ﬁ EasyChair Preprint

Ne 2041

Leaky Controller: Cross-VM Memory Controller
Covert Channel on Multi-Core Systems

Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram
and Jan Kalbantner

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 11, 2020

Leaky Controller: Cross-VM Memory Controller
Covert Channel on Multi-Core Systems

Benjamin Semal®) | Konstantinos Markantonakis, Raja Naecem Akram, and
Jan Kalbantner

Royal Holloway University of London, Egham, United Kingdom
benjamin.semal.2018@live.rhul.ac.uk

Abstract. Data confidentiality is put at risk on cloud platforms where
multiple tenants share the underlying hardware. As multiple workloads
are executed concurrently, conflicts in memory resource occur, resulting
in observable timing variations during execution. Malicious tenants can
intentionally manipulate the hardware platform to devise a covert chan-
nel, enabling them to steal the data of co-residing tenants. This paper
presents two new microarchitectural covert channel attacks using the
memory controller. The first attack allows a privileged adversary (i.e.
process) to leak information in a native environment. The second at-
tack is an extension to cross-VM scenarios for unprivileged adversaries.
This work is the first instance of leakage channel based on the memory
controller. As opposed to previous denial-of-service attacks, we manage
to modulate the load on the channel scheduler with accuracy. Both at-
tacks are implemented on cross-core configurations. Furthermore, the
cross-VM covert channel is successfully tested across three different Intel
microarchitectures. Finally, a comparison against state-of-the-art covert
channel attacks is provided, along with a discussion on potential mitiga-
tion techniques.

Keywords: Covert channel - Memory controller - DRAM - Microarchi-
tectural attack - Cross-VM.

1 Introduction

The cloud computing model allows on-demand access to what seems an unlim-
ited pool of storage and computing resource. In order to cope with the elastic
demands of its customers, cloud providers rely on multi-tenancy. Infrastructure-
as-a-service provides the service users with a virtual environment which maps
dynamically to physical resource. These virtual machines (VMs) are co-located
on a shared hardware platform, and separated virtually by the hypervisor. Thus,
data confidentiality and integrity is enforced at the software level. Yet, because
the underlying hardware is common to multiple VMs, attackers are left with
means to exploit functional and timing vulnerabilities at the hardware level.
The functional behaviour of a system is usually well understood by design-
ers. For example, the selL.4 micro-kernel has been proposed as a general purpose

2 B. Semal et al.

solution, providing strong assurance of confidentiality, availability, and integrity
enforcement from a functional perspective [11]. The identification of hidden leak-
age channels works by analyzing the system’s resources or source-code. Yet, these
identification methods rarely account for the system’s temporal behaviour. Mur-
ray et al. [18] highlighted that seL4 micro-kernel formal proofs completely omit
timing channels. Microarchitectural timing attacks aim at recovering data that
is dependent on the timing behaviour of an application. More specifically, two
processes can exploit timing variations to encode and leak sensitive data across
isolation boundaries. Covert channel attacks employ this mechanism to violate
information flow policies such as in cloud computing.

Cloud providers commonly disable support for simultaneous multi-threading
[14] as well as memory deduplication [4], thus hindering a large range of microar-
chitectural timing attacks. Multiple academic proposals address the mitigation
of timing channels in the cache memory [5,8,10,12,20,21,25,29]. Other internal
(memory controller, on-chip memory bus) and external (DRAM) resource re-
main shared among cores, and processors. The sharing of these components has
been exploited to design denial-of-service [17,33], covert and side-channel attacks
[22,27]. Wang et al. [26] previously proposed a simulated version of memory
controller-based leakage channels. In this paper, we present for the first time
a practical implementation in both native and virtualized environments. Both
attacks work in cross-core configuration, i.e. sender and receiver execute on dif-
ferent physical cores. We test our cross-VM covert channel attack on three dif-
ferent Intel microarchitectures, namely Ivy Bridge, Broadwell, and Skylake. The
channel capacity is systematically evaluated and results are discussed against
state-of-the-art covert channel attacks.

Contributions. This paper makes the following contributions:

1. We present two microarchitectural covert channel attacks using the memory
controller channel scheduler. The first one is privileged and is tested in a
native environment. The second one is unprivileged and can work under
both native and virtualized configurations.

2. We evaluate the proposed covert channels under the binary symmetric model.
Results of our experiments are reported in Table 3. A discussion of our mem-
ory controller-based covert channel against state-of-the-art covert is pro-
vided. We also discuss potential mitigation strategies.

Outline. The remainder of the paper is organized as follows. Section 2 provides
background on the memory controller and the DRAM organization. In Section
3, we present a new memory controller native, privileged covert channel attack.
In Section 4, we describe a memory controller cross-VM, unprivileged covert
channel. In Section 5, we evaluate the capacity of both covert channels under
the binary symmetric model. Section 6 reviews related works. Section 7 examines
potential mitigation strategies. Finally, we conclude in Section 8.

Leaky Controller 3

2 Background

The (integrated) memory controller handles memory accesses to DRAM. Such
access occurs when the data requested by a CPU is not contained in the cache(s).
Before serving a memory access, the memory controller must translate the re-
quested data’s physical address into a DRAM map. A map is a selection of
channel, rank, bank, row, and column. The physical-to-DRAM address transla-
tion is performed according to DRAM addressing functions. Once the DRAM
map is recovered, the request is then buffered according to the bank and channel
that it targets.

The memory controller contains storage and scheduling resources to arbitrate
memory accesses (see Figure 1). First, a request is stored in the buffer matching
the DRAM bank that it targets. Then, the bank scheduler will prioritize one
request or another, according to pre-determined scheduling algorithm. Once a
request wins bank arbitration, it is rescheduled by a channel scheduler. Again, the
scheduling algorithm determines priorities. Usually, requests that target open-
pages are served first, so as to mitigate the latency incurred by updating a
row-buffer.

The memory controller’s page policy dictates the aliveness of data in the
row-buffer. If a close-page policy is enforced, the row-buffer will systematically
be cleared after serving a request. Thus, each memory access results in a row-
miss, preventing timing variations, but globally slowing down the execution of
programs. If an open-page policy is enforced, the row-buffer will retain data
until it must be updated with a new row. Thus, it allows the occurrence of row-
hits, reducing the global execution time of programs, but introducing exploitable
timing variations.

Requests from cache

l | |

Bank 0 Bank 1 Bank N
buffer huffer buffer

request

/gl

77
- %

N\

!

Bank 0 Bank 1 Bank N
scheduler scheduler scheduler

| ' |

| Channel scheduler |

!

Requests to DRAM

Fig. 1. Organization of a memory controller.

4 B. Semal et al.

Several sources of contention exist in the memory controller. First, delays
can be caused via the bank scheduler, as requests from different processes are
mixed in the same bank buffer. If process A is the only one requesting data
in a bank, its memory accesses will be served immediately. However, if another
process B starts requesting data in the same bank as process A, requests of
A and B will compete for scheduling. Because the load on the bank scheduler
increases, requests of process A can be delayed.

Second, delays can be caused via the channel scheduler, since it arbitrates
requests for several banks. If there are no other requests then for bank ¢, these
will systematically win arbitration and be served immediately. However, if other
requests for bank j, with j # 4, compete for access to the channel, the load on
the channel scheduler will increase, resulting in requests for bank 7 to be delayed.

Finally, contention can be caused via the DRAM row-buffer, as long as the
memory controller has an open-page policy. Within the same bank, if there are
no other requests then for row m, these will systematically result in row-hits.
However, if other requests in row n interfere, with m # n, the row-buffer will
alternatively be updated with rows m and n, resulting in frequent row-misses.

3 A Privileged Native Covert Channel

This section presents the basic concept to generating contention via the channel
scheduler through a privileged covert channel in a native environment!.

3.1 Threat Model

The threat model assumes two processes, a receiver and a sender, who want to
share information illegitimately. The security policy forbids these two entities
from communicating directly. The sender possesses sensitive information and
intends to transmit this information to the receiver. Entities each have their
own address space, which is dissociated in physical memory. They are running
on different cores. Both entities require root privileges, and have knowledge of
the DRAM addressing functions.

3.2 Principle

The proposed covert channel exploits timing variations upon uncached memory
accesses. The receiver and sender both occupy space in N, the set of DRAM
banks served by a single channel. The receiver “listens” to the channel by con-
tinuously performing uncached memory accesses at a pre-determined address,
i.e. bank ¢ with ¢ € N. The sender writes on the channel by creating conflicts
on the resource involved in the memory accesses of the receiver. The sender
generates bit values as follows,

! The source code of our native covert channel is available at
https://github.com/bsepage/mc2c.git

Leaky Controller 5

— A zero is written by performing uncached memory accesses in bank j, with
j #iand j € N. Because the channel scheduler only serves banks i and j,
contention is negligible. Thus, the receiver’s memory access in bank i will
result in a “normal” latency, which is interpreted as a zero.

— A one is written by performing uncached memory accesses in all the banks
comprised in IV, except for bank i. This operation causes the channel sched-
uler to serve requests for every bank within IV, which generates an observable
contention. Thus, the receiver’s memory access in bank ¢ will increase in la-
tency, which is interpreted as a one.

Table 1 summarizes how bit values are encoded and decoded across the covert
channel. A Read (a) operation consists in performing an uncached memory ac-
cess in bank a. A Probe (a) operation is equivalent, at the exception that the
elapsed time of the operation is returned to its caller. In order to write a zero,
the sender needs to perform memory accesses in a different bank than the re-
ceiver. Doing so prevents interference from the DRAM row-buffer. Indeed, if
both entities were to read from the same bank, they would most likely read from
different rows (a bank contains thousands of rows). As a result, reading alterna-
tively from the sender’s row and the receiver’s row would cause the row-buffer
to be systematically updated. Thus, memory accesses would result in a majority
of row-misses, and dramatically increase in latency. Because our attack exploits
exclusively the memory controller, such interference is undesirable. Furthermore,
it is preferable to keep the sender active upon sending a zero, in order to compen-
sate the effect of other microarchitectural components (e.g. memory bus). Our
objective is to demonstrate the vulnerability in the memory controller, therefore
we need to isolate its effect from other sources of contention.

Table 1. Modulating the load on the memory controller channel scheduler. Banks ¢,
j, and k belong to N, the set of banks served by a single channel.

Receiver Sender Bit value
Probe (i) Read (5 | j #1) 0
Probe (i) Read (k=0,..,k=N—-1|k #1) 1

3.3 Design Considerations

The native, privileged covert channel works in two phases. First, each entity must
identify a virtual address which maps to the desired DRAM bank(s). Then, both
processes synchronize to exchange information covertly.

In the first phase, processes read the restricted /proc/self/pagemap page
translation table to compute the pointer’s physical address. Physical-to-DRAM
address translation (channel, rank, bank, row, column) requires knowledge of
the DRAM addressing functions. These vary from one processor to another, and

6 B. Semal et al.

must be reverse-engineered if not disclosed by the manufacturer?. The DRAM
address mapping was computed with the reverse engineering tool first presented
in [22]. Prior to launching the covert channel, entities can decide on which DRAM
banks to use specifically.

In the second phase, entities use the operating system wall-clock to syn-
chronize. The c1flush instruction is used to flush the cache upon each memory
access, so as to force the request to be served from DRAM. Because an uncached
memory access is higher in latency than a cached one, the cpuid instruction is
used to prevent out-of-order execution of the time-stamp reads. Finally, time-
stamps are read with the rdtsc and rdtscp instructions.

4 An Unprivileged Cross-VM Covert Channel

In this section, we present a cross-VM covert channel using the memory con-
troller. We present a strategy to discard root privileges, as well as the necessity
to learn the DRAM addressing functions.

4.1 Threat Model

Consider two application processes, a trojan and a spy, running in concurrent
VMs. The hardware platform features a multi-core processor, such that the hy-
pervisor schedules each VM on a different core. The security policy enforced
ensures memory isolation, access control, and does not present any software vul-
nerability. The trojan transmits a bitstream across the covert channel, and the
spy captures the data by probing memory accesses in its own address space (see
Figure 2).

Such a scenario is plausible if the adversary can infect a software with a
malicious code. The (accidental) compromising of open-source software has been
demonstrated, for instance, with the infection of the OpenSSL cryptographic
library in 2014 (Heartbleed) [6]. Compromising of corporate software has also
occurred, for example, with the multiple WhatsApp bugs [1,3]. Furthermore,
whether it is open-source or proprietary, the software supply chain involves a
growing number of developers and corporations. It is hard (if not impossible) for
users to control that the different parties involved in the development process
apply suitable security practices (e.g. a code is reviewed by a different person
than its developer). Therefore, it is reasonable to assume that commercial and
open-source software are not immune to malicious insiders.

With regards to the co-location problem, previous studies have shown that it
is possible to create a topology of the data centre’s network [24,32], even when
network isolation countermeasures are employed (e.g. virtual private clouds). As
a result, an attacker is capable of co-locating itself with the victim instance on
a shared hardware platform.

2 DRAM addressing functions on the Ivy Bridge test platform (see Table 2): BAO=
bis ® b17; BAl=b614® blg; BA2= b1 @ b20; and Rank= b15 ® b1g

Leaky Controller 7

Core 0 Core 1
VMO VM1
Victim Software :

e vy

Hypervisor

Last-Level Cache '

Memory Controller

DRAM

Fig. 2. Cross-VM covert channel.

4.2 Loosing Privileges & Principle

In Section 3, the channel scheduler covert channel is limited to a privileged
adversary model. Indeed, an unprivileged attacker is unable to read the /proc/-
self/pagemap file, which is necessary for virtual-to-physical address resolution.
Yet, the attacker needs to find addresses in its virtual address space which map
to different DRAM banks.

Rather than searching for specific banks in a process’ address space, we
mapped several virtual pages, and observed how these were spread across physi-
cal memory. We iterated through the pages, and translated each virtual pointer
into a physical address. These addresses were then converted into bank addresses,
according to the platform’s DRAM addressing functions. The following observa-
tions were made,

1. A single (page-aligned) virtual page is mapped to a single bank.
2. Different virtual pages tend to be mapped to different DRAM banks.

These observations suggest that the sending-end only requires to declare
several virtual pages, and that each page will map to a different bank. However,
there is a probability that one page will be mapped to the same bank as the one
accessed by the receiving-end. Such scenario would cause row-buffer conflicts to
occur. Accessing different rows triggers row-buffer updates, which would add a
significant delay into the receiver’s accesses.

By using a smaller amount of memory pages, the probability of having pages
mapped in the same bank is reduced. The proposed methodology is detailed
in Algorithm 1. The sending-end is designed such that it uses only 3 pages.
Upon writing a one, the sender performs accesses in 3 different banks. Thus, the
channel scheduler serves accesses in 4 different banks at once (3 for the sender
and 1 for the receiver). Upon writing a zero, the sender performs accesses in 1

8 B. Semal et al.

single page. Thus, the channel scheduler serves accesses in 2 different banks at
once. If a row-buffer interference was to occur, the noise would tamper with the
bitstream and the transmission would be discarded. Each bit value is repeated
several times in order to improve the visibility of the contention. The value of
rep determines the bit rate.

Algorithm 1: Transmitting bit values

input: message to transmit msg, number of repetitions rep
init : map and lock 3 memory pages P1, P2, P3
for i < 0 to msg_len do
bit < msgli;
if bit then
for j + 0 to rep do
‘ access(P1, P2, P3);
end
else
for j <+~ 0 to rep do
‘ access(P1, P1, P1);
end

end
end

Figure 3 shows the latency of the receiver’s memory accesses, with the sender
alternatively being active and inactive. The latency graph shows that when the
sender is active, the receiver presents an overhead of 6.5 CPU cycles on its ac-
cesses. The timing variation indicates that the proposed strategy is valid for
creating a covert channel. This new approach has the benefit that it completely
discards the virtual-to-bank address translation procedure. Therefore, the at-
tacker neither requires privileges, nor knowledge of the platform’s DRAM ad-
dressing functions. In this configuration, the attack can be applied to virtual
environments, where physical addresses are virtualized by the hypervisor.

=}
[
un

Probability

192 194 196 198 200 202 204 206 208 210
Access Time (CPU cycles)

Fig. 3. Effect of active sender upon latency of receiver’s memory accesses (Ivy Bridge
setup).

Leaky Controller 9

4.3 Design Considerations

The cross-VM, unprivileged covert channel also works in two phases. In the first
phase, the trojan maps and locks memory pages without reverse-engineering
their physical location. We note that spy and trojan no longer require agreeing on
specific DRAM banks. In the second phase, entities read or probe their memory
accesses to encode and decode bit values. Probing and accessing is performed
using the clflush, cpuid, rdtsc, and rdtscp instructions.

5 Characterizing the Channel Capacity

This section details our testing environment and provides an evaluation of both
covert channel attacks.

5.1 Experimental Setup

The experimental setups used for characterizing the channel capacity and noise
ratio are presented in Table 2. The Kernel Virtual Machine [2] hypervisor is used
to manage virtual machines, and each VM is operated by a Debian distribution
(Linux kernel version 4.19.0). All setups feature a dual-core processor, allowing us
to lock the trojan and spy VMs onto different cores. The virsh edit command
is used to assign a specific cpuset to the vcpu attribute. All our setups feature 16
DRAM banks. Note that a commercial infrastructure- or platform-as-a-service
server system will likely feature greater amounts of DRAM, i.e. the occurrence
of row-buffer interference will drop accordingly. Therefore, the proposed setup
represents a worst-case scenario for the attacker.

Table 2. Experimental setups.

Setup Processor CPU Frequency Memory #DRAM banks
Ivy Bridge Intel i5-3210M 2.5 GHz 1x4GB DDR3 16
Broadwell Intel i7-5500U 2.4 GHz 1x8GB DDR3 16

Skylake Intel i5-6300U 2.4 GHz 1x8GB DDR4 16

5.2 Evaluation

In order to evaluate the effective capacity, we model our covert channel as a
binary symmetric channel. Under the binary symmetric model, and given a bit
error probability p, the probability of correctly transmitting a bit is 1 —p. There-
fore, if p = 0.5, it is assumed that the channel has reached maximum entropy,
i.e. the probabilities of a bit being erroneous (p) and correct (1 — p) are equal.
The binary entropy Ha(p) is defined as follows,

Hy(p) = —p logyp — (1 — p) logy(1 — p) (1)

10 B. Semal et al.

- (a) Ivy Bridge (native) - (b) Ivy Bridge (virtualized)

180

=3
w

0.2} 150

Error probability
Capacity {bps)
Error probability
Capacity {bps)

0.1}
120

200 450 700 950 1200 100 200 300
Bit rate (bps) Bit rate (bps)
i (c) Broadwell (virtualized) . (d) Skylake (virtualized)
") 2
#* x
* |
T fs0 180
L 03} % % ® oy ol .. 03} ¥
& * ™ w £ * * T
z g B A T~ % g
a g = o i =
S 0.2} / 150 2 So0.2f . 150 £
8 4 [e 2 = * S
= x 7 a 5 * o
= w5 { 2] = #* 5
i - o i % u
0.1 s sh el 20
X 1
-l // %\
A
¥ |
ol X 0 + o+
100 200 300 100 200 300
Bit rate (bps) Bit rate (bps)

Fig. 4. Effective capacity and error probability measured against raw bit rate.

The channel capacity C(p,r), defined as the quantity of information that can be
transmitted reliably, is a function of the entropy Hz(p) and the raw bit rate r,

C(p,r) =r(1 — Ha(p)) (2)

Figure 4 compares the effective capacity and error probability against a raw
bit rate ranging from 100 to 1300 bps for the native scenario (Figure 4.a), and
from 50 to 350 bps for the virtualized scenarios (Figures 4.b, 4.c, and 4.d).
Measures were taken by sending a fixed-size message and counting the number
of bit flips on the receiving-end. The error probability p was then calculated as
the number of bit flips divided by the number of bits sent. The capacity C(p,r)
was computed with equations (1) and (2).

In the native scenario (Figure 4.a), the error probability stays below 0.1 for
bit rates of up to 1250 bps. The channel capacity reaches up to 729 bps, with an
error probability of 6.25%. In the virtualized scenarios, the Ivy Bridge (Figure
4.b), Broadwell (Figure 4.c), and Skylake (Figure 4.d) setups respectively achieve
a maximum capacity of 90, 95, and 69 bps. The error probability remains below
0.1 for a raw bit rate of up to 175 bps across the three setups. Results are
reported in Table 3.

Virtualization has a significant impact on the effective channel capacity, as
it brings additional sources of noise. First, sender and receiver compete with
each other to be scheduled by the hypervisor. Second, the sender and receiver
are not able to use the operating system wall-clock to synchronise, as they run

Leaky Controller 11

Table 3. Experimental results.

Setup Environment Bit rate Error rate Capacity

Ivy Bridge Native 1100 bps 6.25% 729 bps
Ivy Bridge Virtualized 150 bps 7.8% 90 bps
Broadwell Virtualized 150 bps 7% 95 bps

Skylake Virtualized 100 bps 5.6% 69 bps

in separate VMs. The receiver might sample at a different rate than the sender
can transmit, with the bias increasing over time. Third, programs executing
concurrently (e.g. hypervisor) can alter the state of the channel scheduler, bank
scheduler, or row-buffer. We note that our implementation is free from any fault
recovery technique.

6 Discussion & Related Work

At the highest level, simultaneous multi-threading (SMT) allows concurrent
threads to share execution units and CPU caches. Percival [21] demonstrated
a covert channel between two threads, based on contention within the L1-D
and L2 caches. Shortly after, Wang and Lee [28] designed a covert channel that
leverages contention on multipliers. More recently, Sullivan et al. [23] demon-
strated a high-speed covert channel between two hyperthreads in Amazon EC2
and Google Compute Engine instances. In a virtualized environment, core-level
co-residency is hard to achieve as VMs tend to be isolated onto different cores.
Furthermore, this class of covert channels is only relevant to cloud platforms
where hyperthreads are enabled.

Other works proposed exploiting the LLC cache as it is fast and shared among
cores. Xu et al. [31] proposed exploiting conflict in the LLC. They used a covert
channel to achieve co-location in an Amazon EC2 setting. Further works followed
based upon the Prime+ Probe [13,15,19] or Flush+ Flush technique [9]. Maurice
et al. [16] implemented a robust covert channel capable of establishing a rogue
SSH connection across Amazon EC2 instances. A number of academic works
have been proposed in order to tackle timing vulnerabilities emanating from
the cache, including hardware cache partitioning [12,20,21,29], software cache
partitioning [5,8,10], and noise injection [25,29]. It is difficult to assess whether
these covert channels could bypass such countermeasures, and calls for further
analysis.

Wu et al. [30] exploited the memory bus as a high-bandwidth covert channel
medium. Their Amazon EC2 experiment achieves an effective capacity of 340
bps, with the use of a robust communication protocol. In order to prevent timing
channels over the on-chip memory bus (or network), Wang and Suh [27] proposed
two approaches. The first one consists in prioritizing traffic from high-security
domains over lower ones, thus isolating sensitive software from a potential spy.

12 B. Semal et al.

The second one consists in assigning separate hardware resources to different
security domains, thus inhibiting timing channels on the memory bus.

Pessl et al. [22] built a high-speed covert channel based on on the DRAM
row-buffer. Their channel reaches up to 596 kbps in virtualized environment.
Mitigating row-buffer covert channels could be achieved by enforcing a close-
page policy on the memory controller. As a result, every memory access would
result in a row-miss, thus inhibiting the timing channel. Furthermore, authors
relied on a privileged adversary model, and both entities need to undergo an
initialization phase in order to agree on a specific DRAM bank. This agreement
cannot be performed online without incurring additional memory usage side-
effects. We propose an alternative to the row-buffer exploitation, with a weaker
adversary model and less operational constraints.

The vulnerability of the memory controller was previously demonstrated by
Moscibroda et al. [17]. Their work shows that by combining all timing channels
detailed in Section 2, a malicious process can slowdown the execution of a con-
current process by a factor of 190%. It is worth noting that their denial-of-service
attack exploits both the memory controller, and the DRAM row-buffer. Further-
more, they do not address the problem of encoding and decoding information
across virtual machines via the channel scheduler.

7 Mitigation

Memory controller-based (and DRAM row-buffer covert channels) rely on un-
cached memory accesses. Therefore, one countermeasure consists in disabling or
restricting access to the clflush instruction. This mitigation technique would
require architectural changes, thus adding in complexity. However, it would go
a long way to making shared platforms resilient against this class of microarchi-
tectural covert channels.

Auditing-based techniques have been proposed in the past [7,9]. The system-
atic flushing of the cache causes a very high number of cache misses, which can
be monitored in order to detect abnormal behaviours. However, auditing usu-
ally results in high numbers of false positives. Further work is required to assess
whether this is a suitable approach.

Wang et al. [26] proposed an alternative hardware design of a memory con-
troller. They achieve temporal isolation between different security domains, at
the cost of a memory latency ranging from 60% to 150%. So far, there haven’t
been any countermeasures relying on spatial isolation, or noise injection.

8 Conclusion & Further Work

In this paper, we presented two instances of microarchitectural covert channel
attacks using the memory controller channel scheduler. The first attack is privi-
leged and was tested in a native environment. It achieved a capacity of up to 729
bps (raw bit rate of 1100 bps). The second attack is unprivileged and was tested
in a virtualized environment. It achieved a capacity of up to 95 bps (raw bit

Leaky Controller 13

rate of 150 bps). In further work, we aim to develop countermeasures to prevent
exploitation of the memory controller and the DRAM row-buffer resource. We
also intend to expand the study to multi-processor x86-64 server platforms, as
well as investigating mechanism for bi-directional communication.

References

10.

11.

12.

13.

14.

15.

Hackers used whatsapp 0-day flaw to secretly install spyware on phones. https://
thehackernews.com/2019/05/hack-whatsapp-vulnerability.html, last accessed
18 Feb 2020

Kernel virtual machine. https://www.linux-kvm.org, last accessed 18 Feb 2020
New whatsapp bug could have let hackers secretly install spyware on your devices.
https://thehackernews.com/2019/11/whatsapp-hacking-vulnerability.html,
last accessed 18 Feb 2020

Base, V.K.: Security considerations and disallowing inter-virtual machine trans-
parent page sharing. VMware Knowledge Base 2080735 (2014)

Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: An empirical study of
timing channels on sel4. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 570-581. ACM (2014)

Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., et al.: The matter of heartbleed. In: Proceedings
of the 2014 conference on internet measurement. pp. 475-488. ACM (2014)

Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering 8(1), 1-27 (2018)

Godfrey, M.M., Zulkernine, M.: Preventing cache-based side-channel attacks in a
cloud environment. IEEE transactions on cloud computing 2(4), 395408 (2014)
Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+ flush: a fast and stealthy
cache attack. In: International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. pp. 279-299. Springer (2016)

Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: System-level protection
against cache-based side channel attacks in the cloud. In: The 21st USENIX Secu-
rity Symposium. pp. 189-204 (2012)

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an os microkernel. ACM Trans-
actions on Computer Systems (TOCS) 32(1), 2 (2014)

Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In: 2016 IEEE
international symposium on high performance computer architecture (HPCA). pp.
406-418. IEEE (2016)

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy. pp. 605—
622. IEEE (2015)

Marshall, A., Howard, M., Bugher, G., Harden, B., Kaufman, C., Rues, M.,
Bertocci, V.: Security best practices for developing windows azure applications.
Microsoft Corp p. 42 (2010)

Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. pp. 46-64. Springer (2015)

https://thehackernews.com/2019/05/hack-whatsapp-vulnerability.html
https://thehackernews.com/2019/05/hack-whatsapp-vulnerability.html
https://www.linux-kvm.org
https://thehackernews.com/2019/11/whatsapp-hacking-vulnerability.html

14

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

B. Semal et al.

Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C.A., Mangard,
S., Romer, K.: Hello from the other side: Ssh over robust cache covert channels in
the cloud. In: NDSS. vol. 17, pp. 8-11 (2017)

Moscibroda, O., Mutlu, T.: Memory performance attacks: Denial of memory service
in multi-core systems. In: 16th USENIX Security Symposium (2007)

Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: sel4: from general purpose to a proof of information flow
enforcement. In: 2013 IEEE Symposium on Security and Privacy. pp. 415-429.
IEEE (2013)

Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: Practical cache attacks in javascript and their implications. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. pp. 1406-1418. ACM (2015)

Page, D.: Partitioned cache architecture as a side-channel defence mechanism
(2005)

Percival, C.: Cache missing for fun and profit (2005)

Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: Exploiting
DRAM addressing for cross-cpu attacks. In: 25th USENIX Security Symposium.
pp. 565-581 (2016)

Sullivan, D., Arias, O., Meade, T., Jin, Y.: Microarchitectural minefields: 4k-
aliasing covert channel and multi-tenant detection in iaas clouds. In: NDSS (2018)
Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: 24th USENIX Security Symposium. pp.
913-928 (2015)

Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen.
In: Proceedings of the 3rd ACM workshop on Cloud computing security workshop.
pp. 41-46. ACM (2011)

Wang, Y., Ferraiuolo, A.; Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). pp. 225-236. IEEE (2014)

Wang, Y., Suh, G.E.: Efficient timing channel protection for on-chip networks.
In: 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip. pp.
142-151. IEEE (2012)

Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture. In:
22nd Annual Computer Security Applications Conference (ACSAC’06). pp. 473~
482. IEEE (2006)

Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Computer Architecture News 35(2), 494-505
(2007)

Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and re-
liable covert channel attacks inside the cloud. IEEE/ACM Transactions on Net-
working 23(2), 603-615 (2014)

Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of 12 cache covert channels in virtualized environments. In: Proceedings
of the 3rd ACM workshop on Cloud computing security workshop. pp. 29-40. ACM
(2011)

Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security Symposium. pp. 929-944 (2015)

Zhang, T., Zhang, Y., Lee, R.B.: Memory dos attacks in multi-tenant clouds: Sever-
ity and mitigation. arXiv preprint arXiv:1603.03404 (2016)

	Leaky Controller: Cross-VM Memory Controller Covert Channel on Multi-Core Systems

