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Abstract. This research presents a novel method for identifying the mode 

shapes of a bridge using sensors mounted on vehicles crossing the bridge. The 

proposed technique employs an enhanced soft-imputing matrix completion ap-

proach to predict the bridge's vibration signals at virtual fixed points in invalid 

regions of the response. To improve the accuracy and automate the implementa-

tion of the soft-imputing technique, a novel paradigm is developed to find the 

optimal mode shapes by utilizing the full-field responses of the bridge. The 

modal frequency response functions (FRFs) of the bridge are determined using 

a rational procedure, and the algorithm aims to find the mode shapes in a way 

that maximizes the similarity between the determined modal FRF of the bridge 

and that of an ideal single-degree of freedom (SDOF) system. Numerical exper-

iments using synthetic data on a one-span bridge were conducted to verify the 

effectiveness of the proposed algorithm. The results indicate that the method 

finds the best mode shape from the matrix completion approach without the 

need for manual and engineering judgment, and the main mode shapes of the 

bridge can be identified accurately. 

Keywords: Indirect Health Monitoring; Mode Shape Identification; Matrix 

Completion; Bridge Modal FRF. 
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1 INTRODUCTION 

The growing demand for transportation systems and the aging of their infrastructure 

have brought to light the need for cost-effective and efficient methods for the health 

monitoring of bridges, which are a crucial component of these systems. Traditional 

bridge health monitoring methods involve collecting data from sensors mounted on 

the bridge, but recent studies have shown that using accelerometers on vehicles cross-

ing the bridge can be a more cost-effective and time-efficient alternative [1–6]. 

 

In recent years, researchers have turned to mobile sensor networks as an alternative 

method for bridge health monitoring. This approach utilizes data collected from the 

smartphones carried by passengers, instead of the costly installation of commercial-

grade sensors on the vehicles. This method has the potential to significantly reduce 

costs while providing acceptable accuracy in understanding the dynamic behavior of 

bridges [7–11]. 

 

Crowdsensing-based techniques also show promise in detecting damage in bridges 

with increased efficiency. These techniques involve collecting and analyzing data 

from a large number of smartphones to form a comprehensive understanding of the 

dynamic characteristics of a bridge. However, the implementation of these techniques 

is still in the early stages of research and development, presenting challenges such as 

telecommunications limitations and the complexity of combining responses from 

multiple mobile sensors [12–15]. 

 

To accurately assess and detect damage in bridges, it is crucial to obtain a compre-

hensive understanding of their dynamic response. The authors' previous work pro-

posed a novel method for mapping mobile data to some virtual fixed locations on the 

bridge and estimating bridge responses in order to identify the bridge mode shapes 

[16]. The main challenge in determining the dynamic response of a bridge at some 

assumed virtual fixed points using only the acceleration measured by the sensors 

mounted on the vehicles passing through them is the limitation in extracting the whole 

response signal of all the fixed points during total duration of loading, because the 

response estimated for a fixed point by interpolation of the mapped-response of the 

moving sensors to the adjacent fixed points, is usually valid only in the vicinity of the 

moving sensor locations. Herby, to complete or predict the invalid (missing) parts of 

the signals obtained for these fixed points, it is necessary to use statistical and mathe-

matical techniques or machine learning approaches [16].  

 

While the mode shapes of the bridge were successfully identified, the previously 

proposed technique, as proposed by the authors, relies heavily on subjective engineer-

ing judgment and lacks automation capabilities. This paper aims to address this chal-

lenge by proposing an algorithm to automate the procedure of soft-imputing in the 

signal completion step, eliminating the need for engineering judgment and streamlin-

ing the process of mode shape identification for the bridges through the vertical accel-

eration of the crossing vehicles and a novel modal FRF similarity measure. The pro-
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posed algorithm can potentially improve the efficiency and cost-effectiveness of 

bridge health monitoring and help ensure the safety and longevity of transportation 

infrastructure in smart cities. 

 

2 MATERIALS AND METHODS 

1.1 Motivations and General Procedures  

The previous study [16] found that by utilizing the soft-imputing method to com-

plete the vertical response of passing vehicle axles, it is possible to estimate bridge 

responses at virtual fixed points and subsequently identify the bridge's mode shapes. 

However, a significant challenge in determining the optimal regularization parameter 

(λ) for accurate mode shape identification is that the exact mode shapes of the bridge 

are not known in real-world structural health monitoring (SHM) applications, requir-

ing the use of engineering judgment [16]. 

 

The main objective of this paper is to develop a criterion for automatic determina-

tion of the optimal λ, in order to increase the accuracy of the identified mode shapes. 

Such increase in the accuracy will result in greater similarity between the extracted 

modal frequency response function (FRF) using the completed responses of the fixed 

points and the FRF of an ideal single-degree-of-freedom (SDOF) structure. 

1.2 Bridge response estimation through soft-imputing 

In order to estimate some parts of the bridge displacement response signals at some 

arbitrary virtual fixed points utilizing the vehicle acceleration response, inverse prob-

lem solution through linear interpolation first employed. The geometry of the bridge 

and parameters used in the following sections are shown in Fig. 1. 
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Fig. 1. Geometry and parameters of the one span bridge. 
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The continuous vertical displacement response of the bridge can be determined by 

considering a linear interpolating function and using the discrete responses of the 

bridge at the location of the virtual fixed points. 

 
 

1

1

( )

( , ) ( ) ( ) ( ) ( )

( )
n

s

n

s

y t

y x t N x N x x t

y t

 
 

= = 
 
 

N D
 (1) 

where D(t) is a vector containing vertical displacements of all the n fixed points 

(ysj(t)) and N(x) is linear interpolating function matrix.: 
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where sj is the location of the  jth fixed points from the left support. j can be valued 

from 1 to (n-1). 

By substituting the location history of the moving axles (x1(t) to xm(t)) in Eq. (1), 

the displacement responses of the moving axles can easily be extracted. 
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where yi
v
 (t) is vertical displacement of the ith axle and Nv(t) is an interpolating shape 

function matrix for estimating the response of the moving axles. The total number of 

the moving axles is m. 

Multiplying Eq. (3) by the pseudoinverse of matrix Nv(t) produces the displace-

ments of the fixed points as a function of moving axles displacements (m≠n). 
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As previously discussed in [16], the response signals estimated using Eq. (4) are 

only accurate in the vicinity of the moving axles. The remaining parts of the signals 

should be considered missing due to high estimation error. 

In order to complete the missing parts of the predicted signals, soft-imputing is ap-

plied on matrix D(t) with missing values based on the proposed technique in [16]. 

Soft-Imputing aims to make the valid regions (Ω) of the estimated matrix PΩ(Z) as 

similar as possible to the valid elements of the original matrix PΩ(D), while also keep-

ing the rank of the estimated matrix as low as possible. 
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where ||.||n and ||.||* represent the nuclear norm and the rank of a matrix respectively.   

λk is the regularization coefficient, which plays an important role in the algorithm. The 

solution for the optimization problem (Eq. (6)) is obtained through an iterative pro-

cess.  
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The method uses SVD on matrix [PΩ(D)+P⊥
Ω(Zold)] to obtain matrices U, Σ and V, 

with Σ containing the singular values (=diag(d1, … , dr)). The soft-thresholded matrix 

of Σ, Σλi, is obtained by applying a thresholding technique to Σ.  

In the present research, the optimal estimate of missing values (optimum point 

based on λk) is chosen using the objective function and a novel modal FRF similarity 

measure. The final estimate for a given λ is Zλ(t). 

1.3 Modal frequency response functions of the bridge under moving axles 

According to the principle of modal analysis, the completed response signal matrix 

Zλ (t) can be represented by the matrix of mode shapes (Фs
λ) and the modal coordinate 

response matrix (Qλ (t)): 

 ( ) ( )st t  =Z Φ Q  (8) 

SVD is utilized to identify mode shapes and modal coordinate responses as it can 

extract and ensure the orthogonality of matrices, a key characteristic of mode shapes 

[4]. 
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And Qλ (t) can also be obtained using Eq. (1): 
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The modal forces are also needed in order to extract the modal frequency response 

functions (FRFs) based on input and output data. Eq. (4) can be used to model an m-

axles moving load passing a bridge at a constant speed v, as depicted in Fig. 1. 
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where the vertical dynamic forces applied by the vehicle to the bridge at the ith axle  

(fvi (t)) can be calculated using the absolute acceleration and the mass of that axle 

(
viy and mvi ) in the following equation: 

 ( ) ( )vi vi vif t m g y= −  (12) 
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By considering n virtual points on the bridge as the fixed loading nodes and 

determining the vector of forces applied to these points using linear interpolation of 

intermediate loadings, the forces applied to the virtual fixed points (Fs (t)) can be 

calculated at any arbitrary time: 

 ( ) ( ) ( )s vt t t=F N F  (13) 

where; Fv (t) is a vector containing the axles forces (fvi (t)).  

The extracted force vector can be mapped to the modal space by multiplying Фs
λ by  

Fs (t), which enables us to determine the vector of modal forces (Pλ(t)). 

 ( ) ( ) ( )
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Finally, having the input (pr
λ (t)) and output (qr

λ (t)) for the rth mode, the FRF of 

that mode (Hr(ω)) can be determined by the following system identification tech-

niques [17]: 
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where ( )r rq p
S

 

  and ( )r rp p
S

 

  represent the cross and auto power spectral density 

spectrum, respectively. 

1.4 Modal FRF similarity measure and optimum λ 

After the modal frequency response functions (FRFs) have been determined, an 

SDOF FRF model is fitted to each function using the least square technique. The pro-

posed measure in Eq. (18) is then used to calculate the similarity between the modal 

FRFs and the fitted SDOF FRF model (MFRFSM (λ)). This measure enables us to 

quantify the accuracy of the identified mode shapes. 
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The objective is to optimize the similarity measure in order to find the most appropri-

ate value of the regularization coefficient (λ) and the corresponding optimal mode 

shapes. This automated approach allows for the identification of the most accurate 

mode shapes without the need for subjective engineering judgment. 
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2 RESULTS AND DISSCUSION 

2.1 Numerical setup 

To evaluate the effectiveness of the proposed framework, a single-span simply 

supported bridge under the loading of a two-axle moving vehicle is modeled and ana-

lyzed using ABAQUS. The first three natural frequencies of the model are 1.44, 5.76, 

and 12.95 Hz. The specifics of the numerical model can be found in previous research 

by the authors [16]. The model considers a bridge with a span length of 40 m and a 

distance between axles of 2.5 m. A constant speed of 60 km/h is assigned to all the 

axles, and the accelerometers are set to sample at a frequency of 200 Hz.  

2.2 Results and analysis 

As shown in Fig. 3, the optimal value for the regularization parameter (λ) corre-

sponding to the maximum average Modal Assurance Criterion (MAC) for all modes 

(compared to the exact ones) can be estimated using the proposed method without the 

need for engineering judgment. The optimal point of the modal FRF similarity meas-

ure (MFRFSM) is similar to that of the maximum MAC. This is of significant im-

portance as it demonstrates a similar pattern between the two curves, enabling the 

proposed method to automatically identify more accurate mode shapes. Based on the 

optimal λ obtained using the proposed technique, the first four mode shapes of the 

bridge can be obtained using Eq. (9). The results of the comparison between the iden-

tified mode shapes and the corresponding exact mode shapes, as shown in Fig. 3, 

indicating that the proposed method is highly accurate in identifying the primary three 

mode shapes of the bridge.  

 

(a) Average MAC Between Exact

and Estimated Mode Shapes
(b) Modal FRF Similarity Measure

 

Fig. 2. Comparison of the exact and identified mode shapes with varying regularization param-

eter using average (a) Modal Assurance Criterion (MAC) and (b) the Modal FRF Similarity 

Measure. 
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Fig. 3. Selected Mode Shapes based on Optimal Regularization Parameter (λ). 

3 CONCLUSIONS 

In this paper, we have presented a novel concept of utilizing modal frequency re-

sponse functions (FRFs) to identify the optimal mode shapes through the application 

of soft-imputing and the vibration data from crossing vehicles. This approach enables 

the automatic system identification in drive-by bridge health monitoring applications, 

eliminating the need for subjective engineering judgment. The proposed algorithm 

was evaluated using data from numerical models, providing evidence of its effective-

ness in identifying the optimal mode shapes. Additionally, the proposed method has 

the potential to reduce costs and improve the efficiency of bridge monitoring and 

maintenance. Overall, the results of this study demonstrate the potential for utilizing 

the proposed algorithm bridge health monitoring applications, thereby ensuring the 

safety and longevity of transportation infrastructure in smart cities. 
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