedure calls, Schism constructs the signature based on how the function is used. Note that this means variable
length argument lists are not currently supported.

As mentioned earlier in this section, Schism does not currently allow top-level functions to be passed by value.
One easy way to support this in the future would be to detect references to these functions in value position and
wrap them in a suitable 1ambda expression. Effectively, the compiler would perform the inverse-z transformation
that we had to do manually above. Alternatively, instead of mapping top level functions to bare WebAssembly
functions, these could instead be closures that are stored in global variables. In practice, some combination of the
two approaches may be best. This remains a task for future work.

4.4  Garbage Collection

Schism does not yet have a complete garbage collector, but unfortunately the compiler itself generates enough
garbage that some rudimentary collection is needed. The garbage collection that currently exists is implemented
in JavaScript as a function that takes a list of roots and uses that to collect garbage. The collector does this by
allocating a new JavaScript array buffer, doing a deep copy of all the roots into the new array buffer and then
copying the new array buffer over the previous WebAssembly memory for the Schism module. Garbage collection
does not happen on demand, but instead the compiler is split in two. The JavaScript runtime calls the first half
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of the compiler, which returns the state necessary to continue with the rest of the compilation process. This
intermediate state then becomes the root for a collection, and is passed back into the second half of the compiler.

This basic collector is enough to continue making progress on Schism, but clearly a fully automatic collector
will be needed before long.

5 FUTURE WORK

Although Schism supports several key features of the Scheme programming language, it is still an early project.
We have already seen a number of features that need to be filled out. There are some missing Scheme features,
such as the macro system, support for variable argument functions, proper tail call handling, and proper garbage
collection. Additionally, it would be good to support some of Scheme’s more uncommon features, such as call/cc.

These features can all be implemented in the current WebAssembly specification, although perhaps at a
performance penalty. There are a number of proposals to WebAssembly, such as tail call instructions, garbage
collection, and exception handling. All of these would simplify and improve Schism’s ability to fully support
the Scheme language. Having a proper tail call instruction would avoid the need for unpleasant full program
transformations to support tail calls. WebAssembly garbage collection proposal includes a suite of richer types and
checked casts between references of different types. Schism may be able to use these instead of its own tagging
system for dynamic types, and by using fully garbage collected types Schism could avoid using WebAsembly’s
linear memory entirely. The current proposal for exception handling in WebAssembly is designed to be easily
generalizable to one-shot delimited continuations, so this may also be able to cover some uses of call/cc in
Scheme. Given Schism’s small size, it would be easy to adopt these proposals in Schism and this should be
considered as an option to gain early stage feedback on the usability of new WebAssembly features.

6 RELATED WORK

One of WebAssembly’s goals is to enable a variety of languages to target the Web with high performance. It
is encouraging to see that a number of languages are experimenting with WebAssembly. Besides C and C++,
perhaps the language best supported on WebAssembly is Rust [14]. A particularly powerful feature of Rust is
wasm-bindgen, which can automatically generate JavaScript and Rust interoperability code [4]. Other languages
with experimental WebAssembly support include Haskell [6] and the .NET languages [13]. These languages
require more from their runtime system than lower level languages like Rust, and thus have their own challenges.
Future improvements to WebAssembly may greatly improve the support for these other languages.

Scheme 48 [11] has some similarity to Schism. Scheme 48 is a compiler built in layers with each lower layer
being a more restricted version of Scheme. The lowest layer, Pre-Scheme, is designed to be easily translated to
idiomatic and efficient C code. Schism’s layers are more ad-hoc and being more careful about layering in the
future would help manage the complexity as Schism grows to support more of Scheme.

7 CONCLUSION

Schism is a small, self-hosting compiler for WebAssembly. It is a from-scratch implementation, which makes it
an ideal example of the experience of bringing up a new language for WebAssembly. One of WebAssembly’s
goals is to make it easy to support other programming languages on the Web as first class citizens. The author’s
hope is that Schism will be a demonstration of useful techniques for other language implementors targeting
WebAssembly, as well as provide a vehicle for quickly experimenting with new WebAssembly features.
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