ﬁ EasyChair Preprint

Ne 10897

Clustering Techniques to Optimize Railway Daily
Path Utilization for Non-Daily Trains

Karim Shahbaz, Mohit Agarwala, Samay P. Singh,
Satwik V. Ramisetty, Sayali R. Duragkar, Merajus Salekin,
Raja Gopalakrishnan, Narayan Rangaraj and Madhu N. Belur

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 13, 2023

World Conference on Transport Research - WCTR 2023 Montreal 17-21 July 2023

Clustering techniques to optimize railway daily path utilization for
non-daily trains

Karim Shahbaz®, Mohit Agarwala®, Samay P. Singh?, Satwik V. Ramisetty?, Sayali R.
Duragkar?, Merajus Salekin®, Raja Gopalakrishnan®, Narayan Rangaraj®, Madhu N. Belur?

“Department of Electrical Engineering, Indian Institute of Technology Bombay, India
bIndustrial Engineering and Operation Research, Indian Institute of Technology Bombay, India

“Centre for Railway Information Systems, New Delhi, India

Abstract

A typical rail-network has a combination of daily trains and non-daily trains that have a weekly-pattern. Being non-daily, such trains run
sporadically across the week and thus creates the problem of inefficient timetabling. Further, for large rail-networks, the timetabling is
often done decentrally zone-wise without explicitly ensuring that groups of non-daily trains have similar running times on the bottleneck
sections. In this paper, we use a notion of ‘dailyzing’ (making a daily path of non-daily trains) by performing a modulo 24 hours operation
and then using Hierarchical Agglomerative Clustering (amongst other techniques) to group the trains. These clusters of trains share the
same railway resources almost simultaneously but on different days of the week. Thus the scheduling of one representative train of the
cluster as a ‘daily train” would automatically schedule non-daily ones in that group. Hence, the daily path for non-daily trains provides
a systematic and more efficient way of timetabling. The clustering/grouping of trains can also help find an empty slot for a new train
scheduling/addition or help in point towards resource under-utilization.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research - WCTR 2023.

Keywords: Train timetabling; Clustering techniques in train-timetabling; Hierarchical clustering

1. Introduction

Indian Railways operates about 13,150 passenger trains daily [6]; many of them run every day while others run non-daily,
but repeat with a weekly-pattern. The non-daily trains run once, twice or multiple times per week. Daily trains’ timetabling is
fairly efficient and compact, but non-daily trains timetabling is not as much; this is due to the non-daily trains being sparsely

E-mail address: karimshahee @ee.iitb.ac.in

2352-1465 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research - WCTR 2023.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Karim Shahbaz et al. / 00 (2023) 000-000

spread throughout the week and having very heterogeneous running patterns. The individual non-daily trains could have
running variations with some others on common sections of their route. This variation leads to the difficulty of timetabling
them efficiently and systematically to achieve better resource-utilization of key-bottleneck sections in the route.

The objective we pursue in this paper is to analyze the data and use the data to group non-daily trains in the Indian
Railway Golden Quadrilateral and Diagonals (GQD) data to thus detect under-utilized track/platform resources and speed
up timetabling efficiently. The need to extract this information from the data arises since the timetabling process for large
rail-networks is done decentrally and zone-wise and hence the grouping process of non-daily trains is not utilized sufficiently
during the timetabling process.

Once the grouping information is extracted from the data, in addition to more systematic use of this information in
the timetabling process, the grouping would also aid in identifying regions where more trains can be deployed, and track-
resources, especially in the bottleneck sections, could then be used more efficiently.

Distance
Block 3 s Loy / b [t ;
Route 1
Block 2 B é/—tsn/
Block 1 by ty Ly
U } —
- e L2 Time
£ § ¢ ©
H [[=

Figure 1: Distance vs time chart: each trajectory is a ‘path’ (see Definition 1.1)

Figure 1 consists of various trajectories of train running: distance versus time. At any station or block-section, i.e. the
part of the rail-track between two stations, the horizontal distance between two consecutive train ‘paths’ (see Definition 1.1
below) is the time-gap between the trains: this needs to be higher than a minimum safety time value.

Definition 1.1. In the distance vs time chart (see Figure 1, for example), a ‘path’ (in usual railway parlance) is defined as a
trajectory/curve followed by a train in this chart.

The notion of ‘compaction’ plays a central role in any timetabling process. This is included as a definition.

Definition 1.2. Compaction is a phenomenon of achieving closeness in the horizontal axis between the paths in the distance

vs time chart. Thus, on an average, steeper, i.e. closer to vertical, paths would lead to more number of paths within the same
time-window, and thus more compaction.

Achieving more compaction within a timetable is the objective in any timetabling process: better compaction results in
better resource utilization and also a wider time-window to perform (preventive) planned maintenance activities. Steeper

paths means higher average running times and thus higher Quality of Service to the end-user/customer, and also quicker
turn-around for the train rakes.

In the context of this paper, we focus on grouping those trains that use almost the same daily ‘path’ (in the sense of
Definition 1.1) but on different days of the week. Thus the members in a group need to complement each other with respect
to the week-days. Since we need this condition repeatedly throughout this paper, we define it below. This is relevant since
the clustering techniques would result in clusters that would later need to be imposed with the complementing condition.

Definition 1.3. Complementing condition: a cluster is said to be satisfying the complementing condition if every member
of the cluster utilizes almost the same resources and at almost the same times, but on different days of the week, i.e. they
complement each other in terms of days of the week. We say the complementing condition is not satisfied by a group if the
group consists of some trains running on the same days at almost the same time, on almost the same block-section.

Karim Shahbaz et al. / 00 (2023) 000-000 3

Of course, the notion of ‘almost same time’ requires a time-window duration to be specified. In this paper, we use this as
a tuning parameter: typically 15 minutes. Further, in the context of ‘almost the same resources’, the objective is to focus on
the bottleneck sections and group the trains for better utilization of primarily these resources.

Dailyzing is the process of grouping trains into one daily path: since the train-time-data consists of time-values across
different days (and hence beyond 24 hours), one needs to perform a ‘modulo operation’ to divide by 24 hours and get the
remainder. (Being a large rail-network, some trains’ traversal times cross 48 hours too.) The modulo operation maps the set
of trains to allotted daily paths. Once the mapping is performed, clustering is used on that set of trains. Clustering is a method
of unsupervised grouping of similar objects. The grouping is ‘unsupervised’ since in our work, the data is not pre-labeled,
and there is no defined dependent variable. This type of unsupervised learning is usually done to identify similarity-patterns
in the data and to group similar data.

With the objective of efficient clustering of non-daily trains using GQD train data, various clustering techniques have been
explored in this paper: see Table 1 for the list of techniques we pursue in this paper. We briefly describe them below.

Table 1: Clustering techniques typically used in such problems

Sr.Num. | Clustering techniques
1. Hierarchical Agglomerative Clustering (HAC) [7]
2. BIRCH [11]
3. DBSCAN [4]
4. Spectral Clustering [8]
5. K-means [5]

The technique K-means is an elementary and fast clustering method. It requires a pre-defined cluster number (usually
called K, and hence the name), which is then used with the distance metric for data clustering. The algorithm initialize by
randomly forming groups and their centroids are calculated then distance of each data points from the centroids are calculated
and data points with higher distance get reassigned to other groups. The algorithm keeps iterating till groups are formed with
minimum group variance. The K-means method sometimes has a difficulty in repeatability and consistency of results since
the initial/starting cluster could possibly play substantial role in the end outcome.

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. The main idea of DBSCAN is that
clusters are high density regions in data space and can be separated from low point density regions. The method does not
require pre-defined cluster number information in the beginning. It has an epsilon hyper-parameter to help identify the
neighbor of any data points and a threshold of minimum number of points for cluster to be called dense. The algorithm
randomly picks points in the set and if within epsilon radius of that point, there is at-least threshold number of points, then all
points are part of the same cluster. The cluster grows by repeating calculation on each neighboring points. It works for any
data size and shape. However, it is known to sometimes perform unsatisfactorily with data of heterogeneous density clusters.

BIRCH stands for Balanced Iterative Reducing and Clustering using Hierarchies. This method works well on large data
sets by forming a small representative set of a larger one, but it works only for data sets with metric attributes, and no
categorical attributes are utilizable by the technique.

Spectral clustering has roots in graph theory and linear algebra. This technique uses eigenvalues and eigenvectors of the
Laplacian matrix of the graph for association and clustering. This method is primarily meant for graph data, but it is also
known to work satisfactorily on general data.

Hierarchical Agglomerative Clustering (HAC) starts with each data point as a cluster and agglomerate (merge) the data
points to reduce the number of clusters. Hierarchical Agglomerative clustering is elaborated in Section 3.

In this paper, we pursue a comparative study of various types of clustering techniques: centroid based clustering K-means,
density based clustering in noise: DBSCAN, and connectivity based clustering using hierarchical: HAC in terms of the
number of conflict-free cluster formations and total execution time of these clustering methods. For the data that we work
with, HAC gives the best result for the application we consider.

4 Karim Shahbaz et al. / 00 (2023) 000-000

2. Problem statement

Though mentioned briefly in the previous section, in this section, we elaborate on the problem dealt within this paper.
Usually, in any rail-network, trains have a weekly pattern, and many trains are non-daily. However, even for the non-daily
trains, having a daily path for these non-daily trains is common. Having daily paths is essential to have day-independent
maintenance blocks. Further, freight paths can be scheduled each day by utilizing the un-utilized time-windows. Of course,
over and above what is timetabled for freight trains or scheduled for maintenance activities, unused paths of certain days
belonging to non-daily trains (but not running on that week-day) can also be used additionally for freight trains/maintenance.

2.1. Dailyzing Process

For the purpose of this work, we use the phrase: dailyzing in the following sense. It is the process of grouping trains into
one daily path: this maps the train set to allotted daily routes. Thus if “dialyzing” is insufficiently pursued, then compacting is
insufficient, and hence too many paths are scheduled. Due to this, the lower-priority trains would find more difficulty during
the timetabling process: especially in the bottleneck sections.

2.2. Dailyzing objective

We focus on the following objective in this paper: to group the non-daily trains efficiently based on their current schedule
to have a representative daily train of the group: just this representative would be utilized for future scheduled process and
thus leading to the scheduling of the whole group. Further, the benefits/tasks are as follows:

1. Faster timetabling procedure: grouped non-daily trains can be represented by a daily train, scheduling which
automatically schedules others in the group (for the common/overlapping sections: the overlapping sections often
being the bottleneck sections too).

2. Possibility of new trains: clusters with fewer than seven members can accommodate more non-daily trains. Hence,
availability of time-slots with the purpose of introducing new trains.

3. Efficient clustering would help in determining under-utilized and over-utilized resources.

4. Suggestion for better timetabling, i.e. rescheduling some trains could lead to better compaction and efficient resource
utilization.

3. Background and related work

Literature is rich with work on the train timetabling problem (TTP). There is work on periodic scheduling and non-periodic
scheduling, single one-way line and general rail network TTP, programming and heuristics based TTP, robust and maximum
efficiency TTP [1]. In this paper we are not generating the timetable from scratch, rather we are using draft timetable data to
improve upon the timetabling procedure and tweaking only some trains to improve efficiency and resource utilization. Recent
work using clustering to improve upon railway operations has been by [2]: that work uses K-means clustering to recognise
recurrent behavioral delay pattern in railway signal system. Using those clusters this paper identifies where it is taking place
and suggests necessary corrective actions. Hartigan et.al [3] uses clustering for high-speed railway trains classification into
three category and suggests some operational changes for good operational performance. Wenxian et.al [9] proposed affinity
propagation based automatic classification of passenger flow interval for adaptive line planning of high speed train to meet
demand. Chang’an et. al [10] have used principle component analysis to reduce attributes of railway station then they used
Hierarchical clustering for station classification for train operation planning.

The rest of this section consists of details about the best performing clustering method i.e., Hierarchical Agglomerative
clustering (HAC).

Karim Shahbaz et al. / 00 (2023) 000-000 5

Hierarchical Clustering performs grouping the data based on idea that nearby objects are more related than far ones.
Its connectivity based clustering and performs grouping with an appropriate measure of ‘similarity’. It fits our clustering
problem, i.e. clustering using a similarity matrix. Given a set of N items to be clustered and an N x N distance (or alternatively,
a similarity) matrix, the basic process of the hierarchical clustering [7] is as follows:

1. Start by assigning each item to a cluster so that if we have N items, now we have N clusters, each containing just one
member. Let the distances (similarities) between the clusters be the same as the distances (similarities) between the
items they have.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster so that now we have one cluster
less.

3. Linkage: compute distances (similarities) between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N or stop detecting low cluster cohesion.

Step 3 can be performed in different ways based on the notion of ‘linkage’: we list three of them: single-linkage, complete-
linkage, and average-linkage clustering. In single-linkage clustering, one considers the distance between one cluster and
another cluster to be equal to the shortest distance from any member of one cluster to any member of the other cluster.
Whether a data-point should belong to one cluster or another gets decided by the highest similarity value from any member
of one cluster to any of the members of the other clusters. This technique is also called the connectedness or minimum
method.

Alternatively, in the so-called complete-linkage clustering one considers the distance between one cluster and another
cluster to be equal to the greatest distance from any member of one cluster to any member of the other cluster. This linkage
is also called the diameter or maximum method. Finally, in the average-linkage clustering, one defines the distance between
one cluster and another cluster to be the average of all the pair-wise distances between all members of one cluster and all
members of the other cluster. This kind of hierarchical clustering is called Agglomerative, as it merges clusters iteratively.
HAC allows complex shape cluster formation.

4. Method employed

In this section, the train-running data we use and the methods applied to it are elaborated. The data used is from an
important rail-subnetwork: so-called the Golden Quadrilateral and the Diagonals (GQD) of the Indian Railway network.
The data structure, routes’ information, and data size routewise is mentioned first, and then various preprocessing steps are
explained. After that, the calculation of distance metric is mentioned, followed by various HAC hyperparameters tuning.

4.1. Golden Quadrilateral and Diagonals (GQD) Data

The GQD is an important subnetwork of the Indian Railway network. It is a multi-route railway network. GQD data routes
map, sample data, and data size routewise are shown below. The quadrilateral being formed between the four major cities
within India is a high-rail-traffic route and, together with the diagonals, form an important high-density network: Figure 2.

A sample of the GQD data taken from a draft timetable, dated around August 2020 is shown in Table 2. The various terms
are described in Table 3: all the proposed clustering techniques use the data as per these formats.

Table 4 describes the GQD routewise data size that we use in this paper.

Karim Shahbaz et al. / 00 (2023) 000-000

NDLS

\)
N/
|/
\ /

\ /
MAs

Figure 2: The Golden Quadrilateral and Diagonals (GQD): route map

Table 2: Sample GQD dataset

TRNNUM | WEEKDAYS | STN CODE | ARVL | BLCKSCTN | DAY | Direction
22922 0,1,0,0,0,0,0 | CNB 44400 | CNB-CPA 1| up
22922 0,1,0,0,0,0,0 | MTJ 69600 | MTJ-BSA 1| up
22922 0,1,0,0,0,0,0 | BTE 76800 | BTE-SWAR 1| up
22922 0,1,0,0,0,0,0 | SWAR 77520 | SWAR-JCU 1| up
22922 0,1,0,0,0,0,0 | JCU 77700 | JCU-PNGR 1| up
Table 3: GQD dataset terms description
TRNNUM denotes train number

WEEKDAYS | ‘1’ denotes that the train runs on that day of the week (with the first ‘1’ as Sunday).
STATION denotes the station through which the train passes.
ARVL arrival time of the train at the given station.
BLCKSCTN | is the block-section between two stations.
DAY day of the journey of the train when it commenced from the source.
Direction is the direction of the train depending on the route’s notion of up/down.
Table 4: GQD routewise data size values
Route | Total number of | Number of Number of Number of | Number of
number trains daily trains | non-daily trains | block-sections stations
1 567 312 255 394 198
2 562 319 243 600 301
3 360 210 150 560 281
4 462 268 194 586 294
5 332 220 114 408 205
6 641 401 240 506 254

4.2. Data preprocessing and further definitions

The following preprocessing steps are performed on train data before it is ready for clustering purposes:

Karim Shahbaz et al. / 00 (2023) 000-000 7

1. Route-wise split of all trains: if a train runs on multiple routes during its journey, then the train’s journey is split into
sub-trains based on routes.

2. Removal of daily Trains from data: identifying all daily trains in the GQD data and removing these trains’ data, thus
leaving only non-daily train data.

3. Single day mapping: train-time data needs to be converted to the same-day, since the time-value of an event often is
beyond 24 hours. Since there are 86400 seconds in a day, we perform the ‘modulo 86400’ operation to the timings of
all non-daily trains spread throughout the week and thus the event-times get mapped to a single day event-time. This
helps comparing train timings for grouping purposes.

4. Removal of so-called single touch trains in a given route, i.e. the trains with only one station in the route: these trains’
data are discarded.

5. Detection/removal of so-called ‘Geo-loops’ in route: when the train comes back to the same station/block-section after
a small diversion, we call that part of the route a Geographical-loop or Geo-loop. We remove the Geo-loop part of the
journey from our data before processing further.

6. Classifying each block-section into up/down direction that is predecided for each route: all block-sections.

After data preprocessing, the distance metric is calculated for clustering in the following section.

4.3. Distance metric: similarity/dissimilarity matrix

The calculation of the distance metric (similarity/dissimilarity matrix) is crucial. A good and meaningful distance metric
leads to better clustering. We generate three metric matrices for the purpose of clustering. The first one is a similarity
matrix. We call it the Cluster Similarity Matrix (CSM). This matrix holds information about the similarity of trains based
on their running, first on a particular block-section at a particular time, and then eventually the matrix holds information of
similarity between every pair of trains accumulated over all common block-section between those trains. The second matrix
is Normalized Cluster Similarity Matrix (NCSM). This matrix is just the normalized version of the CSM. The third and last
one is Normalized Cluster Dissimilarity Matrix (NCDM) or distance matrix. Further details of them are below.

Definition 4.1. The similarity index (or Similarity score) is a distance metric defined on trains based on their closeness in
the distance vs time chart. Two trains are said to be of high similarity index if they arrive at the same block-section at almost
the same time. Refer to Equation (1) and Figure 3.

In order to be grouped together, trains getting higher similarity index amongst each other are required to be ‘complementing’
in days of a week, i.e. they must run on different days of a week on the same block-sections at the approximately same time
(refer to Definition 1.3).

1. Cluster Similarity Matrix (CSM): It is an N x N matrix where N is the number of non-daily trains operating on that
route. The rows and columns of this matrix are indexed by trains. The similarity matrix is generated by matching each
pair of trains at a given block-section to get a similarity index using equation (1). We get the i- j/ entry of the similarity
matrix by accumulating such similarity across block-sections and normalizing it across the number of block-sections.
Trains running at the same block-section at the same exact time would get a similarity index value of 1. If one of them
arrives beyond a chosen threshold duration from the previous train, the time window (taken as 1500 seconds), then
they get a similarity value of 0.

cos (T; — T))
SimilarityScore = 2 x Time_Window
0, otherwise,

), if Time_Window > |T; — T}, 0

where T;, T, are the times of arrival for the Train i and Train j respectively, at a given block-section, and Time_Window
is the allowed time within which two trains are considered to be similar: this is taken as 1500 seconds. Next, the above

8 Karim Shahbaz et al. / 00 (2023) 000-000

Similarity metric score

1.0
0.8 1
z
S 0.6
uw
-
=
&
E 0.4
w
0.2
0.0 4 ime window Time window
O O O £ O ks i)]] D £
o £ o & LN} (8] o o %)
A P I I .

Time (seconds)

Figure 3: Similarity index calculation.

score is aggregated across all block sections (and, as explained in the next section, normalized by dividing the matrix
by the number of block sections used aggregation.) Further, for the computation of cosine of an angle, the argument
of the cosine function above is viewed to be specified in radians. The CSM is obtained by accumulating the similarity
matrices over all block-sections. CSM is a symmetric matrix.

2. Normalized Cluster Similarity Matrix (NCSM): This is a normalized CSM. The matrix is normalized across rows
and columns to get diagonal values equal to 1. The rows and columns of this matrix are indexed by trains. All values
are between 0 & 1 and higher values means more similarity. Of course, its diagonal elements are all 1’s and the matrix
is symmetric.

For example, in the matrix shown below value 0.1 in the 1% row & 3" column means relatively low similarity between
1 050.1
Train 1 and Train 3: {05 1 O
0.1 0 1

3. Normalized Cluster Dissimilarity Matrix (NCDM): The dissimilar matrix is a measure of ‘distance’ that we want
to minimize when choosing a cluster. NCDM is obtained by subtracting the NCSM from the all-ones-matrix A, i.e. A
is square matrix of appropriate size with each entry as ‘1°. The rows and columns of this matrix are indexed by trains.
All values are between 0 & 1 and higher values means more dissimilarity. Its diagonal elements are all 0’s. It is, again,
a symmetric matrix.

For example in matrix shown below value 0.9 at 1*' row & 3¢ column means higher dissimilarity between Train 1 and

0 0.50.9
Train3: [05 0 1
091 O

Once a normalized dissimilar cluster similarity matrix is generated, Hierarchical Agglomerative Clustering (HAC) is used to
form clusters of similar trains.

4.4. Choice of optimal number for number of clusters

There are different approaches to choosing an optimal number of clusters or when to stop combining smaller nearby
clusters into one. The diameter of the cluster or radius of the cluster is used as the threshold to detect low cluster cohesion
and deter cluster combining. Silhouette score is also used for the same. We use the following approach.

We use the notion of ‘singular’ cluster for one that has just one or two members. The best fit is found by maximizing the
number of non-singular clusters for a total number of clusters formed (see Figure 4).

Karim Shahbaz et al. / 00 (2023) 000-000 9

an Eest Fit
#Clusters: 124
70 4 . #Mon-singular Clusters:649

Total Number of Non-singular train clusters

50 100 150 200 250
NMumber of Clusters

Figure 4: Choosing an optimal number of clusters.

4.5. Hyper-parameter tuning of HAC

Linkage decides ways on distance metrics calculation to assign a member to cluster; refer to 3. Affinity is a distance
metric. Just like linkage, there are various distance metrics such as Euclidean (distance between the points), Manhattan (sum
of absolute values of difference of points), cosine (angle between the points), and precomputed (user-defined distance matrix
is used). Choosing the best linkage and affinity for Agglomerative clustering is done based on the number of clusters formed
and the size of the clusters. Tables 5 and 6 show the data suggesting average linkage and precomputed affinity for HAC.

Table 5: Hierarchical Clustering (Ward linkage and variable time window)

Route | Total unique | Total clustered | Number of | Maximum number of | Total number of
number trains trains clusters trains in cluster conflicting cluster
1 257 172 66 6 3
2 256 151 57 6 4
3 166 105 32 7 2
4 194 132 47 7 1
5 123 65 25 5 3
6 251 158 56 7 3

Table 6: Hierarchical Clustering (average linkage and variable time window based on station distance)

Route | Total unique | Total clustered | Number of | Maximum number of Total number of
number trains trains clusters trains in cluster conflicting clusters
1 257 187 63 6 5
2 256 151 55 6 4
3 166 98 33 6 3
4 194 129 41 7 0
5 123 79 27 7 3
6 251 155 57 6 1

Similarly, another hyper-parameter “time window”, is chosen. Time window could be an optimal “fixed” time window or
“variable” time window based on block-sections size. Tables 6 and 7 provide an answer about how to choose one based on
the number of clusters formed, the size of individual clusters, and the number of conflicting clusters it produced.

10 Karim Shahbaz et al. / 00 (2023) 000-000

Table 7: Hierarchical Clustering (average linkage and optimized fixed time window)

Route | Total unique | Total clustered | Number of | Maximum number of Total number of
number trains trains clusters trains in cluster conflicting clusters
1 257 208 67 7 7
2 256 184 60 7 10
3 166 103 34 6 2
4 194 138 48 7 2
5 123 71 26 5 3
6 251 162 58 7 2
5. Results

During every hyper-parameter tuning, such as time window (fixed or variable time window based on block-section sizes),
the cluster linkage method and affinity, conflicting clusters are formed, i.e. clusters not satisfying complementing condition
(see Tables 5, 6 and 7). Hence, the next objective is to maximize the number of conflict-free train clusters.

Table 8: Conflict-free clusters of non-daily trains across routes formed using HAC

Route number | Total unique trains | Total conflict free clustered trains | Total number of clusters
1 257 208 77
2 256 178 64
3 166 123 43
4 194 146 54
5 123 73 30
6 251 198 57

Table 8 shows the number of trains clustered into conflict-free clusters and the number of clusters formed using HAC for
GQD data: routewise.

Table 9: Comparative study of different clustering techniques and their execution time

HAC DBSCAN K-means
Route | Total unique | Number of conflict | Time taken | Number of conflict | Time taken | Number of conflict | Time taken
number trains free clustered trains (sec) free clustered trains (sec) free clustered trains (sec)
1 257 208 2.15 173 13.70 198 312.70
2 256 178 3.19 134 19.03 179 458.18
3 166 123 1.37 85 5.79 115 142.20
4 194 146 2.52 132 5.38 150 224.95
5 123 73 0.85 57 1.66 78 82.15
6 251 198 3.74 167 16.12 190 313.70

Table 9 shows a comparative study of three clustering techniques: HAC, DBSCAN & K-means by comparing their
execution times and the number of trains gets clustered. The number of clustered trains shown here are all conflict-free,
i.e. they satisfy complementing condition: see Definition 1.3.

6. Conclusion and further directions

We have used unsupervised methods to cluster ‘similar’ trains based on their similarity index (see Definition 4.1). The
dissimilarity index calculated from the similarity index gives us a sense of distance, which is then used to cluster similar trains
together by minimizing the distance matrix. GQD data, after preprocessing and using appropriate similarity/dissimilarity
metrics, is clustered nicely. The generated clusters match actual running train data. The clusters developed also complement
each other on different days of the week very well, with very few failing to complement and form conflicting groups.

Karim Shahbaz et al. / 00 (2023) 000-000 11

The time required from the pre-processing of the train data till the time we generate clusters using HAC is within 3-

4 seconds for all routes data in GQD. This time is very less compared to K-means and DBSCAN clustering techniques’
execution time; see Table 9. Hence, HAC is faster and more efficient time wise and thus HAC suits the application. The train
clusters obtained will be tested in mixed-rail traffic simulator for performance and validation. Also the suggestion will tested
in simulator for actual performance enhancement validation.

A possible future direction is to include the complementing condition into the clustering process, rather than ruling out

already-formed clusters that have a conflict. Another useful task to be pursued is to list out those non-daily trains that do not
fit well into any cluster and thus need a tweak in their timings and thus help free-up a daily-path (usable for faster freight
trains or a new-introduction.)

References

(1]
(2]
(3]
[4]
(51
(6]
(7]
(8]
(9]

[10]

[11]

Cacchiani, V., Galli, L. and Toth, P., A tutorial on non-periodic train timetabling and platforming problems, EURO Journal on Transportation and
Logistics, 2192-4376, 2015.

D’Ariano, A., Cerreto, F.,, Nielsen, B. F.,, Nielsen, O. A., Harrod, S. S., Application of Data Clustering to Railway Delay Pattern Recognition, Journal
of Advanced Transportation, Hindawi, 0197-6729, 2018.

Deng, L., Chen, Y., Wu, R., Wang, Q. and Xu, Y., A two-dimensional clustering method for high-speed railway trains in China based on train
characteristics and operational performance, IEEE Access, vol. 8, pages 81918-81931, 2020.

Ester, M., Kriegel, H.P., Sander, J. and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, pages 226-231, 1996.

Hartigan, J. A., and Wong, M. A., Algorithm AS 136: A K-means clustering algorithm, Journal of the Royal Statistical Society, Series C. 28 (1):
100-108, 1979.

Indian Railways Year Book 2020-2021, Ministry of Railways, Government of India, New Delhi, 2022.

Johnson, S. C., Hierarchical clustering schemes, Psychometrika, vol. 32, pages 241-254, 1967.

Ng, A., Jordan, M. and Weiss, Y., On spectral clustering: analysis and an algorithm, Advances in Neural Information Processing Systems 14, pages
849-856, MIT Press, 2002.

Wang, W., Shi, T., Zhang, Y., and Zhu, Q., An affinity propagation based clustering method for the temporal dynamics management of high speed
railway passenger demand, Journal of Advanced Transportation, 2021.

Xu, C, Li, J., Zou, C., and Ni, S., Application of Hierarchical Clustering Based on Principal Component Analysis to Railway Station Classification,
Sixth International Conference on Transportation Engineering, 2020.

Zhang, T., Ramakrishnan R., and Livny, M., BIRCH: an efficient data clustering method for very large databases, Proceedings of the ACM SIGMOD
international conference on Management of data, pages 103-114, 1996.

