
EasyChair Preprint
№ 15919

Federated Learning: from Theory to Practice

Alexander Jung

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 18, 2025

Federated Learning
From Theory to Practice

Alexander Jung∗

February 13, 2025

∗AJ is currently Associate Professor for Machine Learning at Aalto University (Finland).

This work has been partially funded by the Academy of Finland (decision numbers 331197,

349966, 363624) and the European Union (grant number 952410).

1

Preface

This book is about federated learning (FL), a paradigm for distributed machine

learning that enables collaborative training across multiple decentralized

datasets. FL leverages similarities between local datasets to collaboratively

train models while preserving data privacy. The primary focus of this book is

to explore the theoretical foundations and algorithmic techniques underpinning

FL, emphasizing its mathematical models and optimization frameworks.

This book revolves around two central mathematical constructs: FL

networks and generalized total variation (GTV) minimization. We use FL

networks to model relationships between clients, their datasets, and the locally

trained models. GTV minimization, which is defined for a given FL network,

formulates FL as a regularized instance of empirical risk minimization. The

regularization term captures variation across local models connected through

the FL network, offering a principled way to balance personalization and

collaboration. We obtain practical FL systems by solving GTV minimization

with established distributed optimization techniques.

(Our Main Goal) The book trains the reader in formulating FL

applications as instances of GTV minimization over a FL network.

It also demonstrates how to study and design FL algorithms by

applying distributed optimization techniques to solve GTV mini-

mization.

FL has found applications in healthcare, finance, telecommunications,

smart cities, and more. In these fields, FL enables organizations to build robust

predictive models without ever centralizing sensitive data. The distributed

2

nature of FL also enables scalability, allowing large-scale systems to train

collaboratively without a central data repository.

We believe that FL becomes a main paradigm for the development of

trustworthy artificial intelligence. Indeed, FL merges established machine

learning concepts with considerations for privacy, security, and robustness.

Roughly speaking, FL is privacy-friendly by not sharing raw data but only

updates of model parameters. The de-centralized nature of FL systems offers

robustness against different forms of cyber-attacks such as data poisoning.

Audience. The only mathematical background required of the reader is a

good knowledge of calculus and linear algebra. Any reader with a completed

undergraduate course on basic mathematical analysis (covering concepts

such as norms, convergence and derivatives) should be able to follow every

argument and discussion in the book. Even readers who are not well-versed

in calculus or linear algebra should still get all of the essential ideas and

important points. Prior exposure to machine learning and optimization is

helpful but not required as we develop most of the required concepts from

first principles.

Acknowledgement. The development of this text has benefited from

student feedback received for the course CS-E4740 Federated Learning which

has been offered at Aalto University during 2023. The author is indebted to

Mikko Seesto, Olga Kuznetsova, Diana Pfau and Shamsiiat Abdurakhmanova

for carefully reviewing draft manuscripts.

3

Contents

1 Introduction 1

1.1 Main Tools . 4

1.2 Main Goal of the Book . 5

1.3 Outline . 6

1.4 Exercises . 8

2 ML Basics 11

2.1 Learning Goals . 11

2.2 Three Components and a Design Principle 11

2.3 Computational Aspects of ERM 15

2.4 Statistical Aspects of ERM . 17

2.5 Validation and Diagnosis of ML 21

2.6 Regularization . 26

2.7 Upgrading a Linear Model . 28

2.8 Exercises . 29

3 A Design Principle for FL 32

3.1 Learning Goals . 32

3.2 FL Networks . 33

3.3 Generalized Total Variation 36

3.4 Generalized Total Variation Minimization 42

3.4.1 Computational Aspects of GTVMin 45

3.4.2 Statistical Aspects of GTVMin 47

3.5 How to Handle Non-Parametric Models 49

3.6 Interpretations . 51

4

3.7 Exercises . 55

3.8 Proofs . 60

3.8.1 Proof of Proposition 3.1 60

4 Gradient Methods 61

4.1 Learning Goals . 61

4.2 Gradient Descent . 62

4.3 Learning Rate . 65

4.4 When to Stop? . 66

4.5 Perturbed Gradient Step . 70

4.6 Handling Constraints - Projected Gradient Descent 72

4.7 Generalizing the Gradient Step 74

4.8 Gradient Methods as Fixed-Point Iterations 77

4.9 Exercises . 81

5 FL Algorithms 83

5.1 Learning Goals . 84

5.2 Gradient Descent for GTVMin 85

5.3 Message Passing Implementation 88

5.4 FedSGD . 93

5.5 FedAvg . 96

5.6 FedProx . 102

5.7 FedRelax . 104

5.8 Asynchronous FL Algorithms 108

5.9 Exercises . 111

5.10 Proofs . 113

5

5.10.1 Proof of Proposition 5.1 113

5.10.2 Proof of Proposition 5.2 114

6 Main Flavours of FL 117

6.1 Learning Goals . 118

6.2 Single-Model FL . 119

6.3 Clustered FL . 121

6.4 Horizontal FL . 125

6.5 Vertical FL . 127

6.6 Personalized Federated Learning 128

6.7 Few-Shot Learning . 131

6.8 Exercises . 131

6.9 Proofs . 133

6.9.1 Proof of Proposition 6.1 133

7 Graph Learning 135

7.1 Learning Goals . 136

7.2 Edges as Design Choice . 136

7.3 Measuring (Dis-)Similarity Between Datasets 141

7.4 Graph Learning Methods . 144

7.5 Exercises . 147

8 Trustworthy FL 148

8.1 Learning Goals . 148

8.2 Seven Key Requirements by the EU 149

8.2.1 KR1 - Human Agency and Oversight. 149

8.2.2 KR2 - Technical Robustness and Safety. 150

6

8.2.3 KR3 - Privacy and Data Governance. 151

8.2.4 KR4 - Transparency. 152

8.2.5 KR5 - Diversity, Non-Discrimination and Fairness. . . . 153

8.2.6 KR6 - Societal and Environmental Well-Being. 154

8.2.7 KR7 - Accountability. 155

8.3 Technical Robustness of FL Systems 155

8.3.1 Sensitivity Analysis . 156

8.3.2 Estimation Error Analysis 157

8.3.3 Network Resilience . 160

8.3.4 Stragglers . 161

8.4 Subjective Explainability of FL Systems 164

8.5 Exercises . 168

9 Privacy-Protection in FL 169

9.1 Learning Goals . 169

9.2 Measuring Privacy Leakage 170

9.3 Ensuring Differential Privacy 177

9.4 Private Feature Learning . 180

9.5 Exercises . 184

10 Data and Model Poisoning in FL 188

10.1 Learning Goals . 189

10.2 Attack Types . 189

10.3 Data Poisoning . 193

10.4 Model Poisoning . 194

10.5 Exercises . 194

7

Glossary 1

8

Lists of Symbols

Sets and Functions

a ∈ A
This statement indicates that the object a is an element

of the set A.

a := b This statement defines a to be shorthand for b.

|A| The cardinality (number of elements) of a finite set A.

A ⊆ B A is a subset of B.

A ⊂ B A is a strict subset of B.

N The natural numbers 1, 2,

R The real numbers x [1].

R+ The non-negative real numbers x ≥ 0.

R++ The positive real numbers x > 0.

9

{0, 1} The set consisting of the two real numbers 0 and 1.

[0, 1] The closed interval of real numbers x with 0 ≤ x ≤ 1.

argmin
w

f(w) The set of minimizers for a real-valued function f(w).

S(n) The set of unit-norm vectors in Rn+1.

log a The logarithm of the positive number a ∈ R++.

h(·) :A→B : a 7→h(a)

A function (map) that accepts any element a ∈ A from a

set A as input and delivers a well-defined element h(a) ∈ B

of a set B. The set A is the domain of the function h

and the set B is the codomain of h. ML aims at finding

(or learning) a function h (hypothesis) that reads in the

features x of a data point and delivers a prediction h(x)

for its label y.

∇f(w)

The gradient of a differentiable real-valued function f :

Rd → R is the vector ∇f(w) =
(

∂f
∂w1

, . . . , ∂f
∂wd

)T ∈ Rd [2,

Ch. 9].

10

Matrices and Vectors

x =
(
x1, . . . , xd)

T A vector of length d with its j-th entry being xj.

Rd The set of vectors x =
(
x1, . . . , xd

)T consisting of d real-

valued entries x1, . . . , xd ∈ R.

Il×d

A generalized identity matrix with l rows and d columns.

The entries of Il×d ∈ Rl×d are equal to 1 along the main

diagonal and equal to 0 otherwise.

Id, I
A square identity matrix of size d× d. If the size is clear

from the context, we drop the subscript.

∥x∥2
The Euclidean (or ℓ2) norm of the vector x =(
x1, . . . , xd

)T ∈ Rd defined as ∥x∥2 :=
√∑d

j=1 x
2
j .

∥x∥
Some norm of the vector x ∈ Rd [3]. Unless specified

otherwise, we mean the Euclidean norm ∥x∥2.

XT
The transpose of a matrix X ∈ Rm×d. A square real-valued

matrix X ∈ Rm×m is called symmetric if X = XT .

xT
The transpose of a matrix that has the vector x ∈ Rd as

its single column.

0 =
(
0, . . . , 0

)T
The vector in Rd with each entry equal to zero.

1 =
(
1, . . . , 1

)T
The vector in Rd with each entry equal to one.

11

(
vT ,wT

)T The vector of length d+ d′ obtained by concatenating the

entries of vector v ∈ Rd with the entries of w ∈ Rd′ .

span{B}

The span of a matrix B ∈ Ra×b, which is the subspace of

all linear combinations of columns of B, span{B} =
{
Ba :

a ∈ Rb
}
⊆ Ra.

det (C) The determinant of the matrix C.

A⊗B The Kronecker product of A and B [4].

12

Probability Theory

Ep{f(z)}

The expectation of a function f(z) of a RV z whose prob-

ability distribution is p(z). If the probability distribution

is clear from context we just write E{f(z)}.

p(x, y)
A (joint) probability distribution of a RV whose realiza-

tions are data points with features x and label y.

p(x|y)
A conditional probability distribution of a RV x given the

value of another RV y [5, Sec. 3.5].

p(x;w)

A parametrized probability distribution of a RV x. The

probability distribution depends on a parameter vector

w. For example, p(x;w) could be a multivariate normal

distribution with the parameter vector w given by the

entries of the mean vector E{x} and the covariance matrix

E
{(

x− E{x}
)(
x− E{x}

)T}.

N (µ, σ2)

The probability distribution of a Gaussian RV x ∈ R

with mean (or expectation) µ = E{x} and variance σ2 =

E
{
(x− µ)2

}
.

N (µ,C)

The multivariate normal distribution of a vector-valued

Gaussian RV x ∈ Rd with mean (or expectation) µ =

E{x} and covariance matrix C = E
{(

x− µ
)(
x− µ

)T}.

13

Machine Learning

r An index r = 1, 2, . . . , that enumerates data points.

m The number of data points in (the size of) a dataset.

D
A dataset D = {z(1), . . . , z(m)} is a list of individual data

points z(r), for r = 1, . . . ,m.

d Number of features that characterize a data point.

xj

The j-th feature of a data point. The first feature of a

given data point is denoted x1, the second feature x2 and

so on.

x
The feature vector x =

(
x1, . . . , xd

)T of a data point whose

entries are the individual features of a data point.

X
The feature space X is the set of all possible values that

the features x of a data point can take on.

z

Beside the symbol x, we sometimes use z as another symbol

to denote a vector whose entries are individual features of

a data point. We need two different symbols to distinguish

between raw and learnt features [6, Ch. 9].

x(r) The feature vector of the r-th data point within a dataset.

x
(r)
j The j-th feature of the r-th data point within a dataset.

14

B A mini-batch (subset) of randomly chosen data points.

B The size of (the number of data points in) a mini-batch.

y The label (quantity of interest) of a data point.

y(r) The label of the r-th data point.

(
x(r), y(r)

)
The features and label of the r-th data point.

Y

The label space Y of a ML method consists of all potential

label values that a data point can carry. The nominal

label space might be larger than the set of different label

values arising in a given dataset (e.g., a training set). We

refer to ML problems (methods) using a numeric label

space, such as Y = R or Y = R3, as regression problems

(methods). ML problems (methods) that use a discrete

label space, such as Y = {0, 1} or Y = {cat , dog ,mouse}

are referred to as classification problems (methods).

η Learning rate (step-size) used by gradient-based methods.

h(·)
A hypothesis map that reads in features x of a data point

and delivers a prediction ŷ = h(x) for its label y.

YX Given two sets X and Y, we denote by YX the set of all

possible hypothesis maps h : X → Y .

15

H

A hypothesis space or model used by a ML method. The

hypothesis space consists of different hypothesis maps

h : X → Y between which the ML method has to choose .

deff (H) The effective dimension of a hypothesis space H.

B2

The squared bias of a learnt hypothesis ĥ delivered by

a ML algorithm that is fed with data points which are

modelled as realizations of RVs. If data is modelled as

realizations of RVs, also the delivered hypothesis ĥ is the

realization of a RV.

V

The variance of the (parameters of the) hypothesis de-

livered by a ML algorithm. If the input data for this

algorithm is interpreted as realizations of RVs, so is the

delivered hypothesis a realization of a RV.

L ((x, y), h)

The loss incurred by predicting the label y of a data

point using the prediction ŷ = h(x). The prediction ŷ is

obtained from evaluating the hypothesis h ∈ H for the

feature vector x of the data point.

Ev

The validation error of a hypothesis h, which is its average

loss incurred over a validation set.

L̂
(
h|D

) The empirical risk or average loss incurred by the hypoth-

esis h on a dataset D.

16

Et

The training error of a hypothesis h, which is its average

loss incurred over a training set.

t
A discrete-time index t = 0, 1, . . . used to enumerate se-

quential events (or time instants).

t
An index that enumerates learning tasks within a multi-

task learning problem.

α
A regularization parameter that controls the amount of

regularization.

λj

(
Q
) The j-th eigenvalue (sorted either ascending or descending)

of a positive semi-definite (psd) matrix Q. We also use

the shorthand λj if the corresponding matrix is clear from

context.

σ(·)
The activation function used by an artificial neuron within

an artificial neural network (ANN).

Rŷ A decision region within a feature space.

w
A parameter vector w =

(
w1, . . . , wd

)T of a model, e.g,

the weights of a linear model or in a ANN.

h(w)(·)
A hypothesis map that involves tunable model parameters

w1, . . . , wd, stacked into the vector w =
(
w1, . . . , wd

)T .

ϕ(·) A feature map ϕ : X → X ′ : x 7→ x′ := ϕ
(
x
)
∈ X ′.

17

Federated Learning

G = (V , E)

An undirected graph whose nodes i ∈ V represent devices

within a federated learning (FL) network. The undirected

weighted edges E represent connectivity between devices

and statistical similarities between their datasets and learn-

ing tasks.

i ∈ V
A node in the FL network that represents some device

which can access a local dataset and train a local model.

G(C) The induced sub-graph of G using the nodes in C ⊆ V .

L(G) The Laplacian matrix of a graph G.

L(C) The Laplacian matrix of the induced graph G(C).

N (i) The neighbourhood of a node i in a graph G.

d(i)
The weighted degree d(i) :=

∑
i′∈N (i) Ai,i′ of node i in a

graph G.

d(G)max The maximum weighted node degree of a graph G.

18

D(i) A local dataset D(i) at device i ∈ V of an FL network.

mi

The number of data points (sample size) contained in the

local dataset D(i) at node i ∈ V .

x(i,r)
The features of the r-th data point in the local dataset

D(i).

y(i,r) The label of the r-th data point in the local dataset D(i).

w(i)
The local model parameters of device i within an FL

network.

Li (w)

The local loss function used by device i to measure the

usefulness of some choice w for the local model parameters

.

L(d) (x, h, h′)

The loss incurred by a hypothesis h′ on a data point with

features x and label h
(
x
)

that is obtained from another

hypothesis.

stack
{
w(i)

}n

i=1

The vector
((

w(1)
)T

, . . . ,
(
w(n)

)T)T

∈ Rdn that is ob-

tained by vertically stacking the local model parameters

w(i) ∈ Rd.

19

1 Introduction

We are surrounded by devices, such as smartphones or wearables, generating

decentralized collections of local datasets [7–11]. These local datasets typically

have an intrinsic network structure that arises from functional constraints

(connectivity between devices) or statistical similarities.

For example, the management of pandemics uses contact networks to

relate local datasets generated by patients. Network medicine relates data

about diseases via co-morbidity networks [12]. Social science uses notions

of acquaintance to relate data collected from be-friended individuals [13].

Another example for network-structured data are the weather observations

collected at Finnish Meteorological Institute (FMI) stations. The FMI stations

generate local datasets which tend to have similar statistical properties for

nearby stations.

Federated learning (FL) is an umbrella term for distributed optimization

techniques to train machine learning (ML) models from decentralized collec-

tions of local datasets [14–18]. The idea is to carry out the model training

directly at the location of data generation (such as your smartphone or a

heart rate sensor). This is different from the basic ML workflow, which is to

(i) collect data at a single location (computer) and (ii) then train a single ML

model on this data.

It can be beneficial to train different ML models at the locations of actual

data generation [19] for several reasons:

• Privacy. FL methods are appealing for applications involving sensitive

data (such as healthcare) as they do not require the exchange of raw data

1

Fig. 1.1: Left: A basic ML method uses a single dataset to train a single

model. Right: Decentralized collection of devices (or clients) with the ability

to generate data and train models.

but only model parameters (or their updates) [16,17]. By exchanging

only (updates of) model parameters, FL methods are considered privacy-

friendly in the sense of not leaking (too much) sensitive information

that is contained in the local datasets (see Chapter 9).

• Robustness. By relying on decentralized data and computation, FL

methods offer robustness (to some extent) against hardware failures

(such as stragglers) and cyber attacks. One type of cyber attack on FL

systems is data poisoning which we discuss in Chapter 10.

• Parallel Computing. We can interpret a collection of interconnected

devices as a parallel computer. One example of such a parallel computer

is a mobile network constituted by smartphones that can communicate

via radio links. This parallel computer allows to speed up computations

required for the training of ML models (see Chapter 4).

2

• Democratization of ML. FL allows to combine (or pool) the com-

putational resources of many low-cost devices in order to train high-

dimensional models such as a Large Language Model (LLM). Instead of

using a few powerful computers we combine the contributions of many

low-complexity devices [20,21].

• Trading Computation against Communication. Consider a FL

application where local datasets are generated by low-complexity devices

at remote locations (think of a wildlife camera) that cannot be easily

accessed. The cost of communicating raw local datasets to some central

unit (which then trains a single global ML model) can be much higher

than the computational cost incurred by using the low-complexity

devices to (partially) train ML models [22].

• Personalization. FL trains personalized ML models for collections of

devices (e.g., smartphones or wearables) with computational capabil-

ities and can access local datasets [23]. A key challenge for ensuring

personalization is the heterogeneity of local datasets [24, 25]. Indeed,

the statistical properties of different local datasets can vary significantly

such that they cannot be accurately modelled as independent and identi-

cally distributed (i.i.d.). Each local dataset induces a separate learning

task that consists of learning useful parameter values for a local model.

FL systems train personalized models for devices by combining the

information carried in their local datasets (see Chapter 6).

3

1.1 Main Tools

Euclidean space. Our main mathematical structure for the study and

design of FL systems is the Euclidean space Rd. We expect familiarity

with the algebraic and geometric structure of Rd [26, 27]. For example, we

often use the spectral decomposition of positive semi-definite (psd) matrices

that naturally arise in the formulation of FL applications. We will also

use the geometric structure of Rd, which is defined by the inner-product

wTw′ :=
∑d

j=1 wjw
′
j between two vectors w,w′ ∈ Rd and the induced norm

∥w∥2 :=
√
wTw =

√∑d
j=1w

2
j .

Calculus. A main toolbox for the design the FL algorithms are variants

of gradient descent (GD). The common idea of these gradient-based methods

is to approximate a function f(w) locally by a linear function. This local

linear approximation is determined by the gradient ∇f(w). We, therefore,

expect some familiarity with multivariable calculus [2].

Fixed-Point Iterations. Each algorithm that we discuss in this book

can be interpreted as a fixed-point iteration of some (typically non-linear)

operator P : Rd → Rd. These operators depend on the local datasets and

personal models used within a FL system. A prime example of such a non-

linear operator is the gradient step of gradient-based methods (see Chapter

4). The computational properties (such as convergence speed) of these FL

algorithms are determined by the contraction properties of the underlying

operator [28].

4

1.2 Main Goal of the Book

The overarching goal of the book is to study FL applications and algorithms

using mathematical structures from network theory and optimization theory.

In particular, we develop the concept of an federated learning (FL) network

to represent a real-world FL application. We then formulate FL as an

optimization problem over a given FL network. This lends naturally to a

principled design of FL algorithms using distributed optimization methods.

The nodes of an FL network represent devices that train a local (person-

alized) model based on some local loss function. One natural construction

for loss functions is via the average loss incurred on local datasets. However,

the details of how to implement (the access to) loss functions are beyond

the scope of this book. Our focus is on the analysis of the FL networks as a

precise formulation of FL applications. This formulation assigns each node in

an FL network a local model (or hypothesis space) and a local loss function.

Some devices of an FL network are connected by links which can be used

to share messages (e.g., intermediate results of computations) during the FL

process. We represent these links by the undirected weighted edges of an FL

network. The edges of an FL network not only represent communication links

but also some notion of statistical similarity between (the data generated by)

different devices.

We will see later in the book (see Ch. 7.4) how to construct measures

for statistical similarities between local datasets. However, we can view the

edges also as a design choice that determines the behaviour of FL algorithms

that built on top of an FL network.

From an engineering point of view, the main goal of the book is to establish

5

a flexible design principle for FL systems (see Ch. 3). This approach is inspired

by empirical risk minimization as a main tool for the analysis and design

of ML systems [6, 29]. Similar to empirical risk minimization, our design

principle is formulated as an optimization problem, which we refer to as GTV

minimization (GTVMin).

GTVMin optimizes model parameters for the local models by balancing

the sum of the incurred local loss with some measure for their variation across

the edges of the FL network. Thus, GTVMin amounts to minimizing the

local loss while also requiring the model parameters and connected nodes to

be similar. We obtain different FL methods by using different measures for

the variation of model parameters across edges.

Once we formulate a FL application as GTVMin, we can construct FL

algorithms by applying distributed optimization methods to solve GTVMin.

The optimization methods studies in this book are all instances of fixed-point

iterations. We obtain different methods by choosing from different fixed-point

operators that have the solutions of GTVMin as their fixed-points. One

important example of a fixed-point iteration is GD.

1.3 Outline

This book is roughly divided into three parts:

• Part I: ML Refresher. Chapter 2 introduces data, models and loss

functions as three main components of ML. This chapter also explains

how these components are combined within empirical risk minimization

(ERM). We also discuss how to regularize ERM via manipulating its

three main components. We then explain when and how to solve

6

regularized ERM via simple GD methods in Chapter 4. Overall, this

part serves two main purposes: (i) to briefly recap basic concepts of

ML in a simple centralized setting and (ii) to highlight ML techniques

(such as regularization) that are particularly relevant for the design and

analysis of FL methods.

• Part II: FL Theory and Methods. Chapter 3 introduces the FL net-

work as a mathematical structure for representing collections of devices

that generate local datasets and train local (personalized) ML models.

An FL network also contains undirected weighted edges that connect

some of the nodes. The edges represent statistical similarities between

local datasets as well as communication links for the implementation of

FL algorithms. Chapter 3 formulates FL as an instance of regularized

empirical risk minimization (RERM) which we refer to as GTVMin.

GTVMin uses the variation of local model parameters across edges in

the FL network as regularizer. We will see that GTVMin couples the

training of local ML models such that well-connected nodes (clusters)

in the FL network obtain similar trained models. Chapter 4 discusses

variations of gradient descent as our main algorithmic toolbox for solv-

ing GTVMin. Chapter 5 shows how FL algorithms can be obtained in a

principled fashion by applying optimization methods, such as gradient-

based methods, to GTVMin. We will obtain FL algorithms that can be

implemented as iterative message passing methods for the distributed

training of tailored (or personalized) models. Chapter 6 shows how some

main flavours of FL can be interpreted as special cases of GTVMin. The

usefulness of GTVMin crucially depends on the choice for the weighted

7

edges in the FL network. Chapter 7 discusses basic principles of graph

learning methods. The common idea of these methods is to place edges

between the nodes of an FL network that are most similar. Similarity

measures can be obtained via statistical inference procedures or via

learnt vector representations. For example, we can map a dataset to a

vector by evaluating the gradient of the average loss incurred over this

dataset.

• Part III: Trustworthy AI. Chapter 8 enumerates seven key require-

ments for trustworthy artificial intelligence (AI) that have been put

forward by the European Union. These key requirements include the

protection of privacy as well as robustness against (intentional) pertur-

bations of data or computation. We then discuss how FL algorithms

can ensure privacy protection in Chapter 9. Chapter 10 discusses how

to evaluate and ensure the robustness of FL methods against intentional

perturbations (poisoning) of local dataset.

1.4 Exercises

1.1. Complexity of Matrix Inversion. Choose your favourite computer

architecture (represented by a mathematical model) and think about how

much computation is required - in the worst case - by the most efficient

algorithm that can invert any given invertible matrix Q ∈ Rd×d? Try also

to reflect on how practical your chosen computer architecture is, i.e., is it

possible to buy such a computer in your nearest electronics shop?

1.2. Vector Spaces and Euclidean Norm. Consider data points, each

8

characterized by a feature vector x ∈ Rd with entries x1, x2, . . . , xd.

• Show that the set of all feature vectors forms a vector space under

standard addition and scalar multiplication.

• Calculate the Euclidean norm of the vector x = (1,−2, 3)T .

• If x(1) = (1, 2, 3)T and x(2) = (−1, 0, 1)T , compute 3x(1) − 2x(2).

1.3. Matrix Operations in Linear Models. Linear regression methods

learn model parameters ŵ ∈ Rd via solving the optimization problem:

ŵ = arg min
w∈Rd

∥y −Xw∥22,

with some matrix X ∈ Rm×d, and some vector y ∈ Rm.

• Derive a closed-form expression for ŵ that is valid for arbitrary matrix

X, and vector y.

• Discuss the conditions under which XTX is invertible.

• Compute ŵ for the following dataset:

X =


1 2

3 4

5 6

 , y =


7

8

9

 .

• Compute ŵ for the following dataset: The r-th row of X, for r =

1, . . . , 28, is given by the temperature recordings (with a 10-minute

interval) during day r/Mar/2023 at FMI weather station Kustavi Isokari.

The r-th row of y is the maximum daytime temperature during day

r + 1/Mar/2023 at the same weather station.

9

1.4. Eigenvalues and Positive Semi-Definiteness. The convergence

properties of widely-used ML methods rely on the properties of psd matrices.

Let Q = XTX, where X ∈ Rm×d.

1. Prove that Q is psd.

2. Compute the eigenvalues of Q for X =

1 2

3 4

.

3. Compute the eigenvalues of Q for the matrix X used in Exercise 1.3

that is constituted by FMI temperature recordings.

10

2 ML Basics

This chapter covers basic ML techniques instrumental for FL. Content-wise,

this chapter is more extensive compared to the following chapters. However,

this chapter should be considerably easier to follow than the following chapters

as it mainly refreshes pre-requisite knowledge.

2.1 Learning Goals

After completing this chapter, you will

• be familiar with the concept of data points (their features and labels),

model and loss function,

• be familiar with ERM as a design principle for ML systems,

• know why and how validation is performed,

• be able to diagnose ML methods by comparing the training error with

the validation error,

• be able to regularize ERM via modifying data, model and loss.

2.2 Three Components and a Design Principle

Machine Learning (ML) revolves around learning a hypothesis map h out of

a hypothesis space H that allows to accurately predict the label of a data

point solely from its features. One of the most crucial steps in applying ML

methods to a given application domain is the definition or choice of what

precisely a data point is. Coming up with a good choice or definition of data

11

points is not trivial as it influences the overall performance of a ML method

in many different ways.

We will use weather prediction as a recurring example for an FL application.

Here, data points represent the daily weather conditions around FMI weather

stations. We denote a specific data point by z. It is characterized by the

following features:

• name of the FMI weather station, e.g., “TurkuRajakari”

• latitude lat and longitude lon of the weather station, e.g., lat := 60.37788,

lon := 22.0964,

• timestamp of the measurement in the format YYYY-MM-DD HH:MM:SS,

e.g., 2023-12-31 18:00:00

It is convenient to stack the features into a feature vector x. The label y ∈ R

of such a data point is the maximum daytime temperature in degree Celsius,

e.g., −20. We indicate the features x and label y of a data point via the

notation z = (x, y).1

We predict the label of a data point with features x by the function value

h(x) of a hypothesis (map) h(·). The prediction will typically be not perfect,

i.e., h(x) ̸= y. ML methods use a loss function L ((x, y) , h) to measure the

error incurred by using the prediction h(x) as a guess for the true label y. The

choice of loss function crucially influences the statistical and computational

properties of the resulting ML method (see [6, Ch. 2]).
1Strictly speaking, a data point z might not be exactly the same as the pair of features x

and label y. Indeed, the data point might have additional properties that are neither used

as features nor as label. A more precise notation would then be x(z) and y(z), indicating

that the features x and label y are functions of the data point z.

12

It seems natural to choose (or learn) a hypothesis that minimizes the

average loss (or empirical risk) on a given set of data points

D :=
{(

x(1), y(1)
)
, . . . ,

(
xm, y(m)

)}
.

This is known as ERM,

ĥ ∈ argmin
h∈H

(1/m)
m∑
r=1

L
((
x(r), y(r)

)
, h

)
. (2.1)

As the notation in (2.1) indicates (using the symbol “∈” instead of “:=”),

there can be several different solutions to the optimization problem (2.1).

Unless specified otherwise, ĥ can be used to denote any hypothesis in H that

has minimum average loss over D.

Several important machine learning (ML) methods use a parametric model

H: Each hypothesis h ∈ H is defined by parameters w ∈ Rd, often indicated

by the notation h(w). One important example of a parametrized model is the

linear model [6, Sec. 3.1],

H(d) :=
{
h(w) : Rd 7→R : h(w)(x) = wTx

}
. (2.2)

Linear regression learns the parameters of a linear model by minimizing the

average squared error loss,

ŵ(LR) ∈ argmin
w∈Rd

(1/m)
m∑
r=1

(
y(r) −wTx(r)

)2︸ ︷︷ ︸
=L((x(r),y(r)),h(w))

. (2.3)

Note that (2.3) amounts to finding the minimum of a smooth and convex

function

f(w) := (1/m)

[
wTXTXw − 2yTXw + yTy

]
. (2.4)

13

Here, we use the feature matrix

X :=
(
x(1), . . . ,x(m)

)T (2.5)

and the label vector

y :=
(
y(1), . . . , y(m)

)T (2.6)

of the training set D.

Inserting (2.4) into (2.3) allows to formulate linear regression as

ŵ(LR) ∈ argmin
w∈Rd

wTQw +wTq (2.7)

with Q := (1/m)XTX,q := −(2/m)XTy.

The matrix Q ∈ Rd×d is psd with eigenvalue decomposition (EVD),

Q =
d∑

j=1

λju
(j)
(
u(j)

)T
. (2.8)

The EVD (2.8) consists of orthonormal eigenvectors u(1), . . . ,u(d) and corre-

sponding list of non-negative eigenvalues

0 ≤ λ1 ≤ . . . ≤ λd, with Qu(j) = λju
(j). (2.9)

The list of eigenvalues is unique for a given psd matrix Q. In contrast, the

eigenvectors u(j) are not unique in general.

To train a ML model H means to solve ERM (2.1) (or (2.3) for linear

regression); the dataset D is therefore referred to as a training set. The trained

model results in the learnt hypothesis ĥ. We obtain practical ML methods by

applying optimization algorithms to solve (2.1). Two key questions studied

in ML are:

14

w

ŵ(LR)

wTQw +wTq

Fig. 2.1: ERM (2.1) for linear regression minimizes a convex quadratic function

wTQw +wTq.

• Computational aspects. How much compute do we need to solve

(2.1)?

• Statistical aspects. How useful is the solution ĥ to (2.1) in general,

i.e., how accurate is the prediction ĥ(x) for the label y of an arbitrary

data point with features x?

2.3 Computational Aspects of ERM

ML methods use optimization algorithms to solve (2.1), resulting in the

learnt hypothesis ĥ. Within this book, we use optimization algorithms that

are iterative methods: Starting from an initial choice h(0), they construct a

sequence

h(0), h(1), h(2), . . . ,

which are hopefully increasingly accurate approximations to a solution ĥ of

(2.1). The computational complexity of such a ML method can be measured

15

by the number of iterations required to guarantee some prescribed level of

approximation.

For a parametric model and a smooth loss function, we can solve (2.3) by

gradient-based methods: Starting from an initial parameters w(0), we iterate

the gradient step:

w(k) := w(k−1) − η∇f
(
w(k−1)

)
= w(k−1) + (2η/m)

m∑
r=1

x(r)
(
y(r) −

(
w(k−1)

)T
x(r)

)
. (2.10)

How much computation do we need for one iteration of (2.10)? How many

iterations do we need? We will try to answer the latter question in Chapter 4.

The first question can be answered more easily for a typical computational in-

frastructure (e.g., “Python running on a commercial Laptop”). The evaluation

of (2.10) then typically requires around m arithmetic operations (addition,

multiplication).

It is instructive to consider the special case of a linear model that does

not use any feature, i.e., h(x) = w. For this extreme case, the ERM (2.3) has

a simple closed-form solution:

ŵ = (1/m)
m∑
r=1

y(r). (2.11)

Thus, for this special case of the linear model, solving (2.11) amounts to

summing m numbers y(1), . . . , y(m). The amount of computation, measured

by the number of elementary arithmetic operations, required by (2.11) is

proportional to m.

16

2.4 Statistical Aspects of ERM

We can train a linear model on a given training set as ERM (2.3). But how

useful is the solution ŵ of (2.3) for predicting the labels of data points outside

the training set? Consider applying the learnt hypothesis h(ŵ) to an arbitrary

data point not contained in the training set. What can we say about the

resulting prediction error y − h(ŵ)(x) in general? In other words, how well

does h(ŵ) generalize beyond the training set.

The most widely used approach to study the generalization of ML methods

is via probabilistic models. Here, we interpret each data point as a realization

of an i.i.d. RV with probability distribution p(x, y). Under this i.i.d. assump-

tion, we can evaluate the overall performance of a hypothesis h ∈ H via the

expected loss (or risk)

E{L ((x, y) , h)}. (2.12)

One example of a probability distribution p(x, y) relates the label y with

the features x of a data point as

y = wTx+ ε with x ∼ N (0, I), ε ∼ N (0, σ2),E{εx} = 0. (2.13)

A simple calculation reveals the expected squared error loss of a given linear

hypothesis h(x) = xT ŵ as2

2Strictly speaking, the relation (2.14) only applies for constant (deterministic) model

parameters ŵ that do not depend on the RVs whose realizations are the observed data points

(see, e.g., (2.13)). However, the learnt model parameters ŵ is often the output of a ML

method (such as (2.3)) that is applied to a dataset D whose generation is modelled as i.i.d.

realizations from some underlying probability distribution. In this case, we need to replace

the expectation on the LHS of (2.14) with a conditional expectation E
{
(y − h(x))2

∣∣D}
.

17

E{(y − h(x))2} = ∥w − ŵ∥2 + σ2. (2.14)

The first component in (2.14) is the estimation error ∥w − ŵ∥2 of a ML

method that reads in the training set and delivers an estimate ŵ (e.g., via

(2.3)) for the parameters of a linear hypothesis. The second component σ2 in

(2.14) can be interpreted as the intrinsic noise level of the label y. We cannot

hope to find a hypothesis with an expected loss below σ2.

We next study the estimation error w−ŵ incurred by the specific estimate

ŵ = ŵ(LR) (2.7) delivered by linear regression methods. To this end, we first

use the probabilistic model (2.13) to decompose the label vector y in (2.6) as

y = Xw + n , with n :=
(
ε(1), . . . , ε(m)

)T
. (2.15)

Inserting (2.15) into (2.7) yields

ŵ(LR) ∈ argmin
w∈Rd

wTQw +wTq′ +wTe (2.16)

with Q :=(1/m)XTX,q′ :=−(2/m)XTXw, and e :=−(2/m)XTn. (2.17)

Figure 2.2 depicts the objective function of (2.16). It is a perturbation of the

convex quadratic function wTQw +wTq′, which is minimized at w = w. In

general, the minimizer ŵ(LR) delivered by linear regression is different from

w due to the perturbation term wTe in (2.16).

The following result bounds the deviation between ŵ(LR) and w under

the assumption that the matrix Q = (1/m)XTX is invertible.3

3Can you think of sufficient conditions on the feature matrix of the training set that

ensure Q = (1/m)XTX is invertible?

18

w
a

wŵ(LR)

wTQw+wTq′wTQw+wT (q′+e)

wTe

Fig. 2.2: The estimation error of linear regression is determined by the

effect of the perturbation term wTe on the minimizer of the convex quadratic

function wTQw +wTq′.

Proposition 2.1. Consider a solution ŵ(LR) to the ERM instance (2.16) that

is applied to the dataset (2.15). If the matrix Q = (1/m)XTX is invertible,

with minimum eigenvalue λ1(Q) > 0,∥∥ŵ(LR) −w
∥∥2

2
≤ ∥e∥22

λ2
1

(2.17)
=

4

m2

∥∥XTn
∥∥2

2

λ2
1

. (2.18)

Proof. Let us rewrite (2.16) as

ŵ(LR) ∈ argmin
w∈Rd

f(w) with f(w) :=
(
w−w

)T
Q
(
w−w

)
+eT

(
w−w

)
. (2.19)

Clearly f
(
w
)
= 0 and, in turn, f(ŵ) = minw∈Rd f(w) ≤ 0. On the other

hand,

f(w)
(2.19)
=

(
w −w

)T
Q
(
w −w

)
+ eT

(
w −w

)
(a)

≥
(
w −w

)T
Q
(
w −w

)
− ∥e∥2 ∥w −w∥2

(b)

≥ λ1 ∥w −w∥22 − ∥e∥2 ∥w −w∥2 . (2.20)

19

Step (a) used Cauchy–Schwarz inequality and (b) used the EVD (2.8) of Q.

Evaluating (2.20) for w=ŵ and combining with f
(
ŵ
)
≤ 0 yields (2.18).

The bound (2.18) suggests that the estimation error ŵ(LR) − w is small

if λ1(Q) is large. This smallest eigenvalue of the matrix Q = (1/m)XTX

could be controlled by a suitable choice (or transformation) of features x of

a data point. Trivially, we can increase λ1(Q) by a factor of 100 if we scale

each feature by a factor of 10. However, this approach would also scale (by a

factor of 100) the error term
∥∥XTn

∥∥2

2
in (2.18). For some applications, we

can find feature transformations (“whitening”) that increases λ1(Q) but do

not increase
∥∥XTn

∥∥2

2
. We finally note that the error term

∥∥XTn
∥∥2

2
in (2.18)

vanishes if the noise vector n is orthogonal to the columns of the feature

matrix X.

It is instructive to evaluate the bound (2.18) for the special case where

each data point has the same feature x = 1. Here, the probabilistic model

(2.15) reduces to a signal in noise model,

y(r) = x(r)w + ε(r) with x(r) = 1, (2.21)

with some true underlying parameter w. The noise terms ε(r), for r = 1, . . . ,m,

are realizations of i.i.d. RVs with probability distribution N (0, σ2). The

feature matrix then becomes X = 1 and, in turn, Q = 1, λ1(Q) = 1.

Inserting these values into (2.18) results in the bound(
ŵ(LR) − w

)2 ≤ 4 ∥n∥22 /m
2. (2.22)

For the labels and features in (2.21), the solution of (2.16) is given by

ŵ(LR) = (1/m)
m∑
r=1

y(r)
(2.21)
= w + (1/m)

m∑
r=1

ε(r). (2.23)

20

2.5 Validation and Diagnosis of ML

The above analysis of the generalization error started from postulating a prob-

abilistic model for the generation of data points. However, this probabilistic

model might be wrong and the bound (2.18) does not apply. Thus, we might

want to use a more data-driven approach for assessing the usefulness of a

learnt hypothesis ĥ obtained, e.g., from solving ERM (2.1).

Loosely speaking, validation tries to find out if a learnt hypothesis ĥ

performs similarly well inside and outside the training set. In its most basic

form, validation amounts to computing the average loss of a learnt hypothesis

ĥ on some data points not included in the training set. We refer to these data

points as the validation set.

Algorithm 2.1 summarizes a single iteration of a prototypical ML workflow

that consists of model training and validation. The workflow starts with

an initial choice of a dataset D, model H, and loss function L (·, ·). We

then repeat Algorithm 2.1 several times. After each repetition, based on the

resulting training error and validation error, we modify (some of) the design

choices for the dataset, the model and the loss function.

We can diagnose a ERM-based ML method, such as Algorithm 2.1, by

comparing its training error with its validation error. This diagnosis is further

enabled if we know a baseline E(ref). One important source for a baseline

E(ref) are probabilistic models for the data points (see Section 2.4).

Given a probabilistic model p(x, y), we can compute the minimum achiev-

able risk (2.12). Indeed, the minimum achievable risk is precisely the expected

loss of the Bayes estimator ĥ(x) of the label y, given the features x of a

data point. The Bayes estimator ĥ(x) is fully determined by the probability

21

Algorithm 2.1 One Iteration of ML Training and Validation
Input: dataset D, model H, loss function L (·, ·)

1: split D into a training set D(train) and a validation set D(val)

2: learn a hypothesis via solving ERM

ĥ ∈ argmin
h∈H

∑
(x,y)∈D(train)

L ((x, y) , h) (2.24)

3: compute resulting training error

Et := (1/|D(train)|)
∑

(x,y)∈D(train)

L
(
(x, y) , ĥ

)
4: compute validation error

Ev := (1/|D(val)|)
∑

(x,y)∈D(val)

L
(
(x, y) , ĥ

)

Output: learnt hypothesis (or trained model) ĥ, training error Et and vali-

dation error Ev

22

distribution p(x, y) [30, Chapter 4].

A further potential source for a baseline E(ref) is an existing, but for

some reason unsuitable, ML method. This existing ML method might be

computationally too expensive to be used for the ML application at hand.

However, we might still use its statistical properties as a baseline.

We can also use the performance of human experts as a baseline. If

we want to develop a ML method that detects skin cancer from images,

a possible baseline is the classification accuracy achieved by experienced

dermatologists [31].

We can diagnose a ML method by comparing the training error Et with

the validation error Ev and (if available) the baseline E(ref).

• Et ≈ Ev ≈ E(ref): The training error is on the same level as the

validation error and the baseline. There seems to be little point in trying

to improve the method further since the validation error is already close

to the baseline. Moreover, the training error is not much smaller than

the validation error which indicates that there is no overfitting.

• Ev ≫ Et: The validation error is significantly larger than the training

error, which hints at overfitting. We can address overfitting either by

reducing the effective dimension of the hypothesis space or by increasing

the size of the training set. To reduce the effective dimension of the

hypothesis space, we can use fewer features (in a linear model), a

smaller maximum depth of decision trees or fewer layers in an artificial

neural network (ANN). Instead of this coarse-grained discrete model

pruning, we can also reduce the effective dimension of a hypothesis

space continuously via regularization (see [6, Ch. 7]).

23

• Et ≈ Ev ≫ E(ref): The training error is on the same level as the

validation error and both are significantly larger than the baseline. Thus,

the learnt hypothesis seems to not overfit the training set. However, the

training error achieved by the learnt hypothesis is significantly larger

than the baseline. There can be several reasons for this to happen.

First, it might be that the hypothesis space is too small, i.e., it does not

include a hypothesis that provides a satisfactory approximation for the

relation between the features and the label of a data point. One remedy

to this situation is to use a larger hypothesis space, e.g., by including

more features in a linear model, using higher polynomial degrees in

polynomial regression, using deeper decision trees or ANNs with more

hidden layers (deep net). Second, besides the model being too small,

another reason for a large training error could be that the optimization

algorithm used to solve ERM (2.24) is not working properly (see Chapter

4).

• Et ≫ Ev: The training error is significantly larger than the validation

error. The idea of ERM (2.24) is to approximate the risk (2.12) of a

hypothesis by its average loss on a training set D = {(x(r), y(r))}mr=1.

The mathematical underpinning for this approximation is the law of

large numbers which characterizes the average of (realizations of) i.i.d.

RVs. The accuracy of this approximation depends on the validity of two

conditions: First, the data points used for computing the average loss

“should behave” like realizations of i.i.d. RVs with a common probability

distribution. Second, the number of data points used for computing the

average loss must be sufficiently large.

24

Whenever the training set or validation set differs significantly from

realizations of i.i.d. RVs, the interpretation (and comparison) of the

training error and the validation error of a learnt hypothesis becomes

more difficult. As an extreme case, the validation set might consist of

data points for which every hypothesis incurs a small average loss (see

Figure 2.3). Here, we might try to increase the size of the validation set

by collecting more labelled data points or by using data augmentation

(see Sec. 2.6). If the size of the training set and the validation set is large

but we still obtain Et ≫ Ev, we should verify if the data points in these

sets conform to the i.i.d. assumption. There are principled statistical

tests for the validity of the i.i.d. assumption for a given dataset (see [32]

and references therein).

feature x

label y
h(1)

h(2)

h(3)

training set
validation set

Fig. 2.3: An example for an unlucky split of a dataset into a training set and

a validation set for the model H := {h(1), h(2), h(3)}.

25

2.6 Regularization

Consider a ERM-based ML method using a hypothesis space H and dataset

D (we assume all data points are used for training). A key parameter for such

a ML method is the ratio deff (H) /|D| between the model size deff (H) and

the number |D| of data points. The tendency of the ML method to overfit

increases with the ratio deff (H) /|D|.

Regularization techniques decrease the ratio deff (H) /|D| via three (essen-

tially equivalent) approaches:

• collect more data points, possibly via data augmentation (see Fig. 10.9),

• add penalty term αR
{
h
}

to average loss in ERM (2.1) (see Fig. 10.9),

ĥ ∈ argmin
h∈H

(1/m)
m∑
r=1

L
((
x(r), y(r)

)
, h

)
+αR

{
h
}
, (2.25)

• shrink the hypothesis space, e.g., by adding constraints on the model

parameters such as ∥w∥2 ≤ 10.

It can be shown that these three perspectives (corresponding to the three

components data, model and loss) on regularization are closely related [6, Ch.

7]. For example, the regularized ERM (2.25) is equivalent to ERM (2.1) with

a pruned hypothesis space H(α) ⊆ H. Using a larger α typically results in a

smaller H(α).

One example for regularization via adding a penalty term is ridge regression.

In particular, ridge regression uses the regularizer R
{
h
}
:= ∥w∥22 for a linear

hypothesis h(x) := wTx. Thus, ridge regression learns the parameters of a

26

linear hypothesis via solving

ŵ(α) ∈ argmin
w∈Rd

[
(1/m)

m∑
r=1

(
y(r) −wTx(r)

)2
+ α ∥w∥22

]
. (2.26)

The objective function in (2.26) can be interpreted as the objective function

of linear regression applied to a modification of the training set D: We replace

each data point (x, y) ∈ D by a sufficiently large number of i.i.d. realizations

of

(x+ n, y) , with n ∼ N (0, αI). (2.27)

Thus, ridge regression (2.26) is equivalent to linear regression applied

to an augmentation D′ of the original dataset D. The augmentation D′ is

obtained by replacing each data point (x, y) ∈ D with a sufficiently large

number of noisy copies. Each copy of (x, y) is obtained by adding an i.i.d.

realization n of a zero-mean Gaussian noise with covariance matrix αI to the

features x (see (2.27)). The label of each copy of (x, y) is equal to y, i.e., the

label is not perturbed.

feature x

label y
h(x)

√
α

original training set D
augmented

1
m

∑m
r=1 L

((
x(r), y(r)

)
, h
)
+αR

{
h
}

Fig. 2.4: Equivalence between data augmentation and loss penalization.

27

To study the computational aspects of ridge regression, let us rewrite

(2.26) as

ŵ(α) ∈ argmin
w∈Rd

wTQw +wTq,

with Q := (1/m)XTX+ αI, q := (−2/m)XTy. (2.28)

Thus, like linear regression (2.7), also ridge regression minimizes a convex

quadratic function. A main difference between linear regression (2.7) and

ridge regression (for α > 0) is that the matrix Q in (2.28) is guaranteed to

be invertible for any training set D. In contrast, the matrix Q in (2.7) for

linear regression might be singular for some training sets.4

The statistical properties of the solutions to (2.28) (i.e., the parameters

learnt by ridge regression) crucially depend on the value of α. This choice can

be guided by an error analysis using a probabilistic model for the data (see

Proposition 2.1). Instead of using a probabilistic model, we can also compare

the training error and validation error of the hypothesis h(x) =
(
ŵ(α)

)T
x

learnt by ridge regression with different values of α.

2.7 Upgrading a Linear Model

This book presents FL algorithms (see Ch. 5) that are flexible in the sense of

allowing to use different types of ML models. However, for ease of exposition

we mainly focus on the special case of linear models. The restriction to linear

models allows for a more comprehensive analysis of FL applications. On the
4Consider the extreme case where all features of each data point in the training set D

are zero.

28

flip side, the scope of our analysis is limited to FL applications involving local

models that can be well approximated by linear models.

Several important ML methods are obtained from the combination of

non-linear feature learning and a linear model. For example,

• a deep net, with the hidden layers implementing a learnable feature map

and the final (output) layer implementing a linear model [33], [6, Sec.

3.11.],

• a decision tree with a fixed topology (which corresponds to a specific

decision boundary) but tunable predictions for each decision region [34],

[6, Sec. 3.10],

• kernel methods [35], [6, Sec. 3.9].

2.8 Exercises

2.1. Fundamental Limits for Linear Regression. Linear regression

learns model parameters of a linear model in order to minimize the risk

E
{(

y −wTx
)2} where (x, y) is a RV. In practice, we do not observe the RV

(x, y) itself but a (realization of a) sequence of i.i.d. samples
(
x(t), y(t)

)
, for

t = 1, 2, The minimax risk is a lower bound on the risk obtained by any

learning method [36, Ch. 15]. Determine the minimax risk in terms of the

probability distribution of (x, y).

2.2. Uniqueness of Eigenvectors. Consider the EVD Q =
∑d

j=1 λju
(j)
(
u(j)

)T
of a psd matrix Q. The EVD consists of orthonormal eigenvectors u(j) and

non-negative eigenvalues λj, with Qu(j) = λju
(j), for j = 1, . . . , d. Can you

29

provide conditions on the eigenvalues λ1 ≤ . . . ≤ λd such that the (unit-norm)

eigenvectors are unique?

2.3. Penalty Term as Data Augmentation. Consider a ML method

that trains a model with model parameters w. The training uses ERM with

squared error loss. Show that regularization of the model training via adding

a penalty term α ∥w∥22 is equivalent to a specific form of data augmentation.

What is the augmented training set?

2.4. Data Augmentation via Linear Interpolation. Consider a ML

method that trains a model, with model parameters w, from a training set

D. Each data point z ∈ D is characterized by a feature vector x ∈ Rd

and label y ∈ R, i.e., z = (x, y). We augment the training set by adding,

for each pair of two different data points z, z′ ∈ D, synthetic data points

z̃(r) := z + (z′ − z)r/100 and , for r = 0, . . . , 99. Does this augmentation

typically increase the training error?

2.5. Ridge Regression via Deterministic Data Augmentation. Ridge

regression is obtained from linear regression by adding the penalty term

α ∥w∥22 to the average squared error loss incurred by the hypothesis h(w) on

the training set D,

min
w

(1/m)
m∑
r=1

(
y(r) − h

(
x(r)

))2
+ α ∥w∥22 . (2.29)

Construct an augmented training set D′ such that the objective function of

(2.29) coincides with the objective function of plain linear regression using

D′ as training set. To construct D′, add carefully chosen data points to the

original training set D =

{(
y(1),x(1)

)
, . . . ,

(
y(m),x(m)

)}
. Generalize the

30

construction of D′ to implement a generalized form of ridge regression,

min
w

(1/m)
m∑
r=1

(
y(r) − h

(
x(r)

))2
+ α ∥w − w̃∥22 . (2.30)

Here, we used some prescribed reference model parameters w̃. Note that

(2.30) reduces to basic ridge regression (2.29) for the specific choice w̃ = 0.

31

3 A Design Principle for FL

Chapter 2 reviewed ML methods that use numeric arrays to store data points

(their features and labels) and model parameters. We have also discussed

ERM (and its regularization) as the main design principle for practical ML

systems. This chapter extends the basic ML concepts from a centralized

single-dataset single-model setting to FL applications involving distributed

collections of data and models.

Section 3.2 introduces the notion of an FL network as a mathematical

model of a FL application. An FL network consists of nodes that represent

devices generating local datasets and training local models. Some of the

nodes are connected by weighted edges that represent communication links

and statistical similarities between devices and their local datasets.

Section 3.3 introduces generalized total variation (GTV) as a measure

for the discrepancy between the local model parameters at connected nodes.

Section 3.4 uses GTV to regularize the training of parametric local models,

resulting in GTVMin as our main design principle for FL algorithms. Section

3.5 generalize GTVMin from parametric local models to non-parametric local

models. Section 3.6 discusses some useful interpretations of GTVMin that

offer conceptual links to other fields of applied mathematics and statistics.

3.1 Learning Goals

After completing this chapter, you will

• be familiar with the concept of an FL network,

• know how to characterize the connectivity of an FL network via the

32

spectrum of its Laplacian matrix,

• know some measures for the variation of local models,

• be able to formulate FL as instances of GTVMin.

3.2 FL Networks

Consider a FL system that consists of devices, indexed by i = 1, . . . , i, each

with the ability to generate a local dataset D(i) and to train a personalized

model H(i). These devices collaborate with each other via some communication

network in order to learn a local hypothesis h(i) ∈ H(i). We measure the

quality of h(i) ∈ H(i) via some loss function Li

(
h(i)

)
.

We now introduce the concept of an FL network as a mathematical model

for FL applications. An FL network consists of an undirected weighted graph

G = (V , E) with nodes V := {1, . . . , n} and undirected edges E between pairs

of different nodes. The nodes V represent devices with varying amounts of

computational resources.

An undirected edge {i, i′} ∈ E in an FL network represents a form of simi-

larity between device i and device i′. The amount of similarity is represented

by an edge weight Ai,i′ . We can collect edge weights into an adjacency matrix

A ∈ Rn×n, with Ai,i′ = Ai′,i. Fig. 3.1 depicts an example of an FL network.

Note that the undirected edges E of an FL network encode a symmetric

notion of similarity between devices: If the device i is similar to the device

i′, i.e., {i, i′} ∈ E , then also the device i′ is similar to the device i. For some

FL applications, an asymmetric notion of similarity, represented by directed

edges, could be more accurate. However, the generalization of an FL network

33

D(i),H(i)

D(i′),H(i′)

Ai,i′

Fig. 3.1: Example of an FL network whose nodes i ∈ V represent devices.

Each device i generates a local dataset D(i) and trains a local model H(i).

Some devices i, i′ are connected by an undirected edge {i, i′} with a positive

edge weight Ai,i′ .

to directed graphs is beyond the scope of this book.

It can be convenient to replace a given FL network G with an equivalent

fully connected FL network G ′ (see Figure 3.2). The fully connected graph G ′

contains an edge between every pair of two different nodes i, i′,

E ′ =
{
{i, i′} : i, i′ ∈ V , i ̸= i′

}
.

The edge weights are chosen A′
i,i′ = Ai,i′ for any edge {i, i′} ∈ E and A′

i,i′ = 0

if the original FL network G does not contain an edge between nodes i, i′.

1 2

3 4

1 2

3 4

Fig. 3.2: Left: An FL network G consisting of n = 4 nodes. Right: Equivalent

fully connected FL network G ′ with the same nodes and non-zero edge weights

A′
i,i′ = Ai,i′ for {i, i′} ∈ E and A′

i,i′ = 0 for {i, i′} /∈ E .

34

An FL network is more than the undirected weighted graph G: It also

includes the local dataset D(i) and local model H(i) (or its model parameters

w(i)) for each device i ∈ V . The details of the generation and the format of a

local dataset will not be important in what follows. Indeed, the main purpose

of a local dataset will be as a means to construct a loss function to evaluate a

given choice of model parameters. However, to build intuition, we can think

of a local dataset D(i) as a labelled dataset

D(i) :=
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
. (3.1)

Here, x(i,r) and y(i,r) denote, respectively, the features and the label of the

rth data point in the local dataset D(i). Note that the size mi of the local

dataset can vary between different nodes i ∈ V .

It is convenient to collect the feature vectors x(i,r) and labels y(i,r) into a

feature matrix X(i) and label vector y(i), respectively,

X(i) :=
(
x(i,1), . . . ,x(i,mi)

)T , and y :=
(
y(1), . . . , y(mi)

)T
. (3.2)

The local dataset D(i) can then be represented compactly by the feature

matrix X(i) ∈ Rmi×d and the vector y(i) ∈ Rmi .

Besides the local dataset D(i), each node i ∈ G also carries a local model

H(i). Our focus is on parametric local models with by model parameters

w(i) ∈ Rd, for i = 1, . . . , n. The usefulness of a specific choice of the local

model parameter w(i) is then measured by a local loss function Li

(
w(i)

)
, for

i = 1, . . . , n. Note that we can use different local loss functions Li (·) ̸= Li′ (·)

at different nodes i, i′ ∈ V .

We now have introduced all the components of an FL network. Strictly

speaking, an FL network is a tuple
(
G, {H(i)}i∈V , {Li (·)}i∈V

)
consisting of

35

an undirected weighted graph G, a local model H(i) and local loss function

Li (i) for each node i ∈ V. In principle, all of these components are design

choices that influence the computational and statistical properties of the FL

algorithms presented in Chapter 5. The main focus of this book will be on

the effect of the network structure, i.e., the edges E of the graph G, on the

resulting FL systems.

The role (or meaning) of an edge {i, i′} in an FL network is two-fold: First,

it represents a communication link that allows to exchange messages between

devices i, i′ (see Sec. 5.3). Second, an edge {i, i′} indicates similar statistical

properties of local datasets generated by devices i, i′. It then seems natural to

learn similar hypothesis maps h(i), h(i′). This is actually the main idea behind

all the FL algorithms that we will discuss in the rest of this book. To make

this idea precise, we next discuss how to obtain quantitative measures for

how much local hypothesis maps h(i) vary across the edges {i, i′} ∈ E of an

FL network.

3.3 Generalized Total Variation

Consider an FL network with nodes i = 1, . . . , n, undirected edges E with

edge weights Ai,i′ > 0, for each {i, i′} ∈ E . For each edge {i, i′} ∈ E , we

want to couple the training of the corresponding local models H(i),H(i′). The

strength of this coupling is determined by the edge weight Ai,i′ . We implement

the coupling by penalizing the discrepancy between the model parameters

w(i),w(i′).

We can measure the discrepancy between two local models h(i), h(i′) across

{i, i′} ∈ E in different ways. For example, we can compare their predictions

36

on a common test set D by computing
∑

x∈D
[
h(i)(x) − h(i′)(x)

]2. In what

follows, our main focus will be on FL networks with parametrized local models

H(i), each having their own model parameters w(i) ∈ Rd with some fixed

dimension d.

We measure the discrepancy between parametric local models by a function

ϕ
(
w(i) −w(i′)

)
of the difference w(i) −w(i′). The function ϕ is arbitrary as

long as it is monotonically increasing in some norm on the Euclidean space

Rd [18,37]. This requirement ensures that ϕ
(
w(i) −w(i′)

)
= ϕ

(
w(i′) −w(i)

)
and, in turn, allows to use ϕ

(
w(i) −w(i′)

)
as a measure of variation across an

undirected edge {i, i′} ∈ E .

By summing up the edge-wise variations (weighted by the edge weights),

we obtain the GTV of a collection of local model parameters,∑
{i,i′}∈E

Ai,i′ϕ
(
w(i) −w(i′)

)
. (3.3)

Our main focus will be on the special case of (3.3), obtained for ϕ(·) := ∥·∥22,∑
{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
. (3.4)

The choice of penalty ϕ(·) has a crucial impact on the computational and

statistical properties of the FL algorithms presented in Ch. 5. Our main

choice during the rest of this book will be the penalty function ϕ(·) := ∥·∥22.

This choice often allows to formulate FL as the minimization of a smooth

convex function, which can be done via simple gradient-based methods (see

Ch. 7). On the other hand, choosing ϕ to be a norm results in FL algorithms

that require more computation but less training data [37].

37

The connectivity of an FL network G can be characterized locally - around

a node i ∈ V - by its weighted node degree

d(i) :=
∑

i′∈N (i)

Ai,i′ . (3.5)

Here, we used the neighbourhood N (i) := {i′ ∈ V : {i, i′} ∈ E} of node i ∈ V .

A global characterization for the connectivity of G is the maximum weighted

node degree

d(G)max := max
i∈V

d(i)
(3.5)
= max

i∈V

∑
i′∈N (i)

Ai,i′ . (3.6)

Besides inspecting its (maximum) node degrees, we can study the connec-

tivity of G also via the eigenvalues and eigenvectors of its Laplacian matrix

L(G) ∈ Rn×n.5 The Laplacian matrix of an undirected weighted graph G is

defined element-wise as (see Fig. 10.7)

L
(G)
i,i′ :=


−Ai,i′ for i ̸= i′, {i, i′} ∈ E∑

i′′ ̸=iAi,i′′ for i = i′

0 else.

(3.7)

The Laplacian matrix is symmetric and psd, which follows from the

identity

wT (L(G) ⊗ I)w =
∑

{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2

for any d ∈ N,w :=

((
w(1)

)T
, . . . ,

(
w(n)

)T)T

︸ ︷︷ ︸
=:stack

{
w(i)

}n

i=1

∈ Rd·n. (3.8)

5The study of graphs via the eigenvalues and eigenvectors of associated matrices is the

main subject of spectral graph theory [38,39].

38

1

2 3

L(G) =


2 −1 −1

−1 1 0

−1 0 1


Fig. 3.3: Left: Example of an FL network G with three nodes i = 1, 2, 3.

Right: Laplacian matrix L(G) ∈ R3×3 of G.

As a psd matrix, L(G) possesses an EVD

L(G) =
n∑

i=1

λiu
(i)
(
u(i)

)T
, (3.9)

with orthonormal eigenvectors u(1), . . . ,u(n) and corresponding list of eigen-

values

0 = λ1

(
L(G)) ≤ λ2

(
L(G)) ≤ . . . ≤ λn

(
L(G)). (3.10)

We just write λi instead of λi

(
L(G)) if the Laplacian matrix L(G) is clear from

context. The eigenvalue λi

(
L(G)) corresponds to the eigenvector u(i), i.e.,

L(G)u(i) = λi

(
L(G))u(i) for i = 1, . . . , n.

It is important to note that the ordered list of eigenvalues (3.10) is uniquely

determined for a given Laplacian matrix. In contrast, the eigenvectors u(i) in

(3.9) are not unique in general.6

The ordered eigenvalues λi

(
L(G)) in (3.10) can be computed (or character-

ized) via the Courant–Fischer–Weyl min-max characterization (CFW) [3, Thm.
6Consider the scenario where the list (3.10) contains repeated entries, i.e., several

ordered eigenvalues are identical.

39

8.1.2.]. Two important special cases of this characterization are [38,39]

λn

(
L(G)) CFW

= max
v∈Rn

∥v∥=1

vTL(G)v

(3.8)
= max

v∈Rn

∥v∥=1

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2 (3.11)

and

λ2

(
L(G)) CFW

= min
v∈Rn

vT 1=0
∥v∥=1

vTL(G)v

(3.8)
= min

v∈Rn

vT 1=0
∥v∥=1

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2
. (3.12)

By (3.8), we can compute the GTV of a collection of model parameters

via the quadratic form wT
(
L(G) ⊗ Id×d

)
w. This quadratic form involves the

vector w ∈ Rnd which is obtained by stacking the local model parameters

w(i) for i = 1, . . . , n. Another consequence of (3.8) is that any collection of

identical local model parameters, stacked into the vector

w = stack{c} =
(
cT , . . . , cT

)T , with some c ∈ Rd, (3.13)

is an eigenvector of L(G)⊗ I with corresponding eigenvalue λ1 = 0 (see (3.10)).

Thus, the Laplacian matrix of any FL network is singular (non-invertible).

The second eigenvalue λ2 of the Laplacian matrix provides a great deal of

information about the connectivity structure of G.7

• Consider the case λ2 = 0: Here, beside the eigenvector (3.13), we can

find at least one additional eigenvector

w̃ = stack
{
w(i)

}n

i=1
with w(i) ̸= w(i′) for some i, i′ ∈ V , (3.14)

7Much of spectral graph theory is devoted to the analysis of λ2 for different graph

constructions [38,39].

40

of L(G) ⊗ I with eigenvalue equal to 0. In this case, the graph G is not

connected, i.e., we can find two subsets (components) of nodes that do

not have any edge between them (see Fig. 3.4). For each connected

component C, we can construct the eigenvector by assigning the same

(non-zero) vector c ∈ Rd \ {0} to all nodes i ∈ C and the zero vector 0

to the remaining nodes i ∈ V \ C.

• On the other hand, if λ2 > 0 then G is connected. Moreover, the larger

the value of λ2, the stronger the connectivity between the nodes in G.

Indeed, adding edges to G can only increase the objective in (3.12) and,

in turn, λ2.

d(i) = 1

component C(1) component C(2)

Fig. 3.4: FL network with graph G consisting of n=6 nodes that form two

connected components C(1), C(2).

In what follows, we will make use of the lower bound [40]

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
≥ λ2

n∑
i=1

∥∥w(i) − avg{w(i)}
∥∥2

2
. (3.15)

Here, avg{w(i)} := (1/n)
∑n

i=1 w
(i) is the average of all local model parameters.

The bound (3.15) follows from (3.8) and the CFW for the eigenvalues of the

matrix L(G) ⊗ I.

41

The quantity
∑n

i=1

∥∥w(i) − avg{w(i)}ni=1

∥∥2

2
on the RHS of (3.15) has an in-

teresting geometric interpretation: It is the squared Euclidean norm of the pro-

jection of the stacked local model parameters w :=

((
w(1)

)T
, . . . ,

(
w(n)

)T)T

on the orthogonal complement of the subspace

S :=

{
1⊗ a : a ∈ Rd

}
=

{(
aT , . . . , aT

)T , for some a∈Rd

}
⊆Rdn. (3.16)

Indeed, the projection PSw of w ∈ Rnd on S given explicitly as

PSw =
(
aT , . . . , aT

)T , with a = avg{w(i)}ni=1. (3.17)

The projection on the orthogonal complement S⊥, in turn, is given explicitly

as

PS⊥w = w −PSw = stack
{
w(i) − avg{w(i)}ni=1

}n

i=1
. (3.18)

3.4 Generalized Total Variation Minimization

Consider some FL network G with nodes i ∈ V representing devices that learn

personalized model parameters w(i). The usefulness of a specific choice of

the model parameters w(i) is measured by a local loss function Li

(
w(i)

)
. We

are mainly interested in FL applications where the local loss functions do

not provide enough information for learning accurate model parameters.8 We

therefore require learnt model parameters to not only incur a small local loss

but also to have a small GTV (3.3).
8For example, the local loss function can be obtained from the training error on a local

dataset that is much too small relative to the effective dimension of the local model (see

Sec. 2.6).

42

GTV minimization (GTVMin) optimally balances the (average) local loss

and the GTV of local model parameters w(i),{
ŵ(i)

}n

i=1
∈ argmin
stack

{
w(i)

}n

i=1

∑
i∈V

Li

(
w(i)

)
+ α

∑
{i,i′}∈E

Ai,i′ϕ
(
w(i) −w(i′)

)
. (3.19)

Our main focus will be on the special case of (3.19), obtained for ϕ(·) := ∥·∥22,{
ŵ(i)

}n

i=1
∈ argmin

w(1),...,w(n)

∑
i∈V

Li

(
w(i)

)
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
. (3.20)

Note that GTVMin is an instance of RERM: The regularizer is the GTV

of local model parameters over the weighted edges Ai,i′ of the FL network.

Clearly, the FL network is an important design choice in GTVMin-based

methods. This choice can be guided by computational aspects and statistical

aspects of GTVMin-based FL systems.

Some application domains allow to leverage domain expertise to guess a

useful choice for the FL network. If local datasets are generated at different

geographic locations, we might use nearest-neighbour graphs based on geodesic

distances between data generators (e.g., FMI weather stations). Chapter 7

will also discuss graph learning methods that determine the edge weights Ai,i′

in a data-driven fashion, i.e., directly from the local datasets D(i),D(i′).

Let us now consider the special case of GTVMin with local models being

a linear model. For each node i ∈ V of the FL network, we want to learn the

parameters w(i) of a linear hypothesis h(i)(x) :=
(
w(i)

)T
x. We measure the

quality of the parameters via the average squared error loss

Li

(
w(i)

)
:= (1/mi)

mi∑
r=1

(
y(i,r) −

(
w(i)

)T
x(i,r)

)2

(3.2)
= (1/mi)

∥∥y(i) −X(i)w(i)
∥∥2

2
. (3.21)

43

Inserting (3.21) into (3.20), yields the following instance of GTVMin to

train local linear models,{
ŵ(i)

}
∈argmin
{w(i)}ni=1

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
. (3.22)

The identity (3.8) allows to rewrite (3.22) using the Laplacian matrix L(G) as

ŵ(i)∈ argmin
w=stack

{
w(i)

}∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+αwT

(
L(G) ⊗ Id

)
w. (3.23)

Let us rewrite the objective function in (3.23) as

wT




Q(1) 0 · · · 0

0 Q(2) · · · 0
...

...

0 0 · · · Q(n)

+αL(G) ⊗ I

w+
((
q(1)

)T
, . . . ,

(
q(n)

)T)
w

(3.24)

with Q(i)=(1/mi)
(
X(i)

)T
X(i) , and q(i) := (−2/mi)

(
X(i)

)T
y(i).

Thus, like linear regression (2.7) and ridge regression (2.28), also GTVMin

(3.23) (for local linear models H(i)) minimizes a convex quadratic function,{
ŵ(i)

}n

i=1
∈ argmin

w=stack
{
w(i)

}n

i=1

wTQw + qTw. (3.25)

Here, we used the psd matrix

Q :=


Q(1) 0 · · · 0

0 Q(2) · · · 0
...

...

0 0 · · · Q(n)

+αL(G)⊗I with Q(i) :=(1/mi)
(
X(i)

)T
X(i)

(3.26)

44

and the vector

q :=
((
q(1)

)T
, . . . ,

(
q(n)

)T)T , with q(i) := (−2/mi)
(
X(i)

)T
y(i). (3.27)

3.4.1 Computational Aspects of GTVMin

Chapter 5 will apply optimization methods to solve GTVMin, resulting in

practical FL algorithms. Different instances of GTVMin favour different

classes of optimization methods. For example, using a differentiable loss

function allows to apply gradient-based methods (see Chapter 4) to solve

GTVMin.

Another important class of loss functions are those for which we can

efficiently compute the proximal operator

proxL,ρ(w) := argmin
w′∈Rd

L(w′) + (ρ/2) ∥w −w′∥22 for some ρ > 0.

Some authors refer to functions L for which proxL,ρ(w) can be computed

easily as simple or proximable [41]. GTVMin with proximable loss functions

can be solved quite efficiently via proximal algorithms [42].

Besides influencing the choice of optimization method, the design choices

underlying GTVMin also determine the amount of computation that is

required by a given optimization method. For example, using an FL network

with few edges (so called sparse graphs) results in a smaller computational

complexity. Indeed, Chapter 5 discusses GTVMin-based algorithms requiring

an amount of computation that is proportional to the number of edges in the

FL network.

Let us now consider the computational aspects of GTVMin (3.22) to train

local linear models. As discussed above, this instance is equivalent to solving

45

(3.25). Any solution ŵ of (3.25) (and, in turn, (3.22)) is characterized by the

zero-gradient condition

Qŵ = −(1/2)q, (3.28)

with Q,q as defined in (3.26) and (3.27). If the matrix Q in (3.28) is invertible,

the solution to (3.28) and, in turn, to the GTVMin instance (3.22) is unique

and given by ŵ = (−1/2)Q−1q.

The size of the matrix Q (see (3.26)) is proportional to the number of nodes

in the FL network G which might be on the order of millions (or even billions)

for internet-scale applications. For such large systems, we typically cannot use

direct matrix inversion methods (such as Gaussian elimination) to compute

Q−1.9 Instead, we typically need to resort to iterative methods [43,44].

One important family of such iterative methods are the gradient-based

methods which we will discuss in Chapter 4. Starting from an initial choice

of the local model parameters ŵ0 =
(
ŵ

(1)
0 , . . . , ŵ

(n)
0

)
, these methods repeat

(variants of) the gradient step,

ŵk+1 := ŵk − η
(
2Qŵk + q

)
for k = 0, 1,

The gradient step results in the updated local model parameters ŵ(i) which

we stacked into

ŵk+1 :=

((
ŵ(1)

)T
, . . . ,

(
ŵ(n)

)T)T

.

We repeat the gradient step for a sufficient number of times, according to

some stopping criterion (see Chapter 4).
9How many arithmetic operations (addition, multiplication) do you think are required

to invert an arbitrary matrix Q ∈ Rd×d?

46

3.4.2 Statistical Aspects of GTVMin

How useful are the solutions of GTVMin (3.20) as a choice for the local model

parameters? To answer this question, we use - as for the statistical analysis of

ERM in Chapter 2 - a probabilistic model for the local datasets. In particular,

we use a variant of an i.i.d. assumption: Each local dataset D(i), consists of

data points whose features and labels are realizations of i.i.d. RVs

y(i)=
(
x(i,1), . . . ,x(i,mi)

)T︸ ︷︷ ︸
local feature matrix X(i)

w(i) + ε(i) with x(i,r) i.i.d.∼ N (0, I), ε(i)∼N (0, σ2I).

(3.29)

In contrast to the probabilistic model (2.13) (which we used for the analysis

of ERM), the probabilistic model (3.29) allows for different node-specific

parameters w(i), for i ∈ V. In particular, the entire dataset obtained from

pooling all local datasets does not conform to an i.i.d. assumption.

In what follows, we focus on the GTVMin instance (3.22) to learn the

parameters w(i) of a local linear model for each node i ∈ V . For a reasonable

choice of FL network, the parameters w(i),w(i′) at connected nodes {i, i′} ∈ E

should be similar. However, we cannot choose the edge weights based on

parameters w(i) as they are unknown. We can only use (noisy) estimates

for w(i) the features and labels of the data points in the local datasets (see

Chapter 7).

Consider an FL network with nodes carrying local datasets generated

from the probabilistic model (3.29) with true model parameters w(i). For

ease of exposition, we assume that

w(i) = c, for some c ∈ Rd and all i ∈ V . (3.30)

To study the deviation between the solutions ŵ(i) of (3.22) and the true

47

underlying parameters w(i), we decompose it as

ŵ(i) =: w̃(i) + ĉ, with ĉ := (1/n)
n∑

i′=1

ŵ(i′). (3.31)

The component ĉ is identical at all nodes i ∈ V and obtained as the orthogonal

projection of ŵ = stack
{
ŵ(i)}ni=1 on the subspace (3.16). The component

w̃(i) := ŵ(i) − (1/n)
∑n

i′=1 ŵ
(i′) consists of the deviations, for each node i,

between the GTVMin solution ŵ(i) and their average over all nodes. Triv-

ially, the average of the deviations w̃(i) across all nodes is the zero vector,

(1/n)
∑n

i=1 w̃
(i) = 0.

The decomposition (3.31) entails an analogous (orthogonal) decomposition

of the error ŵ(i)−w(i). Indeed, for identical true underlying model parameters

(3.30) (which makes w an element of the subspace (3.16)), we have
n∑

i=1

∥∥ŵ(i) −w(i)
∥∥2

2

(3.30),(3.31)
=

n∑
i=1

∥c− ĉ∥22︸ ︷︷ ︸
n∥c−ĉ∥22

+
n∑

i=1

∥∥w̃(i)
∥∥2

2
. (3.32)

The following proposition provides an upper bound on the second error

component in (3.32).

Proposition 3.1. Consider a connected FL network, i.e., λ2 > 0 (see (3.10)),

and the solution (3.31) to GTVMin (3.22) for the local datasets (3.29). If the

true local model parameters in (3.29) are identical (see (3.30)), we can upper

bound the deviation w̃(i) := ŵ(i) − (1/n)
∑n

i=1 ŵ
(i) of learnt model parameters

ŵ(i) from their average, as
n∑

i=1

∥∥w̃(i)
∥∥2

2
≤ 1

λ2α

n∑
i=1

(1/mi)
∥∥ε(i)∥∥2

2
. (3.33)

Proof. See Section 3.8.1.

48

Note that Prop. 3.1 only applies to GTVMin over a FL network with a

connected graph G. A necessary and sufficient condition for G to be connected

is that the second smallest eigenvalue is positive, λ2 > 0. However, for an FL

network with a graph G that is not connected, we can still apply Prop. 3.1

separately to each connected component of G.

The upper bound (3.33) involves three components:

• the properties of local datasets, via the noise terms ε(i) in (3.29),

• the FL network via the eigenvalue λ2

(
L(G)) (see (3.10)),

• the GTVMin parameter α.

According to (3.33), we can ensure a small error component w̃(i) of the

GTVMin solution by choosing a large value α. Thus, by (3.32), for suffi-

ciently large α, the local model parameters ŵ(i) delivered by GTVMin are

approximately identical for all nodes i ∈ V of a connected FL network (where

λ2

(
L(G)) > 0).

Enforcing identical local model parameters at all nodes is desirable for FL

applications that require to learn a common (global) model for all nodes [14].

However, some FL applications involve heterogeneous nodes that carry local

datasets with significantly different statistics. For such applications it is

detrimental to enforce a common model at all nodes (see Chapter 6). Rather,

3.5 How to Handle Non-Parametric Models

In its basic form (3.20), GTVMin can only be applied to parametric local

models with model parameters belonging to the same Euclidean space Rd.

49

Some FL applications involve non-parametric local models (such as decision

trees) or parametric local models with varying parametrizations (e.g., nodes

use different deep net architectures). Here, we cannot use the difference

between model parameters as a measure for the discrepancy between h(i) and

h(i′) across an edge {i, i′} ∈ E .

One simple approach to measure the discrepancy between hypothesis maps

h(i), h(i′) is to compare their predictions on a dataset

D{i,i′} =
{
x(1), . . . ,x(m′)

}
. (3.34)

For each edge {i, i′}, the connected nodes need to agree on dataset D({i,i′}).

This dataset is typically different for different edges and can be obtained

by i.i.d. realizations of some probability distribution or via using subsets of

D(i),D(i′).

We compare the predictions delivered by h(i) and h(i′) on D{i,i′} using

some loss function L. In particular, we define the discrepancy measure

D
(
h(i), h(i′)

)
:= (1/m′)

∑
x∈D{i,i′}

(1/2)
[
L
((

x, h(i)
(
x
))

, h(i′)
)

+ L
((

x, h(i′)
(
x
))

, h(i)
)]

. (3.35)

Different choices for the loss function in (3.35) result in different computational

and statistical properties of the resulting FL algorithms (see Sec. 5.7). For

real-valued predictions we could use the squared error loss in (3.35), resulting

in

D
(
h(i), h(i′)

)
:= (1/m′)

∑
x∈D{i,i′}

[
h(i)

(
x
)
− h(i′)

(
x
)]2

. (3.36)

We can generalize GTVMin by replacing
∥∥w(i) −w(i′)

∥∥2

2
in (3.20) with

the discrepancy D
(
h(i), h(i′)

)
(3.35) (or the special case (3.36)). This results

50

in {
ĥ(i)

}n

i=1
∈ argmin

h(i)∈H(i)

i∈V

∑
i∈V

Li

(
h(i)

)
+α

∑
{i,i′}∈E

Ai,i′D
(
h(i), h(i′)

)
. (3.37)

3.6 Interpretations

We next discuss some interpretations of GTVMin (3.19).

Empirical Risk Minimization. GTVMin (3.20) is obtained as a special

case of ERM (2.1) for specific choices for the model H and loss function

L. The model (or hypothesis space) used by GTVMin is a product space

generated by the local models at the nodes of an FL network. The loss

function of GTVMin consists of two parts: the sum of loss functions at each

node and a penalty term that measures the variation of local models across

the edges of the FL network.

Generalized Convex Clustering. One important special case of

GTVMin (3.19) is convex clustering [45, 46]. Indeed, convex clustering is

obtained from (3.19) using the local loss function

Li

(
w(i)

)
= ∥w(i) − a(i)∥2, for all nodes i ∈ V (3.38)

and the GTV penalty function ϕ(u) = ∥u∥p with some p ≥ 1.10 The vectors

a(i), for i = 1, . . . , n, are the features of data points that we wish to cluster

in (3.38). Thus, we can interpret GTVMin as a generalization of convex

clustering: we replace the terms ∥w(i) − a(i)∥2 with a more general local loss

function.

Dual of Minimum-Cost Flow Problem. The optimization variables of

GTVMin (3.19) are the local model parameters w(i), for each node i ∈ V in an

10Here, we used the p-norm ∥u∥p :=
(∑d

j=1 |uj |p
)1/p of a vector u ∈ Rd.

51

FL network G. The optimization of node-wise variables w(i), for i = 1, . . . , n,

is naturally associated with a dual problem [47]. This dual problem optimizes

edge-wise variables u({i,i′}), one for each edge {i, i′} ∈ E of G,

max
u(e),e∈E
w(i),i∈V

−
∑
i∈V

L∗
i

(
w(i)

)
− α

∑
e∈E

Aeϕ
∗(u(e)/(αAe)

)
(3.39)

subject to −w(i)=
∑
e∈E
e+=i

u(e) −
∑
e∈E
e−=i

u(e) for each i ∈ V . (3.40)

Here, we have introduced an orientation for each edge e := {i, i′}, by defining

the head e− := min{i, i′} and the tail e+ := max{i, i′}.11 Moreover, we used

the convex conjugates L∗
i (·) , ϕ∗ of the local loss function Li (·) and GTV

penalty function ϕ.12

The dual problem (3.39) generalizes the optimal flow problem [47, Sec.

1J] to vector-valued flows. The special case of (3.39), obtained when the GTV

penalty function ϕ is a norm, is equivalent to a generalized minimum-cost

flow problem [49, Sec. 1.2.1]. Indeed, the maximization problem (3.39) is
11We use this orientation only for notational convenience to formulate the dual of

GTVMin. The orientation of an edge (by choosing a head and tail) has no practical

meaning in terms of GTVMin-based FL algorithms. After all, GTVMin (3.19) and its dual

(3.39) are defined for an FL network with undirected edges E .
12The convex conjugate of a function f : Rd → R is defined as [48]

f∗(x) := sup
z∈Rd

xT z− f(z). (3.41)

52

i

w(i)

i′

w(i′)
u(e)

e = {i, i′}

Fig. 3.5: Two nodes of an FL network that are connected by an edge e = {i, i′}.

GTVMin (3.19) optimizes local model parameters w(i) for each node i ∈ V in

the FL network. The dual (3.39) of GTVMin optimizes local parameters u(e)

for each edge e ∈ E in the FL network.

equivalent to the minimization

min
u(e),e∈E
w(i),i∈V

∑
i∈V

L∗
i

(
w(i)

)
subject to −w(i) =

∑
e∈E
e+=i

u(e) −
∑
e∈E
e−=i

u(e) for each node i ∈ V

∥u(e)∥∗ ≤ αAe for each edge e ∈ E . (3.42)

The optimization problem (3.42) reduces to the minimum-cost flow problem

[49, Eq. (1.3) - (1.5)] for scalar local model parameters w(i) ∈ R.

Locally Weighted Learning. The solution of GTVMin are local model

parameters ŵ(i) that tend to be clustered: Each node i ∈ V belongs to a

subset or cluster C ⊆ V . All the nodes in C have nearly identical local model

parameters, ŵ(i′) ≈ w(C) for all i′ ∈ C [37]. The cluster-wise model parameters

w(C) are the solutions of

min
w

∑
i′∈C

Li′ (w) , (3.43)

which, in turn, is an instance of a locally weighted learning problem [50, Sec.

53

3.1.2]

w(C) = argmin
w∈Rd

∑
i′∈V

ρi′Li′ (w) . (3.44)

Indeed, we obtain (3.43) from (3.44) by setting the weights ρi′ equal to 1 if

i′ ∈ C and 0 otherwise.

54

3.7 Exercises

3.1. Spectral Radius of Laplacian Matrix. The spectral radius ρ(Q) of

a square matrix Q is the largest magnitude of an eigenvalue,

ρ(Q) := max{|λ| : λ is an eigenvalue of Q}.

Consider the Laplacian matrix L(G) of an FL network with undirected graph G.

Show that ρ
(
L(G)) = λn

(
L(G)) and verify the upper bound λn

(
L(G)) ≤ 2d

(G)
max.

Try to find a graph G such that λn

(
L(G)) ≈ 2d

(G)
max.

3.2. Kernel of the Laplacian matrix. Consider an undirected weighted

graph G with Laplacian matrix L(G). A component of G is a subset C ⊆ V of

nodes that are connected but there is no edge between C and the rest V \ C.

The nullspace (or kernel) of L(G) is the subspace K ⊆ Rn constituted by all

vectors v ∈ Rn such that L(G)v = 0. Show that the dimension of K coincides

with the number of components in G.

3.3. Toy Example of Spectral Clustering. Consider the graph G depicted

in Figure 3.6. The Laplacian matrix has two zero eigenvalues λ1=λ2=0.

i=12

3 4

5 6

component C(1) component C(2)

Fig. 3.6: An undirected graph G that consists of two connected components

C(1), C(2).

Can you find corresponding orthonormal eigenvectors u(1),u(2)? Are they

unique?

55

10 MB

45

33

5 10

1 kbps 2

1

2

1

Fig. 3.7: An FL network whose nodes i = 1, . . . , 5 represent devices that hold

local datasets whose size is indicated next to each node.

3.4. Adding an Edge Increases Connectivity. Consider an undirected

weighted graph G with Laplacian matrix L(G). We construct a new graph

G ′, with Laplacian matrix L(G′), by adding a new edge to G. Show that

λ2(G ′) ≥ λ2(G), i.e., the second smallest eigenvalue of L(G′) is at least as large

as the second smallest eigenvalue of L(G).

3.5. Capacity of an FL network. Consider the FL network depicted in Fig.

3.7. Each node carries a local dataset whose size is indicated by the numbers

next to it. The devices represented by the nodes can communicate via bi-

directional communication links with a capacity indicated by the numbers

placed next to the edges. How long does it take at least for the left-most

node to collect the local datasets from all other nodes?

3.6. Discrepancy Measures. Consider an FL network with nodes car-

rying parametric local models, each having model parameters w(i) ∈ Rd.

Is it possible to construct a dataset D{i,i′} such that (3.36) coincides with∥∥w(i) −w(i′)
∥∥2

2
?

56

3.7. Structure of GTVMin. What are sufficient conditions for the local

datasets and the edge weights used in GTVMin such that Q in (3.26) is

invertible?

3.8. Existence and Uniqueness of GTVMin Solution. Consider the

GTVMin instance (3.20), defined over an FL network with the weighted

undirected graph G.

1. Existence. Can you state a sufficient condition on the local loss

functions and the weighted edges in G such that (3.20) has at least one

solution?

2. Uniqueness. Then, try to find a condition that ensures that (3.20)

has a unique solution.

3. Finally, try to find necessary conditions for the existence and uniqueness

of solutions to (3.20).

3.9. Computing the Average. Consider an FL network with nodes carrying

parametric local models, each having a single parameter w(i). Each node also

carries a local dataset that consists of a single number y(i). Construct an

instance of GTVMin such that its solutions are given by ŵ(i) ≈ (1/n)
∑n

i=1 y
(i)

for all i = 1, . . . , n.

3.10. Computing the Average over a Star. Consider the FL network

depicted in Fig. 3.8, which consists of a centre node i0 which is connected

to n− 1 peripheral nodes P := V \ {i0}. Each peripheral node i ∈ P carries

a local dataset that consists of a single real-valued observation y(i) ∈ R.

Construct an instance of GTVMin, using real-valued local model parameters

w(i) ∈ R, such that the solution satisfies ŵ(i0) ≈ (1/(n− 1))
∑

i∈P y(i).

57

i0

i ∈ P

Fig. 3.8: An FL network that consists of a centre node i0 that is connected

to several peripheral nodes P := V \ {i0}.

3.11. Fundamental Limits. Consider an FL network with nodes carrying

parametric local models, each having s single parameter w(i). Each node

also carries a local dataset that consists of a single number y(i). We use a

probabilistic model for the local datasets: y(i) = w̄ + n(i). Here, w̄ is some

fixed but unknown number and n(i) ∼ N (0, 1) are i.i.d. Gaussian RVs. We

use a message-passing FL algorithm to estimate c based on the local datasets.

What is a fundamental limit on the accuracy of the estimate ĉ(i) delivered at

some fixed node i by such an algorithm after two iterations? Compare this

limit with the risk E
{(

ŵ(i) − w̄
)2} incurred by the estimate ŵ(i) delivered by

running Algorithm 5.1 for two iterations.

3.12. Counting Number of Paths. Consider an undirected graph G with

each edge {i, i′} ∈ E having unit edge weight Ai,i′ = 1. For k ∈ {1, 2,},

a k-hop path between two nodes i, i′ ∈ V is a node sequence i(1), . . . , i(k+1)

such that i(1) = i, i(k+1) = i′, and {i(r), i(r+1)} ∈ E for reach r = 1, . . . , k.

Show that the number of k-hop paths between two nodes i, i′ ∈ V is given by(
Ak

)
i,i′

.

58

i

Fig. 3.9: Some FL network with each node i having degree d(i) = 3. We

use a FL algorithm to learn a local model parameters w(i). If the algorithm

uses message passing, executing the first iteration only provides access to

the local datasets of the neighbours in N (i) (located along the inner dashed

circle). The second iteration provides access also to the local datasets of the

neighbours N (i′) of each i′ ∈ N (i). These second-hop neighbours are located

along the outer dashed circle.

59

3.8 Proofs

3.8.1 Proof of Proposition 3.1

Let us introduce the shorthand f
(
w(i)

)
for the objective function of the

GTVMin instance (3.22). We verify the bound (3.33) by showing that if it

does not hold, the choice of the local model parameters w(i) := w(i) (see

(3.29)) results in a smaller objective function value, f
(
w(i)

)
< f

(
ŵ(i)

)
. This

would contradict the fact that ŵ(i) is a solution to (3.22).

First, note that

f
(
w(i)

)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2

(3.30)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2

(3.29)
=

∑
i∈V

(1/mi)
∥∥X(i)w(i)+ε(i)−X(i)w(i)

∥∥2

2

=
∑
i∈V

(1/mi)
∥∥ε(i)∥∥2

2
. (3.45)

Inserting (3.31) into (3.22),

f
(
ŵ(i)

)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)ŵ(i)

∥∥2

2︸ ︷︷ ︸
≥0

+α
∑

{i,i′}∈E

Ai,i′

∥∥∥ŵ(i)−ŵ(i′)
∥∥∥2

2︸ ︷︷ ︸
(3.31)
= ∥w̃(i)−w̃(i′)∥2

2

≥ α
∑

{i,i′}∈E

Ai,i′

∥∥∥w̃(i)−w̃(i′)
∥∥∥2

2

(3.15)
≥ αλ2

n∑
i=1

∥∥w̃(i)
∥∥2

2
. (3.46)

If the bound (3.33) would not hold, then by (3.46) and (3.45) we would obtain

f
(
ŵ(i)

)
> f

(
w(i)

)
. This is a contradiction to the fact that ŵ(i) solves (3.22).

60

.

4 Gradient Methods

Chapter 3 introduced GTVMin as a central design principle for FL methods.

Many significant instances of GTVMin minimize a smooth objective function

f(w) over the parameter space (typically a subset of Rd). This chapter

explores gradient-based methods, a widely used family of iterative algorithms

to find the minimum of a smooth function. These methods approximate the

objective function locally using its gradient at the current choice of the model

parameters. Chapter 5 focuses on FL algorithms obtained from applying

gradient-based methods to solve GTVMin.

4.1 Learning Goals

After completing this chapter, you will

• have some intuition about the effect of a gradient step,

• understand the role of the step size (or learning rate),

• know some examples of a stopping criterion,

• be able to analyze the effect of perturbations in the gradient step,

• know about projected GD to cope with constraints on model parameters.

61

4.2 Gradient Descent

Gradient-based methods are iterative algorithms for finding the minimum of

a differentiable objective function f(w) of a vector-valued argument w (e.g.,

the model parameters in a ML method). Unless stated otherwise, we consider

an objective function of form

f(w) = wTQw + qTw. (4.1)

Note that (4.1) defines an entire family of convex quadratic functions f(w).

Each member of this family is specified by a psd matrix Q ∈ Rd×d and a

vector q ∈ Rd.

We have already encountered some ML and FL methods that minimize

an objective function of the form (4.1): Linear regression (2.3) and ridge

regression (2.28) in Chapter 2 as well as GTVMin (3.22) for local linear models

in Chapter 3. Moreover, (4.1) is a useful approximation for the objective

functions arising in larger classes of ML methods [51–53].

Given a current choice of model parameters w(k), we want to update

(or improve) them towards a minimum of (4.1). To this end, we use the

gradient ∇f
(
w(k)

)
to locally approximate f(w) (see Figure 4.1). The gradient

∇f
(
w(k)

)
indicates the direction in which the function f(w) maximally

increases. Therefore, it seems reasonable to update w(k) in the opposite

direction of ∇f
(
w(k)

)
,

w(k+1) := w(k) − η∇f
(
w(k)

)
(4.1)
= w(k) − η

(
2Qw(k) + q

)
. (4.2)

The gradient step (4.2) involves the factor η which we refer to as step size or

62

learning rate. Algorithm 4.1 summarizes the most basic instance of gradient-

based methods which simply repeats (iterates) (4.2) until some stopping

criterion is met.

f(w)

f
(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)
f
(
w(k)

)n

Fig. 4.1: We can approximate a differentiable function f(w) locally around

a point w(k) ∈ Rd using the linear function f
(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)
.

Geometrically, we approximate the graph of f(w) by a hyperplane with

normal vector n = (∇f
(
w(k)

)
,−1)T ∈ Rd+1 of this approximating hyperplane

is determined by the gradient ∇f
(
w(k)

)
[2].

The usefulness of gradient-based methods crucially depends on the com-

putational complexity of evaluating the gradient ∇f(w). Modern software

libraries for automatic differentiation enable the efficient evaluation of the

gradients arising in widely-used ERM-based methods [54].

Besides the actual computation of the gradient, it might be already

challenging to gather the required data points which define the objective

function f(w) (e.g., being the average loss over a large training set). Indeed,

the matrix Q and vector q in (4.1) are constructed from the features and

labels of data points in the training set. For example, the gradient of the

63

objective function in ridge regression (2.28) is

∇f(w) = −(2/m)
m∑
r=1

x(r)
(
y(r) −wTx(r)

)
+ 2αw.

Evaluating this gradient requires roughly d×m arithmetic operations (sum-

mations and multiplications).

Algorithm 4.1 A blueprint for gradient-based methods
Input: some objective function f(w) (e.g., the average loss of a hypothesis

h(w) on a training set); learning rate η > 0; some stopping criterion;

Initialize: set w(0) :=0; set iteration counter k :=0

1: repeat

2: k := k+1 (increase iteration counter)

3: w(k) := w(k−1) − η∇f
(
w(k−1)) (do a gradient step (4.2))

4: until stopping criterion is met

Output: learnt model parameters ŵ := w(k) (hopefully f
(
ŵ
)
≈ minw f(w))

Like most other gradient-based methods, Algorithm 4.1, involves two

hyper-parameters: (i) the learning rate η used for the gradient step and (ii) a

stopping criterion to decide when to stop repeating the gradient step. We

next discuss how to choose these hyper-parameters.

Note that we can apply Algorithm 4.1 to find the minimum of any differ-

entiable objective function f(w). Indeed, Algorithm 4.1 only needs to be able

to access the gradient ∇f
(
w(k−1)). In particular, we an apply Algorithm 4.1

to objective functions that do not belong to the family of convex quadratic

function (see (4.1)).

64

4.3 Learning Rate

The learning rate must not be too large to avoid moving away from the

optimum by overshooting (see Figure 4.2-(a)). On the other hand, if the

learning rate is chosen too small, the gradient step makes too little progress

towards the solutions of (4.1) (see Figure 4.2-(b)). Note that in practice we

can only afford to repeat the gradient step for a finite number of iterations.

f(w(k))
f(w(k+1))

f(w(k+2))(4.2)
(4.2)

(a)

f(w(k))
f(w(k+1)) f(w(k+2))

(b)

Fig. 4.2: Effect of inadequate learning rates η in the gradient step (4.2). (a)

If η is too large, the gradient steps might “overshoot” such that the iterates

w(k) might diverge from the optimum, i.e., f(w(k+1)) > f(w(k))! (b) If η is

too small, the gradient steps make very little progress towards the optimum

or even fail to reach the optimum at all.

One approach to choose the learning rate is to start with some initial

value (first guess) and monitor the decrease of the objective function. If

this decrease does not agree with the decrease predicted by the (local linear

approximation using the) gradient, we decrease the learning rate by a constant

factor. After we decrease the learning rate, we re-consider the decrease of the

objective function. We repeat this procedure until a sufficient decrease of the

objective function is achieved [55, Sec 6.1].

Alternatively, we can use a prescribed sequence (schedule) ηk, for k =

65

1, 2, . . . , of learning rates that vary across successive gradient steps [56]. We

can guarantee convergence of (4.2) (under mild assumptions on the objective

function f(w)) by using a learning rate schedule that satisfies [55, Sec. 6.1]

lim
k→∞

ηk = 0,
∞∑
k=1

ηk = ∞ , and
∞∑
k=1

η2k < ∞. (4.3)

The first condition (4.3) requires that the learning rate eventually become

sufficiently small to avoid overshooting. The third condition (4.3) ensures

that this required decay of the learning rate does not take “forever”. Note

that the first and third condition in (4.3) could be satisfied by the trivial

learning rate schedule ηk = 0 which is clearly not useful as the gradient step

has no effect.

The trivial schedule ηk = 0 is ruled out by the middle condition of (4.3).

This middle condition ensures that the learning rate ηk is large enough such

that the gradient steps make sufficient progress towards a minimizer of the

objective function.

We emphasize that the conditions (4.3) do not involve any properties of

the matrix Q in (4.1). Note that the matrix Q is determined by data points

(see, e.g., (2.3)) whose statistical properties typically can be controlled only

to a limited extend (e.g., via data normalization).

4.4 When to Stop?

For the stopping criterion we might use a fixed number kmax of iterations.

This hyper-parameter kmax might be dictated by limited resources (such as

computational time) for implementing GD or tuned via validation techniques.

We can obtain another stopping criterion from monitoring the decrease

66

in the objective function f
(
w(k)

)
: we stop repeating the gradient step (4.2)

whenever
∣∣f(w(k)

)
− f

(
w(k+1)

)∣∣ ≤ ε(tol) for a given tolerance ε(tol). The

tolerance level ε(tol) is a hyper-parameter of the resulting ML method which

could be chosen via validation techniques (see Chapter 2).

The above technique for deciding when to stop the gradient steps are

convenient as they do not require any information about the psd matrix Q

in (4.1). However, they might result in sub-optimal use of computational

resources by implementing “useless” additional gradient steps. We use infor-

mation about the psd matrix Q in (4.1) to avoid unnecessary computations.13

Indeed, the choice of the learning rate η and the stopping criterion can be

guided by the eigenvalues

0 ≤ λ1(Q) ≤ . . . ≤ λd(Q). (4.4)

Even if we do not know these eigenvalues precisely, we might know (or be

able to ensure via feature learning) some upper and lower bounds,

0 ≤ L ≤ λ1(Q) ≤ . . . ≤ λd(Q) ≤ U. (4.5)

In what follows, we assume that Q is invertible and we know some positive

lower bound L > 0 (see (4.5)). The objective function (4.1) has then a unique

solution ŵ. It turns out that a gradient step (4.2) reduces the distance∥∥w(k) − ŵ
∥∥
2

to ŵ by a constant factor [55, Ch. 6],∥∥w(k+1) − ŵ
∥∥
2
≤ κ(ηk) (Q)

∥∥w(k) − ŵ
∥∥
2
. (4.6)

13For linear regression (2.7), the matrix Q is determined by the features of the data

points in the training set. We can influence the properties of Q to some extent by

feature transformation methods. One important example of such a transformation is the

normalization of features.

67

Here, we used the contraction factor

κ(η)(Q) := max
{
|1− η2λ1|, |1− η2λd|

}
. (4.7)

The contraction factor depends on the learning rate η which is a hyper-

parameter of gradient-based methods that we can control. However, the

contraction factor also depends on the eigenvalues of the matrix Q in (4.1).

In ML and FL applications, this matrix typically depends on data and can

be controlled only to some extend, e.g., using feature transformation [6, Ch.

5]. We can ensure κ(η)(Q) < 1 if we use a positive learning rate ηk < 1/U .

Consider the gradient step (4.2) with fixed learning rate η and a contraction

factor κ(η)(Q) < 1 (see (4.7)). We can then ensure an optimization error∥∥w(k) − ŵ
∥∥
2
≤ ε (see (4.6)) if the number k of gradient steps satisfies

k ≥
⌈
log

(∥∥w(0) − ŵ
∥∥
2
/ε
)

log
(
1/κ(η)(Q)

) ⌉
︸ ︷︷ ︸

=:k(ε)

. (4.8)

According to (4.6), smaller values of the contraction factor κ(η)(Q) guar-

antee a faster convergence of (4.2) towards the solution of (4.1). Figure 4.3

illustrates the dependence of κ(η)(Q) on the learning rate η. Thus, choosing

a small η (close to 0) will typically result in a larger κ(η)(Q) and, in turn,

require more iterations to ensure optimization error level ε(tol) via (4.6).

We can minimize this contraction factor by choosing the learning rate (see

Figure 4.3)

η(∗) :=
1

λ1 + λd

. (4.9)

[Note that evaluating (4.9) requires to know the extremal eigenvalues λ1, λd

68

η

1

1/(2λd)

|1−η2λ1|

|1−η2λd|

κ∗(Q)= (λd/λ1)−1
(λd/λ1)+1

η∗= 1
λ1+λd

1
λd

κ(η)(Q)

Fig. 4.3: The contraction factor κ(η)(Q) (4.7), used in the upper bound (4.6),

as a function of the learning rate η. Note that κ(η)(Q) also depends on the

eigenvalues of the matrix Q in (4.1).

of Q.] Inserting the optimal learning rate (4.9) into (4.6),

∥∥w(k+1) − ŵ
∥∥
2
≤ (λd/λ1)− 1

(λd/λ1) + 1︸ ︷︷ ︸
:=κ∗(Q)

∥∥w(k) − ŵ
∥∥
2
. (4.10)

Carefully note that the formula (4.10) is valid only if the matrix Q in

(4.1) is invertible, i.e., if λ1 > 0. If the matrix Q is singular (λ1 = 0), the

convergence of (4.2) towards a solution of (4.1) is much slower than the

decrease of the bound (4.10). However, we can still ensure the convergence of

gradient steps w(k) by using a fixed learning rate ηk = η that satisfies [57, Thm.

69

2.1.14]

0 < η < 1/λd(Q). (4.11)

It is interesting to note that for linear regression, the matrix Q depends only

on the features x(r) of the data points in the training set (see (2.17)) but not

on their labels y(r). Thus, the convergence of gradient steps is only affected

by the features, whereas the labels are irrelevant. The same is true for ridge

regression and GTVMin (using local linear models).

Note that both, the optimal learning rate (4.9) and the optimal contraction

factor

κ∗(Q) :=
(λd/λ1)− 1

(λd/λ1) + 1
(4.12)

depend on the eigenvalues of the matrix Q in (4.1). According to (4.10),

the ideal case is when all eigenvalues are identical which leads, in turn, to

a contraction factor κ∗(Q) = 0. Here, a single gradient step arrives at the

unique solution of (4.1).

In general, we do not have full control over the matrix Q and its eigenvalues.

For example, the matrix Q arising in linear regression (2.7) is determined

by the features of data points in the training set. These features might be

obtained from sensing devices and therefore beyond our control. However,

other applications might allow for some design freedom in the choice of feature

vectors. We might also use feature transformations that nudge the resulting

Q in (2.7) more towards a scaled identity matrix.

4.5 Perturbed Gradient Step

Consider the gradient step (4.2) used to find a minimum of (4.1). We again

assume that the matrix Q in (4.1) is invertible (λ1(Q) > 0) and, in turn, (4.1)

70

has a unique solution ŵ.

In some applications, it is challenging to evaluate the gradient ∇f(w) =

2Qw+q of (4.1) exactly. For example, the evaluation could require to gather

data points from distributed storage locations. These storage locations can

become unavailable during the computation of ∇f(w) due to software or

hardware failures (e.g., limited connectivity).

We can model imperfections during the computation of (4.2) as the

perturbed gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
+ ε(k)

(4.1)
= w(k) − η

(
2Qw(k) + q

)
+ ε(k), for k = 0, 1, (4.13)

We can use the contraction factor κ := κ(η) (Q) (4.7) to upper bound the

deviation between w(k) and the optimum ŵ as (see (4.6))

∥∥w(k)−ŵ
∥∥
2
≤ κk

∥∥w(0)−ŵ
∥∥
2
+

k∑
k′=1

κk′
∥∥∥ε(k−k′)

∥∥∥
2
. (4.14)

This bound applies for any number of iterations k = 1, 2, . . . of the perturbed

gradient step (4.13).

The perturbed gradient step (4.13) could also be used as a tool to analyze

the (exact) gradient step for an objective function f̃(w) which does not belong

to the family (4.1) of convex quadratic functions. Indeed, we can write the

gradient step for minimizing f̃(w) as

w(k+1) := w(k) − η∇f̃(w)

= w(k) − η∇f(w) + η
(
∇f(w)−∇f̃(w)

)︸ ︷︷ ︸
:=ε(k)

.

71

The last identity is valid for any choice of surrogate function f(w). In

particular, we can choose f(w) as a convex quadratic function (4.1) that

approximates f̃(w). Note that the perturbation term ε(k) is scaled by the

learning rate η.

4.6 Handling Constraints - Projected Gradient Descent

Many important ML and FL methods amount to the minimization of an

objective function of the form (4.1). The optimization variable w in (4.1)

represents some model parameters.

Sometimes we might require the parameters w to belong to a subset

S ⊂ Rd. One example is regularization via model pruning (see Chapter 2).

Another example are FL methods that learn identical local model parameters

w(i) at all nodes i ∈ V of an FL network. This can be implemented by

requiring the stacked local model parameters w =
(
w(1), . . . ,w(n)

)T to belong

to the subset

S =

{(
w(1), . . . ,w(n)

)T
: w(1) = . . . = w(n)

}
.

Let us now show how to adapt the gradient step (4.2) to solve the con-

strained problem

f ∗ = min
w∈S

wTQw + qTw. (4.15)

We assume that the constraint set S ⊆ Rd is such that we can efficiently

compute the projection

PS
(
w
)
= argmin

w′∈S
∥w −w′∥2 for any w ∈ Rd. (4.16)

72

A suitable modification of the gradient step (4.2) to solve the constrained

variant (4.15) is [55]

w(k+1) := PS
(
w(k) − η∇f

(
w(k)

))
(4.1)
= PS

(
w(k) − η

(
2Qw(k) + q

))
. (4.17)

The projected GD step (4.17) amounts to

1. compute ordinary gradient step w(k) 7→ w(k) − η∇f
(
w(k)

)
and

2. project back to the constraint set S.

Note that we re-obtain the basic gradient step (4.2) from the projected

gradient step (4.17) for the trivial constraint set S = Rd.

f(w)

w(k)
(4.2)

w(k)−η∇f
(
w(k)

) PS
(
·
)
w(k+1)

S

Fig. 4.4: Projected GD augments a basic gradient step with a projection back

onto the constraint set S.

The approaches for choosing the learning rate η and stopping criterion for

basic gradient step (4.2) explained in Sections 4.3 and 4.4 work also for the

projected gradient step (4.17). In particular, the convergence speed of the

projected gradient step is also characterized by (4.6) [55, Ch. 6]. This follows

from the fact that the concatenation of a contraction (such as the gradient

73

step (4.2) for sufficiently small η) and a projection (such as PS
(
·
)
) results

again in a contraction with the same contraction factor.

Thus, the convergence speed of projected GD, in terms of number of

iterations required to ensure a given level of optimization error, is essentially

the same as that of basic GD. However, the bound (4.6) is only telling about

the number of projected gradient steps (4.17) required to achieve a guaranteed

level of sub-optimality
∣∣f(w(k)

)
− f ∗

∣∣. The iteration (4.17) of projected GD

might require significantly more computation than the basic gradient step, as

it requires to compute the projection (4.16).

4.7 Generalizing the Gradient Step

The gradient-based methods discussed so far can be used to learn a hypothesis

from a parametric model. Let us now sketch one possible generalization of

the gradient step (4.2) for a model H without a parametrization.

We start with rewriting the gradient step (4.2) as the optimization

w(k+1)=argmin
w∈Rd

(1/(2η))∥∥w−w(k)
∥∥2

2
+f

(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)︸ ︷︷ ︸
≈f(w)

 .

(4.18)

The objective function in (4.18) includes the first-order approximation

f(w) ≈ f
(
w(k)

)
+
(
w −w(k)

)T∇f
(
w(k)

)
of the function f(w) around the location w = w(k) (see Figure 4.1).

Let us modify (4.18) by using f(w) itself (instead of an approximation),

w(k+1) = argmin
w∈Rd

[
f(w)+(1/(2η))

∥∥w −w(k)
∥∥2

2

]
. (4.19)

74

Like the gradient step, also (4.19) maps a given vector w(k) to an updated

vector w(k+1). Note that (4.19) is nothing but the proximal operator of the

function f(w) [42]. Similar to the role of the gradient step as the main

building block of gradient-based methods, the proximal operator (4.19) is the

main building block of proximal algorithms [42].

To obtain a version of (4.19) for a non-parametric model, we need to be

able to evaluate its objective function directly in terms of a hypothesis h

instead of its parameters w. The objective function (4.19) consists of two

components. The second component f(·), which is the function we want

to minimize, is obtained from a training error incurred by a hypothesis,

which might be parametric h(w). Thus, we can evaluate the function f(h) by

computing the training error for a given hypothesis.

The first component of the objective function in (4.19) uses
∥∥w −w(k)

∥∥2

2
to

measure the difference between the hypothesis maps h(w) and h(w(k)). Another

measure for the difference between two hypothesis maps can be obtained by

using some test dataset D′ =
{
x(1), . . . ,x(m′)

}
: The average squared difference

between their predictions,

(1/m′)
m′∑
r=1

(
h
(
x(r)

)
− h(k)

(
x(r)

))2

, (4.20)

is a measure for the difference between h and h(k). Note that (4.20) only

requires the predictions delivered by the hypothesis maps h, h(k) on D′ - no

other information is needed about these maps.

It is interesting to note that (4.20) coincides with
∥∥w −w(k)

∥∥2

2
for the

linear model h(w)(x) := wTx and a specific construction of the dataset D′.

This construction uses the realizations x(1),x(2), . . . of i.i.d. RVs with a

75

common probability distribution x ∼ N (0, I). Indeed, by the law of large

numbers

lim
m′→∞

(1/m′)
m′∑
r=1

(
h(w)

(
x(r)

)
− h(w(k))

(
x(r)

))2

= lim
m′→∞

(1/m′)
m′∑
r=1

((
w −w(k)

)T
x(r)

)2

= lim
m′→∞

(1/m′)
m′∑
r=1

(
w −w(k)

)T
x(r)

(
x(r)

)T (
w −w(k)

)
=

(
w −w(k)

)T [
lim

m′→∞
(1/m′)

m′∑
r=1

x(r)
(
x(r)

)T]
︸ ︷︷ ︸

=I

(
w −w(k)

)

=
∥∥w −w(k)

∥∥2

2
. (4.21)

Finally, we arrive at a generalized gradient step for the training of a

non-parametric model H by replacing
∥∥w −w(k)

∥∥2

2
in (4.19) with (4.20). In

other words,

h(k+1) = argmin
h∈H

[
(1/(2ηm′))

m′∑
r=1

(
h
(
x(r)

)
− h(k)

(
x(r)

))2

+ f(h)

]
. (4.22)

We can turn gradient-based methods for the training of parametric models

into corresponding training methods for non-parametric models by replacing

the gradient step with the update (4.22). For example, we obtain Algorithm

4.2 from Algorithm 4.1 by modifying step 3 suitably.

76

Algorithm 4.2 A blueprint for generalized gradient-based methods
Input: some objective function f : H → R (e.g., the average loss of a

hypothesis h ∈ H on a training set); learning rate η > 0; some stopping

criterion; test dataset D′ = {x(1), . . . ,x(m′)}

Initialize: set h(0) :=0; set iteration counter k :=0

1: repeat

2: k := k + 1 (increase iteration counter)

3: do a generalized gradient step (4.22),

h(k)=argmin
h∈H

[
(1/(2ηm′))

m′∑
r=1

(
h
(
x(r)

)
− h(k−1)

(
x(r)

))2

+ f(h)

]
4: until stopping criterion is met

Output: learnt hypothesis ĥ := h(k) (hopefully f
(
ĥ
)
≈ minh∈H f(h))

4.8 Gradient Methods as Fixed-Point Iterations

The iterative optimization methods discussed in the previous sections are all

special cases of a fixed-point iteration,

w(k) = Fw(k−1), for k = 1, 2, (4.23)

In what follows, we tacitly assume that the operator F : Rm → Rm is defined

on a Euclidean space Rm with some fixed dimension m. We will use fixed-point

iterations of the form (4.23) to solve GTVMin (see Ch. 3). For parametrized

local models, we can learn local model parameters by the iterations (4.23)

using the stacking w(k) according to w(k) =
(
w(1,k), . . . ,w(n,k)

)T . For a

suitable choice of F , the sequence model parameters w(1,i),w(1,i), . . . converges

towards the optimal local model parameters (solving GTVMin) at each node

77

i = 1, . . . , n.

The FL algorithms in Ch. 5 are implementations of (4.23) with an operator

F having a GTVMin-solution ŵ ∈ Rd·n as a fixed point,

Fŵ = ŵ. (4.24)

Given an instance of GTVMin, there are (infinitely) many different operators

F that satisfy (4.24). We obtain different FL algorithms by using different

choices for F in (4.23). A useful choice of F should reduce the distance to a

solution, ∥∥w(k+1) − ŵ
∥∥
2︸ ︷︷ ︸

(4.23),(4.24)
= ∥Fw(k)−Fŵ∥

2

≤
∥∥w(k) − ŵ

∥∥
2
. (4.25)

Thus, we require F to be at least non-expansive, i.e., the iteration (4.23)

should not result in worse model parameters (increasing the distance to the

GTVMin solution). Moreover, each iteration (4.23) should also make some

progress, i.e., reduce the distance from a GTVMin solution. This requirement

can be made precise using the notion of a contractive operator [58, 59].

The operator F is contractive (or a contraction mapping) if, for some

κ ∈ [0, 1),

∥Fw−Fw′∥2 ≤ κ ∥w−w′∥2 holds for any w,w′ ∈ Rdn. (4.26)

For a contractive F , the fixed-point iteration (4.23) generates a sequence

w(k) that converges to a GTVMin solution ŵ quite rapidly. In particular [2,

Theorem 9.23], ∥∥w(k) − ŵ
∥∥
2
≤ κk

∥∥w(0) − ŵ
∥∥
2
. (4.27)

Here,
∥∥w(0) − ŵ

∥∥
2

is the distance between the initialization w(0) and the

solution ŵ.

78

A well-known example of a fixed-point iteration (4.23) using a contractive

operator is GD (4.2) for a smooth and strongly convex objective function

f(w).14 In particular, (4.2) is obtained from (4.23) using F := G(η) with the

(gradient step) operator

G(η) : w 7→ w − η∇f(w). (4.28)

Note that the operator (4.28) is parametrized by the learning rate η.

It is instructive to study the operator G(η) for an objective function of the

form (4.1). Here,

G(η) : w 7→ w − η
(
2Qw + q

)︸ ︷︷ ︸
(4.1)
= ∇f(w)

. (4.29)

For η := 1/(2λmax(Q)), the operator G(η) is contractive with κ = 1 −

λmin(Q)/λmax(Q). Note that κ < 1 only when λmin(Q) > 0, i.e., only

when the matrix Q in (4.1) is invertible.

The gradient step operator (4.29) is not contractive for the objective

function (4.1) with a singular matrix Q (for which λmin = 0). However,

even then G(η) is still firmly non-expansive [28] We refer to an operator

F : Rd·n → Rd·n as firmly non-expansive if

∥Fw −Fw′∥22 ≤
(
Fw −Fw′)T (w −w′), for any w,w′ ∈ Rd·n. (4.30)

It turns out that a fixed-point iteration (4.23) with a firmly non-expansive

operator F is guaranteed to converge to a fixed-point [58, Cor. 5.16]. Fig. 4.5

depicts examples of a firmly non-expansive, a non-expansive and a contractive
14The objective function in (4.1) is convex and smooth for any choice of psd matrix Q

and vector q. Moreover, it is strongly convex whenever Q is invertible.

79

w(k)

w(k+1) F (3)

F (1)

F (2)

1

1

Fig. 4.5: Example of a non-expansive operator F (1), a firmly non-expansive

operator F (2) and a contractive operator F (3).

operator defined on the one-dimensional space R. Another example of a

firmly non-expansive operator is the proximal operator (4.19) of a convex

function [42,58].

80

4.9 Exercises

4.1. Online Gradient Descent. Linear regression aims at learning model

parameters of a linear model with minimum risk E
{(

y−wTx
)2} where (x, y)

is a RV. In practice we do not observe the RV (x, y) itself but a (realization

of a) sequence of i.i.d. samples
(
x(t), y(t)

)
, for t = 1, 2, Online GD is an

online learning method that updates the current model parameters w(t), after

observing
(
x(t), y(t)

)
,

w(t+1) := w(t) + 2ηtx
(t)
(
y −

(
w(t)

)T
x(t)

)
at time t = 1, 2, (4.31)

Starting with initialization w(1) := 0, we run online GD for M time steps,

resulting in the learnt model parameters w(M+1). Develop upper bounds on

the risk E
{(

y −
(
w(M)

)T
x
)2} for two choices for the learning rate schedule:

ηt := 1/(t+ 5) or ηt := 1/
√
t+ 5.

4.2. Computing the Average - I. Consider an FL network with graph G

and its Laplacian matrix L(G). Each node carries a local dataset which consists

of a single measurement y(i) ∈ R. To compute their average (1/n)
∑n

i=1 y
(i)

we try an iterative method that, starting from the initialization u(0) :=(
y(1), . . . , y(n)

)T ∈ Rn, repeats the update

u(k+1) = u(k) − ηL(G)u(k) for k = 1, 2, (4.32)

Can you find a choice for η such that (4.32) becomes a fixed-point iteration

(4.23) with a contractive operator F . Given such a choice of η, how is the

limit limk→∞ u(k+1) related to the average (1/n)
∑n

i=1 y
(i)?

4.3. Computing the Average - II. Consider the FL network from Problem

4.2. Try to construct an instance of GTVMin for learning scalar local model

81

parameters w(i) which coincide, for each node i = 1, . . . , n with the average

(1/n)
∑n

i′=1 y
(i′). If you find such an instance of GTVMin, solve it using GD

(see Section 4.2).

4.4. How to Quantize the Gradients? Any ML and FL application that

uses a digital computer to implement a gradient step (4.2) must quantize the

gradient ∇f(w) of the objective function f(w). The quantization process

introduces perturbations to the gradient step. Given a fixed total budget of

bits available for quantization, a key question arises: Should we allocate more

bits (reducing quantization noise) during the initial gradient steps or during

the final gradient steps in gradient-based methods?

Hint: See Section 4.5.

82

5 FL Algorithms

Chapter 3 introduced GTVMin as a flexible design principle for FL methods

that arise from different design choices for the local models and edge weights

of the FL network. The solutions of GTVMin are local model parameters that

strike a balance between the loss incurred on local datasets and the GTV. This

chapter applies the gradient-based methods from Chapter 4 to solve GTVMin.

We obtain FL algorithms by implementing these optimization methods as

message passing across the edges of the FL network. These messages contain

intermediate results of the computations carried out by FL algorithms. The

details of how this message passing is implemented physically (e.g., via short

range wireless technology) is beyond the scope of this book.

Section 5.2 studies the gradient step for the GTVMin instance obtained

for training local linear models. In particular, we show how the convergence

rate of the gradient step can be characterized by the properties of the local

datasets and their FL network.

Section (5.3) spells out the gradient step from Section 5.2 in the form

of message passing over the FL network. This results in Algorithm 5.1 as a

distributed FL method for parametric local models. Section 5.4 generalizes

Algorithm 5.1 by replacing the exact gradient of local loss functions with

some approximation. One possible approximation is to use a random subset

(a batch) of a local dataset to estimate the gradient.

Section 5.5 discusses FL algorithms that train a single (global) model in a

distributed fashion. We show how the widely-used FL algorithms federated

averaging (FedAvg) and FedProx are obtained from variations of projected

GD (see Section 4.6).

83

Section 5.7 generalizes the gradient step, which is the core computation

of FL algorithms for parametric models, to cope with non-parametric models.

The idea is to compare the predictions of hypothesis maps at nodes i, i′ on a

common test-set in order to measure their variation across the edge {i, i′}.

Most of the algorithms discussed in this chapter use a synchronous mode of

computation: All devices must complete their local model updates (consisting,

e.g., of gradient steps) before they exchange their updates simultaneously

across of the edges of the FL network. Such a synchronous operation can

be detrimental or simply infeasible for certain FL applications. Section 5.8

shows how to design FL algorithms that allow for an asynchronous operation

of devices participating in a FL system.

5.1 Learning Goals

After completing this chapter, you

• can apply gradient-based methods to GTVMin for local linear models,

• can implement a gradient step via message passing over FL networks,

• can generalize gradient-based methods by using gradient approximation,

• know how FedAvg is obtained from projected GD.

• know how FedProx is obtained from FedAvg.

• can generalize gradient-based methods to handle non-parametric models.

• can formulate asynchronous FL algorithms.

84

5.2 Gradient Descent for GTVMin

Consider a collection of n local datasets represented by the nodes V =

{1, . . . , n} of an FL network G = (V , E). Each undirected edge {i, i′} ∈ E in

FL network G has a known edge weight Ai,i′ . We want to learn local model

parameters w(i) of a personalized linear model for each node i = 1, . . . , n. To

this end, we solve the GTVMin instance

{
ŵ(i)

}n

i=1
∈argmin

{w(i)}

∑
i∈V

local loss Li(w(i))︷ ︸︸ ︷
(1/mi)

∥∥y(i)−X(i)w(i)
∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2︸ ︷︷ ︸
=:f(w)

.

(5.1)

As discussed in Chapter 3, the objective function in (5.1) - viewed as a

function of the stacked local model parameters w := stack{w(i)}ni=1 - is a

quadratic function of the form (4.1),

wT




Q(1) 0 · · · 0

0 Q(2) · · · 0
...

...

0 0 · · · Q(n)

+αL(G) ⊗ I


︸ ︷︷ ︸

:=Q

w+
((
q(1)

)T
, . . . ,

(
q(n)

)T)︸ ︷︷ ︸
:=qT

w

(5.2)

with Q(i)=(1/mi)
(
X(i)

)T
X(i) , and q(i) := (−2/mi)

(
X(i)

)T
y(i).

Therefore, the discussion and analysis of gradient-based methods from Chapter

85

4 also apply to GTVMin (5.1). In particular, we can use the gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
(5.2)
= w(k) − η

(
2Qw(k) + q

)
(5.3)

to iteratively compute an approximate solution ŵ to (5.1). This solution

consists of learnt local model parameters ŵ(i), i.e., ŵ = stack{ŵ(i)}. Section

5.3 will formulate the gradient step (5.3) directly in terms of local model

parameters, resulting in a message passing over the FL network G.

According to the convergence analysis in Chapter 4, the convergence rate

of the iterations (5.3) is determined by the eigenvalues λj(Q) of the matrix

Q in (5.2). Clearly, these eigenvalues are related to the eigenvalues λj

(
Q(i)

)
and to the eigenvalues λj

(
L(G)) of the Laplacian matrix of the FL network G.

In particular, we will use the following two summary parameters

λmax := max
i=1,...,n

λd

(
Q(i)

)
, and λ̄min := λ1

(
(1/n)

n∑
i=1

Q(i)

)
. (5.4)

We first present an upper bound U (see (4.5)) on the eigenvalues of the

matrix Q in (5.2).

Proposition 5.1. The eigenvalues of Q in (5.2) are upper-bounded as

λj(Q) ≤ λmax + αλn

(
L(G))

≤ λmax + α2d(G)max︸ ︷︷ ︸
:=U

, for j = 1, . . . , dn. (5.5)

Proof. See Section 5.10.1.

The next result offers a lower bound on the eigenvalues λj(Q).

86

Proposition 5.2. Consider the matrix Q in (5.2). If λ2

(
L(G)) > 0 (i.e.,

the FL network in (5.1) is connected) and λ̄min > 0 (i.e., the average of the

matrices Q(i) is non-singular), then the matrix Q is invertible and its smallest

eigenvalue is lower bounded as

λ1(Q) ≥ 1

1 + ρ2
min{λ2

(
L(G))αρ2, λ̄min/2}. (5.6)

Here, we used the shorthand ρ := λ̄min/(4λmax) (see (5.4)).

Proof. See Section 5.10.2.

Prop. 5.2 and Prop. 5.1 can provide some guidance for the design choices

of GTVMin. According to the convergence analysis of gradient-based methods

in Ch. 4, the eigenvalue λ1

(
Q
)

should be close to λdn

(
Q
)

to ensure fast

convergence. This suggests to favour FL networks G resulting in a small ratio

between the upper bound (5.5) and the lower bound (5.6). A small ratio

between these bounds, in turn, requires a large eigenvalue λ2

(
L(G)) and small

node degree d
(G)
max.15

The bounds in (5.5) and (5.6) also depend on the GTVMin parameter

α. While these bounds might provide some guidance for the choice of α, the

exact dependence of the convergence speed of (5.3) on α is complicated. For a

fixed value of learning rate in (5.3), using larger values for α might slow down

the convergence of (5.3) for some collection of local datasets but speed up the

convergence of (5.3) for another collection of local datasets (see Exercise 5.1).

15The are constructions of graphs with a prescribed value of d(G)max such that λ2

(
L(G)) is

maximal [60,61].

87

5.3 Message Passing Implementation

We now discuss in more detail the implementation of gradient-based methods

to solve the GTVMin instances with a differentiable objective function f(w).

One such instance is GTVMin for local linear models (see (5.1)). The core of

gradient-based methods is the gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
. (5.7)

The iterate w(k) contains local model parameters w(i,k),

w(k) =: stack
{
w(i,k)

}n

i=1
. (5.8)

Inserting (5.1) into (5.7), we obtain the gradient step

w(i,k+1) :=w(i,k) + η

[
(2/mi)

(
X(i)

)T (
y(i)−X(i)w(i,k)

)︸ ︷︷ ︸
(I)

+ 2α
∑

i′∈N (i)

Ai,i′
(
w(i′,k) −w(i,k)

)
︸ ︷︷ ︸

(II)

]
. (5.9)

The update (5.9) consists of two components, denoted (I) and (II). The

component (I) is nothing but the negative gradient −∇Li

(
w(i,k)

)
of the local

loss Li

(
w(i)

)
:= (1/mi)

∥∥y(i) −X(i)w(i)
∥∥2

2
. Component (I) drives the updated

local model parameters w(i,k+1) towards the minimum of Li (·), i.e., having

a small deviation between labels y(i,r) and the predictions
(
w(i,k+1)

)T
x(i,r).

Note that we can rewrite the component (I) in (5.9), as

(2/mi)

mi∑
r=1

x(i,r)
(
y(i,r) −

(
x(i,r)

)T
w(i,k)

)
. (5.10)

88

The purpose of component (II) in (5.9) is to force the local model pa-

rameters to be similar across an edge {i, i′} with large weight Ai,i′ . We

control the relative importance of (II) and (I) using the GTVMin parameter

α: Choosing a large value for α puts more emphasis on enforcing similar local

model parameters across the edges. Using a smaller α puts more emphasis

on learning local model parameters delivering accurate predictions (incurring

a small loss) on the local dataset.

w(1,k)

w(2,k)

w(3,k)

A1,2

A1,3

Fig. 5.1: At the beginning of iteration k, node i = 1 collects the current local

model parameters w(2,k) and w(3,k) from its neighbours. Then, it computes

the gradient step (5.9) to obtain the new local model parameters w(1,k+1).

These updated parameters are then used in the next iteration for the local

updates at the neighbours i = 2, 3.

The execution of the gradient step (5.9) requires only local information

at node i. Indeed, the update (5.9) node i depends only on its current

model parameters w(i,k), the local loss function Li (·), the neighbours’ model

parameters w(i′,k), for i′ ∈ N (i), and the corresponding edge weights Ai,i′ (see

Figure 5.1). In particular, the update (5.9) does not depend on any properties

kor edge weights) of the FL network beyond the neighbours N (i).

We obtain Algorithm 5.1 by repeating the gradient step (5.9), simulta-

neously for each node i ∈ V, until a stopping criterion is met. Algorithm

89

5.1 allows for potentially different learning rates ηk,i at different nodes i and

iterations k (see Section 4.3). It is important to note that Algorithm 5.1

Algorithm 5.1 FedGD for Local Linear Models
Input: FL network G; GTV parameter α; learning rate ηk,i

local dataset D(i) =
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
for each i; some

stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbours i′∈N (i)

4: update local model parameters via (5.9)

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

requires a synchronous (simultaneous) execution of the updates (5.9) at all

nodes i ∈ V [20, 21]. Loosely speaking, all nodes i relies on a single global

clock that maintains the current iteration counter k [62].

At the beginning of iteration k, each node i ∈ V sends its current model

parameters w(i,k) to their neighbours i′∈N (i). Then, each node i ∈ V updates

their model parameters according to (5.9), resulting in the updated model

parameters w(i,k+1). As soon as these local updates are completed, the global

clock increments the counter k 7→ k + 1 and triggers the next iteration to be

executed by all nodes.

90

i

i′

w(i,k)w(i′,k)

i

i′

compute w(i,k+1)

compute w(i′,k+1)

Ai,i′

i

i′

w(i,k+1)w(i′,k+1)

Fig. 5.2: Algorithm 5.1 alternates between message passing across the edges

of the FL network (left and right) and updates of local model parameters

(centre).

The implementation of Algorithm 5.1 in real-world computational infras-

tructures might incur deviations from the exact synchronous execution of

(5.9) [63, Sec. 10]. This deviation can be modelled as a perturbation of

the gradient step (5.7) and therefore analyzed using the concepts of Section

4.5 on perturbed GD. Section 8.3 will also discuss the effect of imperfect

computation in the context of key requirements for trustworthy FL.

We close this section by generalizing Algorithm 5.1 which is limited

FL networks using local linear models. This generalization, summarized in

Algorithm 5.2, can be used to train parametric local models H(i) with a

differentiable loss function Li

(
w(i)

)
, for i = 1, . . . , n.

91

Algorithm 5.2 FedGD for Parametric Local Models
Input: FL network G; GTV parameter α; learning rate ηk,i

local loss function Li

(
w(i)

)
for each i = 1, . . . , n; some stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbours i′∈N (i)

4: update local model parameters via

w(i,k+1) :=w(i,k) − ηk,i

[
∇Li

(
w(i,k)

)
+2α

∑
i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)]
.

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

92

5.4 FedSGD

Consider Algorithm 5.1 for training local linear models h(i)(x) = xTw(i) for

each node i = 1, . . . , n of an FL network. Note that step 4 of Algorithm 5.1

requires to compute the sum (5.10). It might be infeasible to compute this

sum exactly, e.g., when local datasets are generated by remote devices with

limited connectivity. It is then useful to approximate the sum by

(2/B)
∑
r∈B

x(i,r)
(
y(i,r) −

(
x(i,r)

)T
w(i,k)

)
︸ ︷︷ ︸

≈(5.10)

. (5.11)

The approximation (5.11) uses a subset (so-called batch)

B =
{(

x(r1), y(r1)
)
, . . . ,

(
x(rB), y(rB)

)}
of B randomly chosen data points from D(i). While (5.10) requires summing

over m data points, the approximation requires to sum over B (typically

B ≪ m) data points.

Inserting the approximation (5.11) into the gradient step (5.9) yields the

approximate gradient step

w(i,k+1) :=w(i,k) + ηk,i

[
(2/B)

∑
r∈B

x(i,r)

(
y(i,r) −

(
x(i,r)

)T
w(i,k)

)
︸ ︷︷ ︸

≈(5.10)

+ 2α
∑

i′∈N (i)

Ai,i′
(
w(i′,k) −w(i,k)

)]
. (5.12)

We obtain Algorithm 5.3 from Algorithm 5.1 by replacing the gradient

step (5.9) with the approximation (5.12).

We close this section by generalizing Algorithm 5.3 which is limited

FL networks using local linear models. This generalization, summarized in

93

Algorithm 5.3 FedSGD for Local Linear Models
Input: FL network G; GTV parameter α; learning rate ηk,i;

local datasets D(i) =
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
for each node i;

batch size B; some stopping criterion.

Output: linear model parameters ŵ(i) at each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with all neighbours i′ ∈ N (i)

4: draw fresh batch B(i) := {r1, . . . , rB}

5: update local model parameters via (5.12)

6: end for

7: increment iteration counter k :=k+1

8: end while

9: ŵ(i) := w(i,k) for all nodes i ∈ V

94

Algorithm 5.4, can be used to train parametric local models H(i) with a

differentiable loss function Li

(
w(i)

)
, for i = 1, . . . , n. Algorithm 5.4 does not

require these local loss function themselves, but only an oracle g(i)(·) for each

node i = 1, . . . , n. For a given vector w(i), the oracle at node i delivers an

approximate gradient (or estimate) g(i)(w(i)) ≈ ∇Li

(
w(i)

)
. The analysis of

Algorithm 5.4 can be facilitated by a probabilistic model which interprets the

oracle output g(i)(w(i)) as the realization of a RV. Under such a probabilistic

model, we refer to an oracle as unbiased if E
{
g(i)(w(i))

}
= ∇Li

(
w(i)

)
.

Algorithm 5.4 FedSGD for Parametric Local Models
Input: FL network G; GTV parameter α; learning rate ηk,i

gradient oracle g(i)
(
·
)

for each node i = 1, . . . , n; some stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbours i′∈N (i)

4: update local model parameters via

w(i,k+1) :=w(i,k) − ηk,i

[
g(i)

(
w(i,k)

)
+2α

∑
i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)]
.

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

95

5.5 FedAvg

Consider a FL application that requires to learn model parameters ŵ ∈ Rd

for a single (global) linear model from de-centralized collection local datasets

D(i), i = 1, . . . , n.16 How can we learn ŵ without exchanging local datasets

but only some model parameters (updates)?

One approach is to apply Algorithm 5.1 to GTVMin (5.1) with a sufficiently

large α. According to our analysis in Chapter 3 (in particular, Prop. 3.1),

for sufficiently large α, the GTVMin solutions ŵ(i) are almost identical for

all nodes i ∈ V. We can interpret the local model parameters delivered by

GTVMin as a local copy of the global model parameters.

Note that the bound in Prop. 3.1 only applies if the FL network (used

in GTVMin) is connected. One example of a connected FL network is the

star as depicted in Figure 5.3. Here, we choose one node i = 1 as a centre

node that is connected by an edge with weight A1,i to the remaining nodes

i = 2, . . . , n. The star graph is distinct in the sense of using the minimum

number of edges required to connect n nodes [64].

Instead of using GTVMin with a connected FL network and a large value

of α, we can also enforce identical local copies ŵ(i) via a constraint:

ŵ ∈ arg min
w∈S

∑
i∈V

(1/mi)
∥∥y(i) −X(i)w(i)

∥∥2

2

with S =
{
w = stack{w(i)}ni=1 : w

(i) = w(i′) for any i, i′ ∈ V
}
. (5.13)

Here, we use as constraint set the subspace S defined in (3.16). The projection

of a given collection of local model parameters w = stack{w(i)} on S is given
16This setting if a special case of horizontal FL which we discuss in Sec. 6.4.

96

D(i)

A1,i

Fig. 5.3: Star graph G(star) with a centre node i = 1 representing a server that

trains a (global) model which is shared with peripheral nodes. These peripheral

nodes represent clients generating local datasets. The training process at the

server is facilitated by receiving updates on the model parameters from the

clients.

by

PS
(
w
)
=

(
vT , . . . ,vT

)T with v := (1/n)
∑
i∈V

w(i). (5.14)

We can solve (5.13) using projected GD from Chapter 4 (see Section 4.6).

The resulting projected gradient step for solving (5.13) is

ŵ
(i)
k+1/2 :=w(i,k)+ηi,k(2/mi)

(
X(i)

)T (
y(i)−X(i)w(i,k)

)︸ ︷︷ ︸
(local gradient step)

(5.15)

w(i,k+1) := (1/n)
∑
i′∈V

ŵ
(i′)
k+1/2 (projection) . (5.16)

We can implement (5.16) conveniently in a server-client system with each

node i being a client:

• First, each node computes the update (5.15), i.e., a gradient step towards

a minimum of the local loss
∥∥y(i) −X(i)w

∥∥2

2
.

97

• Second, each node i sends the result ŵ(i)
k of its local gradient step to a

server.

• Finally, after receiving the updates ŵ(i)
k from all nodes i ∈ V , the server

computes the projection step (5.16). This projection results in the new

local model parameters w(i,k+1) that are sent back to each client i.

The averaging step (5.16) might take much longer to execute than the

local update step (5.15). Indeed, (5.16) typically requires transmission of local

model parameters from every client i ∈ V to a server or central computing

unit. Thus, after the client i ∈ V has computed the local gradient step (5.15),

it must wait until the server (i) has collected the updates ŵ(i)
k from all clients

and (ii) sent back their average w(i,k+1) to i ∈ V .

Instead of using a computationally inexpensive gradient step (5.15),17 and

then being forced to wait for receiving w(i,k+1) back from the server, a client

can make better use of its resources. For example, the device i could execute

several local gradient steps (5.15) in order to make more progress towards

the optimum,

v(0) := ŵ
(i)
k

v(r) := v(r−1)+ηi,k(2/mi)
(
X(i)

)T (
y(i)−X(i)v(r−1)

)
, for r = 1, . . . , R

ŵ
(i)
k+1/2 := v(R). (5.17)

We obtain Algorithm 5.5 by iterating the combination of (5.17) with the

projection step (5.16).
17For a large local dataset, the local gradient step (5.15) might actually be computation-

ally expensive and should be replaced by an approximation, e.g., based on the stochastic

gradient approximation (5.11).

98

Algorithm 5.5 Server-based FL for a Linear Model
The Server.

Input. Some stopping criterion, list of clients i = 1, . . . , n, number R of local

updates.

Output. Trained model parameters ŵ(global)

Initialize. k := 0; w(i) = 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: update global model parameters

ŵ(global) := (1/n)
n∑

i=1

w(i).

3: send updated global model parameters ŵ(global) to all clients i=1, . . . , n

4: receive local model parameters w(i) from all clients i=1, . . . , n

5: end while

Client i ∈ {1, . . . , n}, with local dataset X(i),y(i)

1: receive current model parameters ŵ(global) from server

2: update local model parameters by R gradient steps

v(0) := ŵ(global)

v(r) := v(r−1)+ηi,k(2/mi)
(
X(i)

)T (
y(i)−X(i)v(r−1)

)
, for r = 1, . . . , R

w(i) := v(R). (5.18)

3: send w(i) back to server

99

One of the most popular server-based FL algorithms, referred to as Fe-

dAvg and summarized in Algorithm 5.6, is obtained by two modifications of

Algorithm 5.5:

• replacing the update v(r) := v(r−1)+ηi,k(2/mi)
(
X(i)

)T (
y(i)−X(i)v(r−1)

)
in

(5.18) with v(r) := v(r−1)−ηi,kg
(
v(r)

)
using the gradient approximation

g(i)
(
v(r)

)
≈ ∇Li

(
v(r)

)
,

• using a randomly selected subset C(k) of clients during each global

iteration k.

100

Algorithm 5.6 FedAvg [14]
The Server.

Input. List of clients i = 1, . . . , n, number R of local updates

Output. Trained model parameters ŵ(global)

Initialize. k := 0; ŵ(global) := 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: randomly select a subset C(k) of clients

3: send ŵ(global) to all clients i∈C(k)

4: receive updated model parameters w(i) from clients i∈C(k)

5: update global model parameters

ŵ(global) :=
(
1/
∣∣C(k)

∣∣) ∑
i∈C(k)

w(i).

6: increase iteration counter k :=k+1

7: end while

Client i ∈ {1, . . . , n}, with local loss function Li (·)

1: receive global model parameters ŵ(global) from server

2: update local model parameters by R approximate gradient steps

v(0) := ŵ(global)

v(r) := v(r−1)−ηi,k g
(i)
(
v(r−1)

)︸ ︷︷ ︸
≈∇Li(v(r−1))

, for r = 1, . . . , R

w(i) := v(R). (5.19)

3: return w(i) back to server

101

5.6 FedProx

A challenge for the use of FedAvg Algorithm 5.6 is to find a good choice of R,

the number of local updates in (5.19). Note that, during the k-th iteration,

each client executes the same number R of approximate gradient steps. The

authors of [65] argue that using the same number of gradient steps for all

clients is detrimental in some FL applications and suggest to replace (5.19)

with the local update

w(i) := argmin
v∈Rd

[
Li (v) + (1/η)

∥∥v − ŵ(global)
∥∥2

2

]
. (5.20)

An update of the form (5.20) has already been discussed in Section 4.7.

Indeed, (5.20) is the application of the proximal operator of Li (v) (see (4.19))

to the current model parameters. We obtain Algorithm 5.7 from Algorithm

5.6 by replacing (5.19) with (5.20). It has been observed that Algorithm 5.7

performs favourably (compared to FedAvg Algorithm 5.7) for FL applications

with a high-level of heterogeneity among the computational capabilities of

devices i = 1, . . . , n and the statistical properties of their local datasets

D(i) [65].

As the notation in (5.20) indicates, the parameter η plays a role similar

to the learning rate of a gradient step (4.2). It controls the size of the

neighbourhood of w(i,k) over which (5.20) optimizes the local loss function

Li (·). Choosing a small η forces the update (5.20) to not move too far from

the current model parameters w(i,k).

The core computation (5.21) of FedProx Algorithm 5.7 can be interpreted

as form of regularization (see Sec. 2.6). Indeed, we obtain (5.21) from (2.26)

by

102

Algorithm 5.7 FedProx [65]
The Server.

Input. List of clients i = 1, . . . , n

Output. Trained model parameters ŵ(global)

Initialize. k := 0; ŵ(global) := 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: randomly select a subset C(k) of clients

3: send ŵ(global) to all clients i∈C(k)

4: receive updated model parameters w(i) from clients i∈C(k)

5: update global model parameters

ŵ(global) :=
(
1/
∣∣C(k)

∣∣) ∑
i∈C(k)

w(i).

6: increase iteration counter k :=k+1

7: end while

Client i ∈ {1, . . . , n}, with local loss function Li (·)

1: receive global model parameters ŵ(global) from server

2: update local model parameters by

w(i) := argmin
v∈Rd

[
Li (v) + (1/η)

∥∥v − ŵ(global)
∥∥2

2

]
(5.21)

3: return w(i) back to server

103

• replacing the average squared error loss with the local loss function

Li (v),

• using the regularizer

R
{
v
}
:=

∥∥v − ŵ(global)
∥∥2

2
, (5.22)

• and the regularization parameter α := 1/η.

Note that Algorithms 5.7 and 5.6 provide only an abstract description (or

mathematical model) of a practical FL system. The details of their actual

implementation, such as providing means for synchronous communication

between the server and all clients (see steps 4 and 3 in Algorithm 5.7) is

beyond the scope of this book. Instead, we refer the reader to relevant

literature on the implementation of distributed computing systems [21,66].

5.7 FedRelax

We now apply a simple block-coordinate minimization method [20] to solve

GTVMin (3.20). To this end, we rewrite (3.20) as

ŵ ∈ arg min
w∈Rd·n

∑
i∈V

f (i) (w)︸ ︷︷ ︸
:=f (GTV)(w)

with f (i) (w) := Li

(
w(i)

)
+ (α/2)

∑
i′∈N (i)

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
,

and the stacked model parameters w =
(
w(1), . . . ,w(n)

)T
. (5.23)

According to (5.23), the objective function of (3.20) decomposes into compo-

nents f (i) (w), one for each node V of the FL network. Moreover, the local

104

model parameters w(i) influence the objective function only via the compo-

nents at the nodes i ∪N (i). We exploit this structure of (5.23) to decouple

the optimization of the local model parameters
{
ŵ(i)

}
i∈V as described next.

Consider some local model parameters ŵ
(i)
k , for i = 1, . . . , n, at time k.

We then update (in parallel) each ŵ
(i)
k by minimizing f (GTV)(·) along w(i)

with the other local model parameters w(i′) := ŵ
(i′)
k held fixed for all i′ ̸= i,

ŵ
(i)
k+1 ∈ argmin

w(i)∈Rd

f (GTV)

(
ŵ

(1)
k , . . . , ŵ

(i−1)
k ,w(i), ŵ

(i+1)
k , . . .

)
(5.23)
= argmin

w(i)∈Rd

f (i)
(
ŵ

(1)
k , . . . , ŵ

(i−1)
k ,w(i), ŵ

(i+1)
k , . . .

)
(5.23)
= argmin

w(i)∈Rd

Li

(
w(i)

)
+ α

∑
i′∈N (i)

Ai,i′

∥∥∥w(i) − ŵ
(i′)
k

∥∥∥2

2
. (5.24)

The update (5.24) is an instance of the non-linear Jacobi algorithm (applied

to (5.23)) [20, Sec. 3.2.4.]. Another interpretation of (5.24) is as a variant of

block-coordinate optimization [67]. We obtain Algorithm 5.8 by repeating

the update (5.24) for a sufficient number of iterations.

A Model Agnostic Method. The applicability of Algorithm 5.8 is

limited to FL networks with parametric local models (such as linear regression

or ANNs with a common structure). Note that Algorithm 5.8 results from

the application of the non-linear Jacobi method to solve GTVMin (3.20) for

parametric local models. We can generalize Algorithm 5.8 to non-parametric

local models by applying the non-linear Jacobi algorithm to the GTVMin

variant (3.37). This results in the update

ĥ
(i)
k+1 ∈ argmin

h(i)∈H(i)

Li

(
h(i)

)
+ α

∑
i′∈N (i)

Ai,i′ D
(
h(i), ĥ

(i′)
k

)︸ ︷︷ ︸
see (3.35)

. (5.25)

We obtain Algorithm 5.9 as a model-agnostic variant of Algorithm 5.8 by

replacing the update (5.24) in its step 3 with the update (5.25).

105

Algorithm 5.8 FedRelax for Parametric Models
Input: FL network G with local loss functions Li (·), GTV parameter α

Initialize: k :=0; ŵ(i)
0 :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V in parallel do

3: compute ŵ
(i)
k+1 via (5.24)

4: share ŵ
(i)
k+1 with neighbours N (i)

5: end for

6: k :=k+1

7: end while

Algorithm 5.9 is model-agnostic in the sense of allowing the devices of

an FL network to train parametric as well as non-parametric local models.

The only restriction for the local models is that they allow for efficient

(approximate) solution of (5.25). For some choices of local models and loss

function, the update (5.25) can be implemented by basic data augmentation

(see Exercise 5.3).

106

Algorithm 5.9 Model Agnostic FedRelax
Input: FL network with G, local models H(i) , loss functions Li (·), GTV

parameter α, loss L (·, ·) used in (3.35).

Initialize: k :=0; ĥ(i)
0 :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V in parallel do

3: compute ĥ
(i)
k+1 via (5.25)

4: end for

5: k :=k+1

6: end while

107

5.8 Asynchronous FL Algorithms

The FL algorithms presented so far require a synchronization between the

devices i = 1, . . . , n of an FL network [21, Ch. 6]. Indeed, only when all

participating device have completed their local updates (e.g., a variant of a

gradient step) and shared the results with its neighbours, the algorithm can

proceed to the next iteration [68, Sec. 10], [20, Sec. 1.4].

Using synchronous algorithms for FL can be detrimental for several reasons.

Ch. 8 discusses key requirements for trustworthy FL which includes their

robustness towards the failure of devices. A synchronous algorithm is prone

to failure if even a single device stops to operate. Besides their lack of

robustness, synchronous algorithms induce challenges for heterogeneous FL

systems, consisting of devices with varying computational power. As a

result, faster devices may be forced to idle while waiting for slower devices to

complete their updates— a phenomenon commonly referred to as the straggler

effect [69].

Let us now discuss a generic FL algorithm that does not require syn-

chronization among the devices i = 1, . . . , n [20, Sec. 6]. We formulate this

algorithm for parametric local models, each having its own vector w(i) of local

model parameters. The generalization of this algorithm to non-parametric

local models will not pose a significant challenge.

This generic asynchronous algorithm consists of a sequence of update

events, indexed by k = 1, 2, During event k, some nodes i ∈ V update

their local model parameters to

w(i,k+1) := F (i)
(
w(1,ki,1), . . . ,w(n,ki,n)

)
. (5.26)

108

The nodes which execute the update (5.26) during event k constitute the

active set A(k) ⊆ V .

The update (5.26) involves some operator F (i) : Rdn → Rd that deter-

mines the resulting FL algorithm. We obtain different asynchronous FL

algorithms by using different operators F (i) in (5.26). For example, to obtain

an asynchronous variant of Algorithm 5.1 we can use the choice

F (i)
(
w(1), . . . ,w(n)

)
= w(i)−η

(
∇Li

(
w(i)

)
+

∑
i′∈N (i)

2Ai,i′
(
w(i)−w(i′)

))
. (5.27)

Note that the choice (5.27) involves the local loss functions and the weighted

edges of an FL network.

The update (5.26), at an active node i ∈ A(k), involves potentially out-

dated local model parameters w(i′,ki,i′), with ki,i′ ≤ k, for i′ = 1, . . . , n. We

can interpret the difference k − ki,i′ as a measure of the communication delay

between node i′ and node i.

Depending on the extent of the delays k − ki,i′ in the update (5.26), we

distinguish between [20]

• totally asynchronous algorithms where delays k−ki,i′ can be arbi-

trarily large and

• partially asynchronous algorithms with delays k−ki,i′ ≤B bounded

by some constant B.

For some choices of F (i) in (5.26), a partially asynchronous algorithm can

converge for any value of B. However, there also choices of F (i), for which

a partially asynchronous algorithm will only converge if B is sufficiently

small [20, Ch. 7].

109

i = 1

i = 2

k = 1 k = 2 k = 3 k = 4

(5.26)

(5.26)

(5.26)

(5.26)

(5.26) (5.26)

(5.26)

Fig. 5.4: Illustration of an asynchronous FL algorithm that results in a

sequence of events, indexed by k = 1, 2, During event k, each active node

i ∈ A(i) ⊆ V of an FL network update their local model parameters w(i) by

computing (5.26). We indicate the active nodes by filled circles.

110

5.9 Exercises

5.1. The convergence speed of Gradient-based methods. Study

the convergence speed of (5.3) for two different collections of local datasets

assigned to the nodes of the FL network G with nodes V = {1, 2} and (unit

weight) edges E = {{1, 2}}. The first collection of local datasets results

in the local loss functions L1 (w) := (w + 5)2 and L2 (w) := 1000(w + 5)2.

The second collection of local datasets results in the local loss functions

L1 (w) := 1000(w+ 5)2 and L2 (w) := 1000(w− 5)2. Use a fixed learning rate

η := 0.5 · 10−3 for the iteration (5.3).

5.2. Convergence Speed for Homogeneous Data. Study the convergence

speed of (5.3) when applied to GTVMin (5.1) with the following FL network

G: Each node i = 1, . . . , n carries a simple local model with single parameter

w(i) and the local loss function Li (w) :=
(
y(i) − x(i)w(i)

)2. The local dataset

consists of a constant x(i) := 1 and some y(i) ∈ R. The edges E are obtained

by connecting each node i with 4 randomly chosen other nodes. We learn

model parameters ŵ(i) by repeating (5.3) , starting with the initializations

w(i,0) := y(i). Study the dependence of the convergence speed of (5.3) (towards

a solution of (5.1)) on the value of α in (5.1).

5.3. Implementing FedRelax via Data Augmentation. Consider the

application of Algorithm 5.9 to an FL network whose nodes carry regression

tasks. In particular, each device i = 1, . . . , n learns a hypothesis h(i) to predict

the numeric label y ∈ R of a data point with feature vector x. The usefulness

of a hypothesis is measured by the average squared error loss incurred on a

111

labelled local dataset

D(i) :=

{(
x(1), y(1)

)
, . . . ,

(
x(mi),x(mi)

)}
.

To compare the learnt hypothesis maps at the nodes of an edge {i, i′}, we use

(3.35) with the squared error loss. Show that the update (5.25) is equivalent to

plain ERM (2.1) using a dataset D that is obtained by a specific augmentation

of D(i).

112

5.10 Proofs

5.10.1 Proof of Proposition 5.1

The first inequality in (5.5) follows from well-known results on the eigenvalues

of a sum of symmetric matrices (see, e.g., [3, Thm 8.1.5]). In particular,

λmax

(
Q
)
≤ max

{
max

i=1,...,n
λd

(
Q(i)

)
︸ ︷︷ ︸

(5.4)
= λmax

, λmax

(
αL(G) ⊗ I

)}
. (5.28)

The second inequality in (5.5) uses the following upper bound on the maximum

eigenvalue λn

(
L(G)) of the Laplacian matrix:

λn

(
L(G)) (a)

= max
v∈S(n−1)

vTL(G)v

(3.8)
= max

v∈S(n−1)

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2
(b)

≤ max
v∈S(n−1)

∑
{i,i′}∈E

Ai,i′2
(
v2i + v2i′

)
(c)
= max

v∈S(n−1)

∑
i∈V

2v2i
∑

i′∈N (i)

Ai,i′

(3.6)
≤ max

v∈S(n−1)

∑
i∈V

2v2i d
(G)
max

= 2d(G)max. (5.29)

Here, step (a) uses the CFW of eigenvalues [3, Thm. 8.1.2.] and step (b) uses

the inequality (u+v)2 ≤ 2(u2+v2) for any u, v ∈ R. For step (c) we use the

identity
∑

i∈V
∑

i′∈N (i) f(i, i′) =
∑

{i,i′}
(
f(i, i′) + f(i′, i)

)
(see Figure 5.29).

The bound (5.29) is essentially tight.18

18Consider an FL network being a chain (or path).

113

0
1

2

3

A1,22
(
w2

1
+ w2

2

)

A1,32
(
w2
1 + w2

3

)

Fig. 5.5: Illustration of step (c) in (5.29).

5.10.2 Proof of Proposition 5.2

Similar to the upper bound (5.29) we also start with the CFW for the

eigenvalues of Q in (5.2). In particular,

λ1 = min
∥w∥22=1

wTQw. (5.30)

We next analyze the RHS of (5.30) by partitioning the constraint set {w :

∥w∥22 = 1} of (5.30) into two complementary regimes for the optimization

variable w = stack{w(i)}. To define these two regimes, we use the orthogonal

decomposition

w = PSw︸ ︷︷ ︸
=:w

+PS⊥w︸ ︷︷ ︸
=:w̃

for subspace S in (3.16). (5.31)

Explicit expressions for the orthogonal components w, w̃ are given by (3.17)

and (3.18). In particular, the component w satisfies

w =
((
c
)T

, . . . ,
(
c
)T)T with c := avg

{
w(i)

}n

i=1
. (5.32)

Note that

∥w∥22 = ∥w∥22 + ∥w̃∥22 . (5.33)

114

Regime I. This regime is obtained for ∥w̃∥2 ≥ ρ ∥w∥2. Since ∥w∥22 = 1,

and due to (5.33), we have

∥w̃∥22 ≥ ρ2/(1 + ρ2). (5.34)

This implies, in turn, via (3.15) that

wTQw
(5.2)
≥ αwT

(
L(G) ⊗ I

)
w

(3.8),(3.15)
≥ αλ2

(
L(G)) ∥w̃∥22

(5.34)
≥ αλ2

(
L(G))ρ2/(1 + ρ2). (5.35)

Regime II. This regime is obtained for ∥w̃∥2 < ρ ∥w∥2. Here we have

∥w∥22 > (1/ρ2)
(
1− ∥w∥22

)
and, in turn,

n ∥c∥22 = ∥w∥22 > 1/(1 + ρ2). (5.36)

We next develop the RHS of (5.30) according to

wTQw
(5.2)
≥

n∑
i=1

(
w(i)

)T
Q(i)w(i)

(5.31)
≥

n∑
i=1

(
c+ w̃(i)

)T
Q(i)

(
c+ w̃(i)

)
(5.36)
≥ ∥w∥22 λ1

(
(1/n)

n∑
i=1

Q(i)

)
︸ ︷︷ ︸

λ̄min

+
n∑

i=1

[
2
(
w̃(i)

)T
Q(i)c+

(
w̃(i)

)T
Q(i)w̃(i)︸ ︷︷ ︸

≥0

]

≥ ∥w∥22 λ̄min +
n∑

i=1

2
(
w̃(i)

)T
Q(i)c. (5.37)

To develop (5.37) further, we note that∣∣∣∣ n∑
i=1

2
(
w̃(i)

)T
Q(i)c

∣∣∣∣ (a)

≤ 2λmax ∥w̃∥2 ∥w∥2

∥w̃∥2<ρ∥w∥2
≤ 2λmaxρ ∥w∥22 . (5.38)

115

Here, step (a) follows from max∥y∥2=1,∥x∥2=1 y
TQx = λmax. Inserting (5.38)

into (5.37) for ρ = λ̄min/(4λmax),

wTQw ≥ ∥w∥22 λ̄min/2
(5.36)
≥ (1/(1 + ρ2))λ̄min/2 (5.39)

For each w with ∥w∥22 = 1, either (5.35) or (5.39) must hold.

116

6 Main Flavours of FL

Chapter 3 discussed GTVMin as a main design principle for FL algorithms.

GTVMin learns local model parameters that optimally balance the individual

local loss with their variation across the edges of an FL network. Chapter

5 discussed how to obtain practical FL algorithms. These algorithms solve

GTVMin using distributed optimization methods, such as those from Chapter

4.

This chapter discusses important special cases of GTVMin, known as

“main flavours”. These flavours arise for specific construction of local datasets,

choices of local models, measures for their variation and, last but not least, the

weighted edges in the FL network. We next briefly summarize the resulting

main flavours of FL discussed in the following sections.

Section 6.2 discusses single-model FL that learns model parameters of

a single (global) model from local datasets. This single-model flavour can

be obtained from GTVMin using a connected FL network with large edge

weights or, equivalently, a sufficient large value for the GTVMin parameter.

Section 6.3 discusses how clustered FL is obtained from GTVMin over

FL networks with a clustering structure. CFL exploits the presence of

clusters (subsets of local datasets) which can be approximated using an i.i.d.

assumption. GTVMin captures these clusters if they are well-connected by

many (large weight) edges in the FL network.

Section 6.4 discusses horizontal FL which is obtained from GTVMin over

an FL network whose nodes carry different subsets of a single underlying global

dataset. Loosely speaking, horizontal FL involves local datasets characterized

by the same set of features but obtained from different data points from an

117

underlying dataset.

Section 6.5 discusses vertical FL which is obtained from GTVMin over an

FL network whose nodes the same data points but using different features.

As an example, consider the local datasets at different public institutions (tax

authority, social insurance institute, supermarkets) which contain different

informations about the same underlying population (anybody who has a

Finnish social security number).

Section 6.6 shows how personalized FL can be obtained from GTVMin by

using specific measures for the GTV of local model parameters. For example,

using deep neural networks as local models, we might only use the model

parameters corresponding to the first few input layers to define the GTV.

6.1 Learning Goals

After this chapter, you will know particular design choices for GTVMin

corresponding to some main flavours of FL:

• single-model FL

• CFL (generalization of clustering methods)

• horizontal FL (relation to semi-supervised learning)

• personalized FL/multi-task learning

• vertical FL.

118

6.2 Single-Model FL

Some FL use cases require to train a single (global) model H from a decen-

tralized collection of local datasets D(i), i = 1, . . . , n [15, 70]. In what follows

we assume that the model H is parametrized by a vector w ∈ Rd. Figure

6.1 depicts a server-client architecture for an iterative FL algorithm that

generates a sequence of (global) model parameters w(k), k = 1, After

computing the new model parameters w(k+1), the server broadcasts it to the

clients i. During the next iteration, each client i uses the current global model

parameters w(k) to compute a local update w(i,k) based on its local dataset

D(i). The precise implementation of this local update step depends on the

choice of the global model H (trained by the server). One example of such a

local update has been discussed in Chapter 5 (see (5.20)).

Chapter 5 already hinted at an alternative to the server-based system in

Figure 6.1. Indeed, we might learn local model parameters w(i) for each client

i using a distributed optimization of GTVMin. We can force the resulting

model parameters w(i) to be (approximately) identical by using a connected

FL network and a sufficiently large GTVMin parameter α.

To minimize the computational complexity of the resulting single-model

FL system, we prefer FL networks with small number of edges such as the

star graph in Figure 5.3 [64]. However, to increase the robustness against

node/link failures we might prefer using an FL network that has more edges.

This redundancy helps to ensure that the FL network is connected even after

removing some of its edges.

Much like the server-based system from Figure 6.1, GTVMin-based meth-

ods using a star graph offers a single point of failure (the server in Figure 6.1

119

server
global model parameters w(k) at time k

1

D(1)

2

D(2)

3

compute w(3,k) based on w(k)

and local dataset D(3)

w
(1,

k)
w

(2
,k
) w (3,k)

w
(k+

1)

w
(k
+
1
)

w (k+1)

Fig. 6.1: The operation of a server-based (or centralized) FL system during

iteration k. First, the server broadcasts the current global model parameters

w(k) to each client i ∈ V. Each client i then computes the update w(i,k) by

combining the previous model parameters w(k) (received from the server) and

its local dataset D(i). The updates w(i,k) are then sent back to the server who

aggregates them to obtain the updated global model parameters w(k+1).

120

or the centre node in Figure 5.3). Chapter 8 will discuss the robustness of

GTVMin-based FL systems in slightly more detail (see Section 8.3).

6.3 Clustered FL

Single-model FL systems require the local datasets to be well approximated

as i.i.d. realizations from a common underlying probability distribution.

However, requiring homogeneous local datasets, generated from the same

probability distribution, might be overly restrictive. Indeed, the local datasets

might be heterogeneous and need to be modelled using different probability

distribution [18,37].

CFL relaxes the requirement of a common probability distribution under-

lying all local datasets. Instead, we approximate subsets of local datasets as

i.i.d. realizations from a common probability distribution. In other words,

CFL assumes that local datasets form clusters. Each cluster C ⊆ V has a

cluster-specific probability distribution p(C).

The idea of CFL is to pool the local datasets D(i) in the same cluster C

to obtain a training set to learn cluster-specific ŵ(C). Each node i ∈ C then

uses these learnt model parameters ŵ(C). A main challenge in CFL is that

the cluster assignments of the local datasets are unknown in general.

To determine a cluster C, we could apply basic clustering methods, such

as k-means or Gaussian mixture model (GMM) to vector representations for

local datasets [6, Ch. 5]. We can obtain a vector representation for local

dataset D(i) via the learnt model parameters ŵ of some parametric ML model

that is trained on D(i).

We can also implement CFL via GTVMin with a suitably chosen FL

121

network. In particular, the FL network should contain many edges (with

large weight) between nodes in the same cluster and few edges (with small

weight) between nodes in different clusters. To fix ideas, consider the FL

network in Figure 6.3, which contains a cluster C = {1, 2, 3}.

C
w(1)

w(2)

w(3)

w(4)

w(5)

∂C

Fig. 6.2: The solutions of GTVMin (3.20) are local model parameters that

are approximately identical for all nodes in a tight-knit cluster C.

Chapter 3 discussed how the eigenvalues of the Laplacian matrix can

be used to measure the connectivity of G. Similarly, we can measure the

connectivity of a cluster C via the eigenvalue λ2

(
L(C)) of the Laplacian matrix

L(C) of the induced sub-graph G(C):19 The larger λ2

(
L(C)), the better the

connectivity among the nodes in C. While λ2

(
L(C)) describes the intrinsic

connectivity of a cluster C, we also need to characterize its connectivity with

the other nodes in the FL network. To this end, we use the cluster boundary

|∂C| :=
∑

{i,i′}∈∂C

Ai,i′ with ∂C :=
{
{i, i′} ∈ E : i ∈ C, i′ /∈ C

}
. (6.1)

Note that for a single-node cluster C = {i}, the cluster boundary coincides

with the node degree, |∂C| = d(i) (see (3.5)).
19The graph G(C) consists of the nodes in C and the edges {i, i′} ∈ E for i, i′ ∈ C.

122

Intuitively, GTVMin tends to deliver (approximately) identical model

parameters w(i) for nodes i ∈ C if λ2

(
L(C)) is large and the cluster boundary

|∂C| is small. The following result makes this intuition more precise for the

special case of GTVMin (5.1) for local linear models.

Proposition 6.1. Consider an FL network G which contains a cluster C of

local datasets with labels y(i) and feature matrix X(i) related via

y(i)=X(i)w(C)+ε(i), for all i ∈ C. (6.2)

We learn local model parameters ŵ(i) via solving GTVMin (5.1). If the cluster

is connected, the error component

w̃(i) := ŵ(i) − (1/|C|)
∑
i∈C

ŵ(i) (6.3)

is upper bounded as∑
i∈C

∥∥w̃(i)
∥∥2

2
≤ 1

αλ2

(
L(C)

)[∑
i∈C

1

mi

∥∥ε(i)∥∥2

2
+ α |∂C| 2

(∥∥w(C)∥∥2

2
+R2

)]
. (6.4)

Here, we used R := maxi′∈V\C
∥∥ŵ(i′)

∥∥
2
.

Proof. See Sec. 6.9.1.

The bound (6.4) depends on the cluster C (via the eigenvalue λ2

(
L(C))

and the boundary |∂C|) and the GTVMin parameter α. Using a larger C

might result in a decreased eigenvalue λ2

(
L(C)).20 According to (6.4), we

20Consider an FL network (with uniform edge weights) that contains a fully connected

cluster C which is connected via a single edge with another node i′ ∈ V \ C (see Figure

6.3). Compare the corresponding eigenvalues λ2

(
L(C)) and λ2

(
L(C′)

)
of C and the enlarged

cluster C′ := C ∪ {i′}.

123

should then increase α to maintain a small deviation w̃(i) of the learnt local

model parameters from their cluster-wise average. Thus, increasing α in (3.20)

enforces its solutions to be approximately constant over increasingly larger

subsets (clusters) of nodes (see Figure 6.3).

For a connected FL network G, using a sufficiently large α for GTVMin

results in learnt model parameters that are approximately identical for all

nodes V in G. The resulting approximation error is quantified by Prop. 6.1

for the extreme case where the entire FL network forms a single cluster, i.e.,

C = V . Trivially, the cluster boundary is then equal to 0 and the bound (6.4)

specializes to (3.33).

We hasten to add that the bound (6.4) only applies for local datasets that

conform with the probabilistic model (6.2). In particular, it assumes that all

cluster nodes i ∈ C have identical model parameters w(C). Trivially, this is

no restriction if we allow for arbitrary error terms ε(i) in the probabilistic

model (6.4). However, as soon as we place additional assumptions on these

error terms (such as being realizations of i.i.d. Gaussian RVs) we should

verify their validity using principled statistical tests [32,71]. Finally, we might

replace
∥∥w(C)

∥∥2

2
in (6.4) with an upper bound for this quantity.

124

C

small α

C

moderate α

C

large α

Fig. 6.3: The solutions of GTVMin (3.20) become increasingly clustered for

increasing α.

6.4 Horizontal FL

Horizontal FL uses local datasets D(i), for i ∈ V, that contain data points

characterized by the same features [72]. As illustrated in Figure 6.4, we can

think of each local dataset D(i) as being a subset (or batch) of an underlying

global dataset

D(global) :=
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
.

In particular, local dataset D(i) is constituted by the data points of D(global)

with indices in {r1, . . . , rmi
},

D(i) :=
{(

x(r1), y(r1)
)
, . . . ,

(
x(rmi), y(rmi)

)}
.

We can interpret horizontal FL as a generalization of semi-supervised

learning (SSL) [73]: For some local datasets i ∈ U we might not have access

to the label values of data points. Still, we can use the features of the data

points to construct (the weighted edges of) the FL network. To implement

SSL, we can solve GTVMin using a trivial loss function Li

(
w(i)

)
= 0 for

each unlabelled node i ∈ U . Solving GTVMin delivers model parameters w(i)

125

x
(1)
1 x

(1)
2 · · · x

(1)
d y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
d y(2)

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
d y(m)




D(global)

D(1)

D(i)

Fig. 6.4: Horizontal FL uses the same features to characterize data points in

different local datasets. Different local datasets are constituted by different

subsets of an underlying global dataset.

for all nodes i (including the unlabelled ones U). GTVMin-based methods

combine the information in the labelled local datasets D(i), for i ∈ V \ U and

their connections (via the edges in G) with nodes in U (see Figure 6.4).

126

i ∈ U

Fig. 6.5: Horizontal FL includes SSL as a special case: There is a subset of

nodes U , for which the local datasets do not contain labels. We can take this

into account by using the trivial loss function Li (·) = 0 for each node i ∈ U .

However, we can still use the features in D(i) to construct an FL network G.

6.5 Vertical FL

Vertical FL uses local datasets that are constituted by the same (identical!)

data points. However, each local dataset uses a different choice of features to

characterize these data points [74]. Formally, vertical FL applications revolve

around an underlying global dataset

D(global) :=
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
.

Each data point in the global dataset is characterized by d′ features x(r) =(
x
(r)
1 , . . . , x

(r)
d′

)T . The global dataset can only be accessed indirectly via local

datasets that use different subsets of the feature vectors x(r) (see Figure 6.6).

Formally, the local dataset D(i) contains the pairs
(
x(i,r), y(i,r)

)
, for r =

1, . . . ,m. The labels y(i,r) are identical to the labels in the global dataset,

y(i,r) = y(r). The feature vectors x(i,r) are obtained by a subset F (i) :=

127

{j1, . . . , jd} of the original d′ features in x(r),

x(i,r) =
(
x
(r)
j1
, . . . , x

(r)
jd

)T
.

x
(1)
1 x

(1)
2 · · · x

(1)
d y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
d y(2)

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
d y(m)




D(global)

D(1)
D(i)

Fig. 6.6: Vertical FL uses local datasets that are derived from the same data

points. The local datasets differ in the choice of features used to characterize

the common data points.

6.6 Personalized Federated Learning

Consider GTVMin (3.20) for learning local model parameters ŵ(i) for each

local dataset D(i). If the value of α in (3.20) is not too large, the local model

parameters ŵ(i) can be different for each i ∈ V. However, the local model

parameters are still coupled via the GTV term in (3.20).

For some FL use-cases we should use different coupling strengths for

different components of the local model parameters. For example, if local

models are deep ANNs we might enforce the parameters of input layers to be

128

identical while the parameters of the deeper layers might be different for each

local dataset.

The partial parameter sharing for local models can be implemented in

many different ways [75, Sec. 4.3.]. One way is to use a choice of the GTV

penalty that is different from ϕ =
∥∥w(i) −w(i′)

∥∥2

2
. In particular, we could

construct the penalty function as a combination of two terms,

ϕ
(
w(i) −w(i′)

)
:= α(1)ϕ(1)

(
w(i) −w(i′)

)
+ α(2)ϕ(2)

(
w(i) −w(i′)

)
. (6.5)

Each component ϕ(1), ϕ(2) measures different components of the variation

w(i) −w(i′) of local model parameters at connected nodes {i, i′} ∈ E .

Moreover, we might use different regularization strengths α(1) and α(2)

for different penalty components in (6.5) to enforce different subsets of the

model parameters to be clustered with different granularity (cluster size). For

local models being deep ANNs, we might want to enforce the low-level layers

(closer to the input) to have same model parameters (weights and bias terms),

while deeper (closer to the output) layers can have different model parameters.

Figure 6.7 illustrates this setting for local models constituted by ANNs with

a single hidden layer. Yet another technique for partial sharing of model

parameters is to train a hyper-model which, in turn, is used to initialize the

training of local models [76].

129

x

h
(1)
1

h
(1)
2

h(1)(x)

u(1) v(1)

x

h
(2)
1

h
(2)
2

h(2)(x)

x

h
(3)
1

h
(3)
2

h(3)(x)

Fig. 6.7: Personalized FL with local models being ANNs with one hidden

layer. The ANN h(i) is parametrized by the vector w(i) =

((
u(i)

)T
,
(
v(i)

)T)T

,

with parameters u(i) of hidden layer and the parameters v(i) of the output

layer. We couple the training of u(i) via GTVMin using the discrepancy

measure ϕ =
∥∥u(i) − u(i′)

∥∥2

2
.

130

6.7 Few-Shot Learning

Some maximum likelihood applications involve data points belonging to a

large number of different categories. A prime example is the detection of

a specific object in a given image [77, 78]. Here, the object category is the

label y ∈ Y of a data point (image). The label space Y is constituted by the

possible object categories and, in turn, can be quite large. Moreover, for some

categories we might have only few example images in the training set.

Few-shot learning leverages similarities between object categories in order

to accurately detect objects for which only very few (or even no) training

examples are available. One principled approach to few shot learning is

via GTVMin. To this end, we define an FL network G whose nodes i ∈ i

represent the elements of the label space Y. The edge weights of G encode

known similarities between different object categories.

Each node i of G represents a specific object category. Solving GTVMin

delivers, for each node i, model parameters ŵ(i) for an object detector which

is tailored for the i-th object category.

6.8 Exercises

6.1. Horizontal FL of a Linear Model [68, Sec. 8.2] Linear regression

learns the model parameters of a linear model by minimizing the average

squared error loss on a given dataset D. Consider an application where

the data points are gathered by different devices. We can model such an

application using an FL network with nodes i carrying different subsets

of D. Construct an instance of GTVMin such that its solutions coincide

131

(approximately) with the solution of plain vanilla linear regression.

6.2. Vertical FL of a Linear Model [68, Sec. 8.3] Linear regression

learns the model parameters of a linear model by minimizing the average

squared error loss on a given dataset D. Consider an application where the

features of a data point are measured by different devices. We can model such

an application using an FL network with nodes i carrying different features

of the same dataset D. In particular, node i carries the features xj with

j ∈ F (i). Construct an instance of GTVMin such that its solutions coincide

(approximately) with the solution of plain vanilla linear regression.

132

6.9 Proofs

6.9.1 Proof of Proposition 6.1

To verify (6.4), we follow a similar argument as used in the proof (see Section

3.8.1) of Prop. 3.1.

First we decompose the objective function f
(
w
)

in (5.1) as follows:

f(w) =∑
i∈C

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

[∑
i,i′∈C

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
+

∑
{i,i′}∈∂C

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2

]
︸ ︷︷ ︸

=:f ′
(
w
)

+ f ′′(w)
. (6.6)

Note that only the first component f ′ depends on the local model parameters

w(i) of cluster nodes i ∈ C. Let us introduce the shorthand f ′(w(i)
)

for the

function obtained from f ′(w) for varying w(i), i ∈ C, but fixing w(i′) := ŵ(i′)

for i′ /∈ C.

We obtain the bound (6.4) via a proof by contradiction: If (6.4) does

not hold, the local model parameters w(i) := w(C), for i ∈ C, result in a

smaller value f ′(w(i)
)
< f ′(ŵ(i)

)
than the choice ŵ(i), for i ∈ C. This would

contradict the fact that ŵ(i) is a solution to (5.1).

133

First, note that

f ′(w(i)
)
=

∑
i∈C

(1/mi)
∥∥y(i)−X(i)w(C)∥∥2

2

+α

[∑
{i,i′}∈E
i,i′∈C

Ai,i′
∥∥w(C)−w(C)∥∥2

2
+

∑
{i,i′}∈E
i∈C,i′ /∈C

Ai,i′

∥∥∥w(C)−ŵ(i′)
∥∥∥2

2

]
(6.2)
=

∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α

∑
{i,i′}∈E
i∈C,i′ /∈C

Ai,i′

∥∥∥w(C)−ŵ(i′)
∥∥∥2

2

(a)

≤
∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α

∑
{i,i′}∈E
i∈C,i′ /∈C

Ai,i′2

(∥∥w(C)∥∥2

2
+
∥∥∥ŵ(i′)

∥∥∥2

2

)

≤
∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α |∂C| 2

(∥∥w(C)∥∥2

2
+R2

)
. (6.7)

Step (a) uses the inequality ∥u+v∥22 ≤ 2
(
∥u∥22+∥v∥22

)
which is valid for any

two vectors u,v ∈ Rd.

On the other hand,

f ′(ŵ(i)
)
≥ α

∑
i,i′∈C

Ai,i′

∥∥∥ŵ(i)−ŵ(i′)
∥∥∥2

2︸ ︷︷ ︸
(6.3)
= ∥w̃(i)−w̃(i′)∥2

2

(3.15)
≥ αλ2

(
L(C))∑

i∈C

∥∥w̃(i)
∥∥2

2
. (6.8)

If the bound (6.4) would not hold, then by (6.8) and (6.7) we would obtain

f ′(ŵ(i)
)
> f ′(w(i)

)
, which contradicts the fact that ŵ(i) solves (5.1).

134

7 Graph Learning

Chapter 3 discussed GTVMin as a main design principle for FL algorithms. In

particular, Chapter 5 discusses FL algorithms that arise from the application

of optimization methods, such as the gradient-based methods from Chapter

4, to solve GTVMin.

The computational and statistical properties of these algorithms depend

crucially on the properties of the underlying FL network. For example, the

amount of computation and communication required by FL systems typically

grows with the number of edges in the FL network. Moreover, the connectivity

of the FL network steers the pooling of local datasets into clusters that share

common model parameters.

In some applications, domain expertise can guide the choice of the FL

network. However, it might also be useful to learn the FL network in a more

data-driven fashion. This chapter discusses methods that learn an FL network

solely from a given collection of local datasets and corresponding local loss

functions.

The outline of this chapter is as follows: Section 7.2 discusses how the

computational and statistical properties of Algorithm 5.1 from Chapter 5 can

guide the construction of the FL network. Section 7.3 presents some ideas

for how to measure the discrepancy (lack of similarity) between two local

datasets.

The discrepancy measure is an important design choice of the graph

learning methods discussed in Section 7.4. We formulate these methods as the

optimization of edge weights given the discrepancy measure for any pair of

local datasets. The formulation as an optimization problem allows to include

135

connectivity constraints such as a minimum value for each node degree.

7.1 Learning Goals

After completing this chapter, you will

• have intuition for how the computational and statistical properties of

GTVMin-based methods depend on the structure of the FL network,

• know some measures for (dis-)similarity (or discrepancy) between local

datasets,

• be able to learn a graph from given pairwise similarities and structural

constraints, such a prescribed (maximum) node degree.

7.2 Edges as Design Choice

Consider the GTVMin instance (3.22) for learning the model parameters

of a local linear model for each local dataset D(i). To solve (3.22), we use

Algorithm 5.1 as a message passing implementation of the basic gradient

step (5.3). Note that GTVMin (3.22) is defined for a given FL network G.

Therefore, the choice of G is critical for the statistical and computational

properties of Algorithm 5.1.

Statistical Properties. The statistical properties of Algorithm 5.1 can

be assessed via a probabilistic model for the local datasets. One important

example of a probabilistic model is the clustering assumption (6.2) of CFL

(see Section 3.4.1). For CFL, we would like to learn similar model parameters

for nodes in the same cluster.

136

According to Prop. 6.1, the GTVMin solutions will be approximately

constant over C, if λ2

(
L(C)) is large and the cluster boundary |∂C| is small.

Here, λ2

(
L(C)) denotes the smallest non-zero eigenvalue of the Laplacian

matrix associated with the induced sub-graph G(C).

Roughly speaking, λ2

(
L(C)) will be larger if there are more edges connecting

the nodes in C. This informal statement can be made precise using a celebrated

result from spectral graph theory, known as Cheeger’s inequality [39, Ch. 21].

Alternatively, we can analyse λ2

(
L(C)) by interpreting (or approximating)

the induced sub-graph G(C) as a typical realization of an Erdős-Rényi (ER)

random graph.21

The ER model for G(C) postulates that two nodes i, i′ ∈ C are connected

by an edge with probability pe. The presence of an edge between a given pair

of nodes does not depend on the presence of an edge between any other pair

of nodes (“edges are i.i.d.”). The absence of dependencies between different

edges facilities the analysis of the ER model [79].

Within the ER model for a graph G, also the node degrees d(i) as well

as the eigenvalue λ2

(
L(C)) become realizations of RVs. The expected node

degree is given as E
{
d(i)

}
= pe(|C| − 1). With high probability, a realization

of an ER graph has maximum node degree

d(G)max ≈ E
{
d(i)

}
= pe(|C| − 1). (7.1)

Thus, increasing the ER parameter pe results in a larger node degree (i.e., a

higher connectivity) of G(C).
21This approximation is particularly useful if the FL network G itself is (close to) a

typical realization of an ER graph.

137

We can approximate λ2

(
L(C)) with the second smallest eigenvalue λ2

(
L
)

of the expected Laplacian matrix L := E
{
L(C)} = |C|peI− pe11

T . A simple

calculation reveals that λ2

(
L

)
= |C|pe. Thus, we have the approximation

λ2

(
L(C)) ≈ λ2

(
L
)
= |C|pe

(7.1)
≈ d(G)max. (7.2)

The precise quantification of the approximation error in (7.2) is beyond the

scope of this book. We refer the reader to relevant literature on the theory of

random graphs [79,80].

Computational Properties. The computational complexity of Algo-

rithm 5.1 depends on the amount of computation required by a single iteration

of its steps (3) - (4). Clearly, this “per-iteration” complexity of Algorithm

5.1 increases with increasing node degrees d(i). Indeed, the step (3) requires

to communicate local model parameters across each edge of the FL network.

This can be implemented by different physical channels such as a short-range

wireless link or an optical fibre cable [81, 82].

To summarize, using an FL network with smaller d(i) translates into a

smaller amount of computation and communication needed during a single

iteration of Algorithm 5.1. Trivially, the per-iteration complexity of Algorithm

5.1 is minimized by d(i) = 0, i.e., an empty FL network without any edges

(E = ∅). However, the overall computational complexity of Algorithm 5.1

also depends on the number of iterations required to achieve an approximate

solution to GTVMin (3.22).

According to (4.6), the convergence speed of the gradient steps (5.9) used

in Algorithm 5.1 depends on the condition number λnd(Q)︸ ︷︷ ︸
=λmax(Q)

/λ1(Q) of the

matrix Q in (5.2). Algorithm 5.1 tends to require fewer iterations when the

138

condition number of Q is small (closer to 1). This condition number, which

is the ratio between the largest and smallest eigenvalues, of Q tends to be

smaller for a smaller ratio between the maximum node degree d
(G)
max and the

eigenvalue λ2

(
L(G)) (see (5.5) and (5.6)). Thus, for a given maximum node

degree d
(G)
max, we should place the edges in an FL network such that λ2

(
L(G))

is large and, in turn, Algorithm 5.1 converges faster.

Spectral graph theory also provides upper bounds on λ2

(
L(G)) in terms of

the node degrees [39,40,83]. These upper bounds can be used as a baseline

for practical constructions of the FL network: If some construction results in

a value λ2

(
L(G)) close to the upper bound, there is little benefit in trying to

further improve the construction (in the sense of achieving higher λ2

(
L(G)).

The next result provides one example for such an upper bound.

Proposition 7.1. Consider an FL network G with n > 1 nodes and associated

Laplacian matrix L(G). Then, λ2

(
L(G)) cannot exceed the node degree d(i) of

any node by more than a factor n/(n− 1). In other words,

λ2

(
L(G)) ≤ n

n− 1
d(i), for every i = 1, . . . , n. (7.3)

Proof. The bound (7.3) follows from (3.12) and evaluating the quadratic form

wTL(G)w for the specific vector

w̃ =

√
n

n− 1

(
− (1/n), . . . , 1− (1/n)︸ ︷︷ ︸

w̃(i)

, . . . ,−(1/n)

)T

.

Note that the vector w̃ is tailored to a specific node i ∈ V: its only positive

entry is w̃(i) = 1 − (1/n). A basic calculation reveals that ∥w̃∥ = 1 and

w̃T1 = 0, i.e., it is feasible for the optimization in (3.12).

139

Alternative (and potentially tighter) upper bounds on λ2

(
L(G)) can be

found in the graph theory literature [38,39,79,84].

To summarize, the per-iteration complexity of FL algorithms increases

with increasing node degrees d(i) (and, in turn, total number of edges) of

the FL network G. On the other hand, the number of iterations required by

Algorithm 5.1 will typically decrease with increasing λ2

(
L(G)). By (7.3), the

eigenvalue λ2

(
L(G)) can only be large if the node degrees d(i) (and, in turn,

the total number of edges) are sufficiently large.22 Fig. 7.1 illustrates the

typical dependency of the per-iteration complexity and number of iterations

required by FL algorithms.

nr. of iterations

per-iteration complexity

nr. of edges

Fig. 7.1: The per-iteration complexity and number of iterations required by

Algorithm 5.1 depends on the number of edges in the underlying FL network

in different manners.

22Some recent work studies graph constructions that maximize λ2

(
L(G)) for a given

(prescribed) maximum node degree d
(G)
max = maxi∈V d(i) [60, 85].

140

7.3 Measuring (Dis-)Similarity Between Datasets

The main idea behind GTVMin is to enforce similar model parameters at

two nodes i, i′ that are connected by an edge {i, i′} with (relatively) large

edge weight Ai,i′ . In general, the edges (and their weights) of the FL network

are a design choice. Placing an edge between two nodes i, i′ is typically only

useful if the local datasets D(i),D(i′) (generated by devices i, i′) have similar

statistical properties. We next discuss different approaches to measuring the

similarity or, equivalently, the discrepancy (the lack of similarity) between

two local datasets.

The first approach is based on a probabilistic model, i.e., we interpret the

local dataset D(i) as realizations of RVs with some parametrized probability

distribution p(i)
(
D(i);w(i)

)
. We can then measure the discrepancy between D(i)

and D(i′) via the Euclidean distance
∥∥w(i) −w(i′)

∥∥
2

between the parameters

w(i),w(i′) of the probability distributions.

In most FL applications, we do not know the parameters of the probability

distribution p(i)
(
D(i);w(i)

)
underlying a local dataset.23 We might still be

able to estimate these parameters using established statistical techniques

such as maximum likelihood [6, Ch. 3]. Given the estimates ŵ(i), ŵ(i′)

for the model parameters, we can then compute the discrepancy measure

D
(
i, i′

)
:=

∥∥ŵ(i) − ŵ(i′)
∥∥
2
.

Example. Consider local datasets being a single number y(i) which is

modelled as a noisy observation y(i) = w(i) + n(i) with n(i) ∼ N (0, 1). The

maximum likelihood estimator for w(i) is then obtained as ŵ(i) = y(i) [30, 86]
23One exception is when we generate the local dataset by drawing i.i.d. realizations from

p(i)
(
D(i);w(i)

)
.

141

and, in turn, the resulting discrepancy measure D
(
i, i′

)
:=

∣∣y(i) − y(i
′)
∣∣ [87].

Example. Consider an FL network with nodes i ∈ V that carry local

datasets D(i). Each D(i) consists of data points with labels from the label

space Y(i). We can the measure the similarity between i, i′ by the fraction of

data points in D(i)
⋃

D(i′) with label values in Y(i) ∩ Y(i′) [88].

Example. Consider local datasets D(i) constituted by images of hand-

written digits 0, 1, . . . , 9. We model a local dataset using a hierarchical

probabilistic model: Each node i ∈ V is assigned a deterministic but unknown

distribution α(i) =
(
α
(i)
1 , . . . , α

(i)
9

)
. The entry α

(i)
j is the fraction of images at

node i that show digit j. We interpret the labels y(i,1), . . . , y(i,mi) as realiza-

tions of i.i.d. RVs, with values in {0, 1, . . . , 9} and distributed according to

α(i). The features are interpreted as realizations of RVs with conditional dis-

tribution p(x|y) which is the same for all nodes i ∈ V . We can then estimate

the dis-similarity between nodes i, i′ via the distance between (estimations

of) the parameters α(i) and α(i′).

The above discrepancy measure construction (using estimates for the

parameters of a probabilistic model) is a special case of a more generic

two-step approach:

• First, we determine a vector representation z(i) ∈ Rm′ for each node

i ∈ V [6, 89].

• Second, we construct the discrepancy D
(
i, i′

)
between nodes i, i′ via

the distance between the representation vectors z(i), z(i
′) ∈ Rm′ , e.g.,

using D
(
i, i′

)
:=

∥∥z(i) − z(i
′)
∥∥.

Let us next discuss three implementations of the first step to obtain the vector

142

for each node i.

Parametrized Probabilistic Models. If we use a parametrized proba-

bilistic model p
(
D(i);w(i)

)
for the local dataset D(i), we can use an estimator

ŵ(i) as z(i). One popular approach for estimating the model parameters of a

probabilistic model is the maximum likelihood principle [6].

Gradients. Let us next discuss a construction for the vector represen-

tation z(i) ∈ Rm′ that is motivated by stochastic gradient descent (SGD)

(see Section 5.4). In particular, we could define the discrepancy between

two local datasets by interpreting them as two potential batches used by

SGD to train a model. If these two batches have similar statistical prop-

erties, then their corresponding gradient approximations (5.11) should be

aligned. This suggests to use the gradient ∇f(w′) of the average loss

f(w) := (1/|D(i)|)
∑

(x,y)∈D(i) L
(
(x, y) , h(w)

)
as a vector representation z(i)

for D(i). We can generalize this construction, for parametrized local models

H(i), by using the gradient of the local loss function,

z(i) := ∇Li (v) . (7.4)

Note that the construction (7.4) requires a choice of the model parameters v

at which the gradient is evaluated.

Feature Learning. We can also use an autoencoder [89, Ch. 14] to learn

a vector representation for a local dataset. In particular, we fed it into an

encoder network which has been trained jointly with a decoder network on

some learning task. Figure 7.2 illustrates a generic autoencoder setup.

143

D(i)
encoder

h(·)
z(i) ∈ Rm′

decoder

h∗(·) D̂(i)

Fig. 7.2: An autoencoder consists of an encoder, mapping the input to a

latent vector, and a decoder which tries to reconstruct the input as accurately

as possible. The encoder and the decoder are trained jointly by minimizing

some quantitative measure (a loss) of the reconstruction error (see [6, Ch.

9]). When using a local dataset as input, we can use the latent vector as its

vector representation.

7.4 Graph Learning Methods

Assume we have constructed a useful measure D
(
i, i′

)
∈ R+ for the discrepancy

between any two local datasets D(i),D(i′). We could then construct an FL

network by connecting each node i with its nearest neighbours. The nearest

neighbours of i are those other nodes i′ ∈ V \ {i} with smallest discrepancy

D
(
i, i′

)
. We next discuss an alternative to the nearest-neighbour graph

construction. This alternative approach formulates graph learning as a

constrained linear optimization problem.

Let us measure the usefulness of a given choice of the edge weights

Ai,i′ ∈ R+ via ∑
i,i′∈V

Ai,i′D
(
i, i′

)
. (7.5)

The objective function (7.5) penalizes having a large edge weight Ai,i′ between

two nodes i, i′ with a large discrepancy D
(
i, i′

)
. Note that the objective

function (7.5) is minimized by the trivial choice Ai,i′ = 0, i.e., the empty

144

graph without any edges E = ∅.

As discussed in Section 7.2, the FL network should have a sufficient

amount of edges in order to ensure that the GTVMin solutions are useful

model parameters. Indeed, the desired pooling effect of GTVMin requires

the eigenvalue λ2

(
L(G)) to be sufficiently large. Ensuring a large λ2

(
L(G))

requires, in turn, that the FL network G contains a sufficiently large number

of edges and corresponding node degrees (see (7.2)).

We can enforce the presence of edges (with positive weight) by adding

constraints to (7.5). For example, we might require

Ai,i = 0 ,
∑
i′ ̸=i

Ai,i′ = d(G)max for all i ∈ V , Ai,i′ ∈ [0, 1] for all i, i′ ∈ V . (7.6)

The constraints (7.6) require that each node i is connected with other nodes

using total edge weight (weighted node degree)
∑

i′ ̸=iAi,i′ = d
(G)
max.

Combining the constraints (7.6) with the objective function (7.5) results

in the following graph learning principle,

Âi,i′ ∈ argmin
Ai,i′=Ai′,i

∑
i,i′∈V

Ai,i′D
(
i, i′

)
(7.7)

Ai,i′ ∈ [0, 1] for all i, i′ ∈ V ,

Ai,i = 0 for all i ∈ V ,∑
i′ ̸=i

Ai,i′ = d(G)max for all i ∈ V .

Note that (7.7) is a special case of the constrained quadratic minimization

problem (4.15). In fact, (7.7) is equivalent to a linear program [48, Sec. 4.3].

We can therefore use projected GD from Section 4.6 to compute (approximate)

solutions to (7.7).

145

The first constraint in (7.7) requires each edge weight to belong to the

interval [0, 1]. The second constraint prohibits any self-loops in the resulting

FL network. Note that adding self-loops to an FL network has no effect on

the resulting GTVMin-based method (see (3.20)). The last constraint of the

learning principle (7.7) enforces a regular FL network: Each node i having

the same weighted node degree d(i) =
∑

i′ ̸=iAi,i′ = d
(G)
max.

For some FL applications it might be detrimental to insist on identical

node degrees of the FL network. Instead, we might prefer other structural

properties such as a small total number of edges or presence of few hub nodes

(with exceptionally large node degree) [13,87].

We can enforce an upper bound on the total number Emax of edges by

modifying the last constraint in (7.7),

Âi,i′ ∈ argmin
Ai,i′=Ai′,i

∑
i,i′∈V

Ai,i′D
(
i, i′

)
(7.8)

Ai,i′ ∈ [0, 1] for all i, i′ ∈ V ,

Ai,i = 0 for all i ∈ V ,∑
i′,i∈V

Ai,i′ = Emax.

The problem has a closed-form solution as explained in [87]: It is obtained

by placing the edges between those pairs i, i′ ∈ V that result in the smallest

discrepancy D
(
i, i′

)
. However, it might still be useful to solve (7.8) via

iterative optimization methods such as the gradient-based methods discussed

in Chapter 4. These methods can be implemented in a fully distributed

fashion as message passing over an underlying communication network [68].

This communication network might be significantly different from the learnt

146

FL network.24

7.5 Exercises

7.1. A Simple Ranking Approach. Consider a collection of devices

i = 1, . . . , n = 100, each carrying a local dataset that consists of a single

vector x ∈ R(mi). The vectors x ∈ Rmi can be modelled as statistically

independent (across nodes) RVs. Moreover, the vector x ∈ Rmi is a realization

of a multivariate normal distribution N (ci1, I) with given (fixed) quantities

ci ∈ {−1, 1}. We construct an FL network by determining for each node i its

neighbours N (i) as follows

• we randomly select a fraction B(i) of 10 percent from all other nodes

• we define N (i) as those i′ ∈ B(i) whose corresponding values |(1/mi)1
Tx(i)−

(1/mi′)1
Tx(i′)| are among the 3 smallest.

Analyze the probability that some neighbourhood N (i) contains a node i′

such that ci ̸= ci′ .

24Can you think of FL application domains where the connectivity (e.g., via short-range

wireless links) of two clients i, i′ ∈ V might also reflect the pair-wise similarities between

probability distributions of local datasets D(i),D(i′)?

147

8 Trustworthy FL

The Story So Far. We have introduced GTVMin as a main design principle

for FL in Chapter 3. Chapter 5 applied the gradient-based methods from

Chapter 4 to solve GTVMin, resulting in practical FL systems. Our focus has

been on the computational and statistical properties of these FL systems. In

this and the following chapters, we shift the focus from technical properties

to the trustworthiness of FL systems.

Section 8.2 reviews key requirements for trustworthy AI, which includes

FL systems, that have been put forward by the European Union [90, 91].

We will also discuss how these requirements guide the design choices for

GTVMin-based methods. Our focus will be on the three design criteria for

trustworthy FL: privacy, robustness and explainability. This chapter covers

robustness and explainability, the leakage and protection of privacy in FL

systems is the subject of Chapter 9.

Section 8.3 discusses the robustness of FL systems against perturbations

of local datasets and computations. A special type of perturbation is the

intentional modification or poisoning of local datasets (see Chapter 10).

Section 8.4 introduces a measure for the (subjective) explainability of the

personalized models trained by FL systems.

8.1 Learning Goals

After completing this chapter, you will

• know some key requirements for the trustworthiness of FL,

• be familiar with quantitative measures of robustness, and explainability

148

• have some intuition about how to ensure robustness, privacy protection

and explainability via suitable design choices for local models, loss

functions, and FL network in GTVMin.

8.2 Seven Key Requirements by the EU

As part of its AI strategy, the European Commission set up the High-Level

Expert Group on Artificial Intelligence (AI HLEG) in 2018. This group put

forward seven key requirements for trustworthy AI [90,91]. We next discuss

in a step-by-step fashion how these requirements guide the design choices for

GTVMin-based FL systems.

8.2.1 KR1 - Human Agency and Oversight.

“..AI systems should support human autonomy and decision-making, as pre-

scribed by the principle of respect for human autonomy. This requires that AI

systems should both act as enablers to a democratic, flourishing and equitable

society by supporting the user’s agency and foster fundamental rights, and

allow for human oversight...” [91, p.15]

Human Dignity. Learning personalized model parameters for recom-

mender systems allows to boost addiction or widespread emotional manip-

ulation resulting in genocide [92–94]. KR1 rules out certain design choices

for the labels of data points. In particular, we might not use the mental

and psychological characteristics of a user as the label. We should avoid loss

functions that can be used to train predictors of psychological characteristics.

Using personalized ML models to predict user preferences for products or

susceptibility towards propaganda is also referred to as micro-targeting [95].

149

Simple is Good. Human oversight can be facilitated by relying on

simple local models. Examples include linear models with few features or

decision trees with small depth. However, we are unaware of a widely accepted

definition of when a model is simple. Loosely speaking, a simple model results

in a learnt hypothesis that allows humans to understand how features of a

data point relate to the prediction h(x). This notion of simplicity is closely

related to the concept of explainability which we discuss in more detail in

Section 8.4.

Continuous Monitoring. In its simplest form, GTVMin-based methods

involve a single training phase, i.e., learning local model parameters by

solving GTVMin. However, this approach is only useful if the data can

be well approximated by an i.i.d. assumption. In particular, this approach

works only if the statistical properties of local datasets do not change over

time. For many FL applications, this assumption is unrealistic (consider a

social network which is exposed to constant change of memberships and user

behaviour). It is then important to continuously compute a validation error

on a timely validation set which is then used, in turn, to diagnose the overall

FL system (see [6, Sec. 6.6]).

8.2.2 KR2 - Technical Robustness and Safety.

“...Technical robustness requires that AI systems be developed with a preven-

tative approach to risks and in a manner such that they reliably behave as

intended while minimising unintentional and unexpected harm, and preventing

unacceptable harm. ...’ [91, p.16].

Practical FL systems are obtained by implementing FL algorithms in phys-

150

ical distributed computers [20, 21]. One example of a distributed computer is

a collection of smartphones that are connected either by short-range wireless

links or by a cellular network. Most distributed computers will incur imper-

fections, such as a temporary lack of connectivity or mobile devices becoming

inactive due to running out of battery. Moreover, the data generation pro-

cesses can be subject to perturbations such as statistical anomalies (outliers)

or intentional modifications (see Chapter 10). Section 8.3 studies in some de-

tail the robustness of GTVMin-based systems against different perturbations

of data sources and imperfections of computational infrastructure.

8.2.3 KR3 - Privacy and Data Governance.

“..privacy, a fundamental right particularly affected by AI systems. Prevention

of harm to privacy also necessitates adequate data governance that covers the

quality and integrity of the data used...” [91, p.17].

We have introduced GTVMin and FL networks as abstract mathematical

structures for the study of FL systems. However, to obtain actual FL systems

we need to implement these mathematical concepts in a given physical hard-

ware. These implementations incur deviations from the (idealized) GTVMin

formulation (3.20) and the gradient-based methods (such as Algorithm 5.1)

used to solve it. For example, using quantized label values results in a quan-

tization error. Moreover, the local datasets can deviate significantly from a

typical realization of i.i.d. RVs, which is referred to as statistical bias [96, Sec.

3.3.])

Data processing regulations limit the choice of the features of a data

point [97–99]. In particular, the general data protection regulation (GDPR)

151

includes a data minimization principle which requires to use only features

that are relevant for predicting the label.

Data Governance. Some FL applications involve local datasets that are

generated by human users, i.e., personal data. Whenever personal data is

used by a FL method, special care must be dedicated towards data protec-

tion regulations [99]. It is useful (or even compulsory) to designate a data

protection officer and conduct a data protection impact assessment [91].

Privacy. The operation of a FL system must not violate the fundamental

human right to privacy [100]. Chapter 9 discusses quantitative measures and

methods for privacy protection in GTVMin-based FL systems.

8.2.4 KR4 - Transparency.

Traceability. This key requirement includes the documentation of design

choices (and underlying business models) for a GTVMin-based FL system.

This includes the source for the local datasets, the local models, the local

loss function as well as the construction of the FL network. Moreover, the

documentation should also cover the details of the implemented optimization

method used to solve GTVMin. This documentation might also require the

periodic storing of the model parameters along with a time-stamp (logging).

Communication. Depending on the use case, FL systems need to

communicate the capabilities and limitations to their end users (e.g., of a

digital health app running on a smartphone). For example, we can indicate a

measure of uncertainty about the predictions delivered by the trained local

models. Such an uncertainty measure can be obtained naturally from a

probabilistic model for the data generation. For example, the conditional

152

variance of the label y, given the features x of a random data point. Another

example of an uncertainty measure is the validation error of a trained local

model.

Explainability. The transparency of a GTVMin-based FL system also

includes the explainability of the trained local models. Section 8.4 discusses

quantitative measures for the subjective explainability of a learnt hypothesis.

We will also use this measure as a regularizer to obtain GTVMin-based

systems that guarantee subjective explainability “by design”.

8.2.5 KR5 - Diversity, Non-Discrimination and Fairness.

“...we must enable inclusion and diversity throughout the entire AI system’s

life cycle...this also entails ensuring equal access through inclusive design

processes as well as equal treatment.” [91, p.18].

The local datasets used for the training of local models should be carefully

selected to not enforce existing discrimination. In a health-care application,

there might be significantly more training data for patients of a specific gender,

resulting in models that perform best for that specific gender at the cost of

worse performance for the minority [96, Sec. 3.3.].

Fairness is also important for ML methods used to determine credit score

and, in turn, if a loan should be granted or not [101]. Here, we must ensure

that ML methods do not discriminate against customers based on ethnicity

or race. To this end, we could augment data points by modifying any features

that mainly reflect the ethnicity or race of a customer (see Figure 8.1).

153

gender x

compensation y
h(x)

original training set D
augmented

Fig. 8.1: We can improve the fairness of a ML method by augmenting the

training set using perturbations of an irrelevant feature such as the gender

of a person for which we want to predict the adequate compensation as the

label.

8.2.6 KR6 - Societal and Environmental Well-Being.

“...Sustainability and ecological responsibility of AI systems should be encour-

aged, and research should be fostered into AI solutions addressing areas of

global concern, such as for instance the Sustainable Development Goals.” [91,

p.19].

Society. FL systems might be used to deliver personalized recommen-

dations to users within a social media application (social network). These

recommendations might be (fake) news used to boost polarization and, in the

extreme case, social unrest [102].

Environment. Chapter 5 discussed FL algorithms that were obtained by

applying gradient-based methods to solve GTVMin. These methods require

computational resources to compute local updates for model parameters

154

and to share them across the edges of the FL network. Computation and

communication require energy which should be generated in an environmental-

friendly fashion [103].

8.2.7 KR7 - Accountability.

“...mechanisms be put in place to ensure responsibility and accountability

for AI systems and their outcomes, both before and after their development,

deployment and use.” [91, p. 19].

8.3 Technical Robustness of FL Systems

Consider a GTVMin-based FL system that aims at training a single (global)

linear model in a distributed fashion from a collection of local datasets D(i), for

i = 1, . . . , n. As discussed in Section 6.2, this single-model FL setting amounts

to using GTVMin (3.22) over a connected FL network with a sufficiently large

choice of α.

To ensure KR2 we need to understand the effect of perturbations on

a GTVMin-based FL system. These perturbations might be intentional or

non-intentional and affect the local datasets used to evaluate the loss of local

model parameters or the computational infrastructure used to implement a

GTVMin-based method (see Chapter 5). We next explain how to use some

of the theoretic tools from previous chapters to quantify the robustness of

GTVMin-based FL systems.

155

8.3.1 Sensitivity Analysis

As pointed out in Chapter 3, GTVMin (3.22) can be rewritten as the mini-

mization of a quadratic function,

min
w=stack{w(i)}

wTQw + qTw. (8.1)

The matrix Q and vector q are determined by the feature matrices X(i) and

label vector y(i) at nodes i ∈ V (see (2.28)). We next study the sensitivity of

(the solutions of) (8.1) towards external perturbations of the label vector.25

Consider an additive perturbation ỹ(i) := y(i) + ε(i) of the label vector

y(i). Using the perturbed label vector ỹ(i) results also in a “perturbation” of

GTVMin (8.1),

min
w=stack{w(i)}

wTQw + qTw + nTw + c. (8.2)

An inspection of (2.28) yields that n =

((
ε(1)

)T
X(1), . . . ,

(
ε(n)

)T
X(n)

)T

. The

next result provides an upper bound on the deviation between the solutions

of (8.1) and (8.2).

Proposition 8.1. Consider the GTVMin instance (8.1) for learning local

model parameters of a linear model for each node i ∈ V of an FL network G.

We assume that the FL network is connected, i.e., λ2

(
L(G)) > 0 and the local

datasets are such that λ̄min > 0 (see (5.4)). Then, the deviation between ŵ(i)

and the solution w̃(i) to the perturbed problem (8.2) is upper bounded as
n∑

i=1

∥∥ŵ(i) − w̃(i)
∥∥2

2
≤ λmax(1 + ρ2)2[

min{λ2

(
L(G)

)
αρ2, λ̄min/2}

]2 n∑
i=1

∥∥ε(n)∥∥2

2
. (8.3)

25Our study can be generalized to also take into account perturbations of the feature

matrices X(i), for i = 1, . . . , n.

156

Here, we used the shorthand ρ := λ̄min/(4λmax) (see (5.4)).

Proof. Left as an exercise to the reader.

8.3.2 Estimation Error Analysis

Prop. 8.1 characterizes the sensitivity of GTVMin solutions against external

perturbations of the local datasets. While this notion of robustness is impor-

tant, it might not suffice for a comprehensive assessment of a FL system. For

example, we can trivially achieve perfect robustness (in the sense of minimum

sensitivity) by delivering constant model parameters, e.g., ŵ(i) = 0.

Another form of robustness is to ensure a small estimation error of (3.22).

To study this form of robustness, we use a variant of the probabilistic model

(3.29): We assume that the labels and features of data points of each local

dataset D(i), for i = 1, . . . , n, are related via

y(i) = X(i)w + ε(i). (8.4)

In contrast to Sec. 3.4.2, we assume that all components of (8.4) are deter-

ministic. In particular, the noise term ε(i) is a deterministic but unknown

quantity. This term accommodates any perturbation that might arise from

technical imperfections or intrinsic label noise due to random fluctuations in

the labelling process.26

In the ideal case of no perturbation, we would have ε(i) = 0. However,

in general might only know some upper bound measure for the size of the
26Consider labels obtained from physical sensing devices which are typically subject to

uncertainties [104].

157

perturbation, e.g.,
∥∥ε(i)∥∥2

2
. We next present upper bounds on the estimation

error ŵ(i) −w incurred by the GTVMin solutions ŵ(i).

This estimation error consists of two components, the first component

being avg
{
ŵ(i′)

}
−w for each node i ∈ V . Note that this error component is

identical for all nodes i ∈ V . The second component of the estimation error is

the deviation w̃(i) := ŵ(i) − avg
{
ŵ(i′)

}
of the learnt local model parameters

ŵ(i′), for i′ = 1, . . . , n, from their average avg
{
ŵ(i′)

}
= (1/n)

∑n
i′=1 ŵ

(i′). As

discussed in Section 3.4.2, these two components correspond to two orthogonal

subspaces of Rd·n.

According to Prop. 3.1, the second error component is upper bounded as
n∑

i=1

∥∥w̃(i)
∥∥2

2
≤ 1

λ2α

n∑
i=1

(1/mi)
∥∥ε(i)∥∥2

2
. (8.5)

To bound the first error component c̄−w, using the shorthand c̄ := avg
{
ŵ(i)

}
,

we first note that (see (3.22))

c̄=argmin
w∈Rd

∑
i∈V

(1/mi)
∥∥y(i)−X(i)

(
w−w̃(i)

)∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w̃(i)−w̃(i′)
∥∥∥2

2
. (8.6)

Using a similar argument as in the proof for Prop. 2.1, we obtain

∥c̄−w∥22 ≤

∥∥∥∥∥
n∑

i=1

(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥∥∥
2

2

/(nλ̄min)
2. (8.7)

Here, λ̄min is the smallest eigenvalue of (1/n)
∑n

i=1Q
(i), i.e., the average of

the matrices Q(i) = (1/mi)
(
X(i)

)T
X(i) over all nodes i ∈ V.27 Note that the

bound (8.7) is only valid if λ̄min > 0 which, in turn, implies that the solution

to (8.6) is unique.
27We encountered the quantity λ̄min already during our discussion of gradient-based

methods for solving the GTVMin instance (3.22) (see (5.4)).

158

We can develop (8.7) further using∥∥∥∥∥
n∑

i=1

(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥∥∥
2

(a)

≤
n∑

i=1

∥∥∥(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥
2

(b)

≤
√
n

√√√√ n∑
i=1

∥∥∥(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥2

2

(c)

≤
√
n

√√√√ n∑
i=1

2
∥∥∥(1/mi)

(
X(i)

)T
ε(i)

∥∥∥2

2
+ 2

∥∥∥(1/mi)
(
X(i)

)T
X(i)w̃(i)

∥∥∥2

2

(d)

≤
√
n

√√√√ n∑
i=1

(2/mi)λmax ∥ε(i)∥22+2λ2
max ∥w̃(i)∥22. (8.8)

Here, step (a) uses the triangle inequality of norms, step (b) uses the Cauchy-

Schwarz inequality, step (c) uses the inequality ∥a+ b∥22 ≤ 2

(
∥a∥22 + ∥b∥22

)
,

and step (d) uses the maximum eigenvalue λmax := maxi∈V λd

(
Q(i)

)
of the

matrices Q(i) = (1/mi)
(
X(i)

)T
X(i) (see (5.4)).

Inserting (8.8) into (8.7) results in the upper bound

∥c̄−w∥22 ≤ 2
n∑

i=1

[
(1/mi)λmax

∥∥ε(i)∥∥2

2
+ λ2

max

∥∥w̃(i)
∥∥2

2

]
/(nλ̄2

min)

(8.5)
≤ 2

(
λmax + (λ2

max/(λ2α))
) n∑

i=1

(1/mi)
∥∥ε(i)∥∥2

2
/(nλ̄2

min). (8.9)

The upper bound (8.9) on the estimation error of GTVMin-based methods

depends on both, the FL network G via the eigenvalue λ2 of L(G), and the

feature matrices X(i) of the local datasets (via the quantities λmax and λ̄min

as defined in (5.4)). Let us next discuss how the upper bound (8.9) might

guide the choice of the FL network G and the features of data points in the

159

local datasets.

According to (8.9), we should use an FL network G with large λ2

(
L(G))

to ensure a small estimation error for GTVMin-based methods. Note that we

came across the same design criterion already when discussing graph learning

methods in Chapter 7. In particular, using an FL network with large λ2

(
L(G))

also tends to speed up the convergence of gradient-based methods for solving

GTVMin (such as Algorithm 5.1).

The upper bound (8.9) suggests using features that result in a small ratio

λmax/λ̄min between the quantities λmax and λ̄min (see (5.4)). Some feature

learning methods have been proposed in order to minimize this ratio [6, 105].

8.3.3 Network Resilience

The previous sections studied the robustness of GTVMin-based methods

against perturbations of local datasets (see Exercise 8.1) and in terms of

ensuring a small estimation error (see (8.9)). We also need to ensure that FL

systems are robust against imperfections of the computational infrastructure

used to solve GTVMin. These imperfections include hardware failures, running

out of battery or lack of wireless connectivity.

Chapter 5 showed how to design FL algorithms by applying gradient-

based methods to solve GTVMin (3.22). We obtain practical FL systems by

implementing these algorithms, such as Algorithm 5.1, in a particular compu-

tational infrastructure. Two important examples of such an infrastructure

are mobile networks and wireless sensor networks [22, 106].

The effect of imperfections in the implementation of the GD based Algo-

rithm 5.1 can be modelled as perturbed GD (4.13) from Chapter 4. We can

160

then analyze the robustness of the resulting FL system via the convergence

analysis of perturbed GD (see Section 4.5).

According to (4.14), the performance of the decentralized Algorithm 5.1

degrades gracefully in the presence of imperfections such as missing or faulty

communication links. In contrast, the server-based implementation of FedAvg

Algorithm 5.6 offers a single point of failure (the server).

8.3.4 Stragglers

Using perturbed GD to model imperfections in the actual implementation of

Algorithm 5.1 is quite flexible. The flexibility in allowing for a wide range

of imperfections might come at the cost of a coarse-grained analysis. In

particular, the upper bound (4.14) can be too loose (pessimistic) to be of any

use. We then need to take into account the specific nature of the imperfection

and the resulting perturbation ε(i). Let us next focus on a particular type of

imperfection that arises from the asynchronous implementation of Algorithm

5.1 at different nodes i ∈ V .

Note that Algorithm 5.1 requires the nodes to operate synchronously: dur-

ing each iteration, the nodes need to exchange their current model parameters

w(i,k) simultaneously with their neighbours in the FL network. This requires,

in turn, that the update in step 4 of Algorithm 5.1 is completed at every node

i before the global clock ticks (triggering the next iteration).

Some of the nodes i might have limited computational resources and

therefore require much longer for the update step 4 of Algorithm 5.1. The

literature refers to such slower nodes sometimes as stragglers [107]. Instead

of forcing the other (faster) nodes to wait until also the slower ones are ready,

161

we could instead let them continue with their local updates. This results in

an asynchronous variant of Algorithm 5.1 which we summarize in Algorithm

8.1.

Note that, much like the synchronous Algorithm 5.1, also the asynchronous

Algorithm 8.1 uses an iteration counter k. However, the practical meaning of

k in the asynchronous variant is fundamentally different from the synchronous

variant. Instead of indexing a global iteration that corresponds to the syn-

chronous execution of local updates at all nodes V , the counter k now denotes

an event during which some nodes are active, i.e., compute local updates.

We denote the set of active nodes (or devices) during event k by A(k) ⊆ V.

The remaining inactive nodes i /∈ A(k) leave their current model parameters

unchanged, w(i,k+1) := w(i,k).

For each active node i ∈ A(k), the local update (8.10) uses potentially out-

dated model parameters w(i′,ki,i′) from its neighbours i′ ∈ N (i). Indeed, some

of the neighbours might have not been in the active sets A(k−1),A(k−2), . . .

of the most recent iterations. In this case, the update (8.10) does not have

access to w(i′,k) at time instant k. Instead, we can only use w(i′,ki,i′) that has

been produced obtained during some previous iteration ki,i′ < k.

We can interpret the quantity ki,i′ as the most recent time instant during

which node i′ has shared its updated local model parameters with node i. We

can interpret the difference k− ki,i′ as a measure for the communication delay

from node i′ to node i. The robustness of (the convergence of) Algorithm 8.1

against these communication delays is studied in-depth in [20, Ch. 6 and 7].

162

Algorithm 8.1 Asynchronous FedGD for Local Linear Models
Input: FL network G; GTV parameter α; learning rate η

local dataset D(i) =
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
for each i; some

stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0 for all nodes i ∈ V .

1: while stopping criterion is not satisfied do

2: for all active nodes i ∈ A(k): do

3: update local model parameters via

w(i,k+1) :=w(i,k) + η

[
(2/mi)

(
X(i)

)T (
y(i)−X(i)w(i,k)

)
+ 2α

∑
i′∈N (i)

Ai,i′
(
w(i′,ki,i′) −w(i,k)

)]
. (8.10)

4: share local model parameters w(i,k+1) with neighbours i′∈N (i)

5: end for

6: for all inactive nodes i /∈ A(k): do

7: keep model parameters unchanged w(i,k+1) := w(i,k)

8: end for

9: increment iteration counter: k :=k+1

10: end while

11: ŵ(i) := w(i,k) for all nodes i ∈ V

163

8.4 Subjective Explainability of FL Systems

Let us now discuss how to ensure key requirement KR4 - Transparency

in GTVMin-based FL systems. This key requirement includes also the ex-

plainability of a trained personalized model ĥ(i) ∈ H(i) (and their predictions).

It is important to note that the explainability of ĥ(i) is subjective: A given

learnt hypothesis ĥ(i) might offer high degree of explainability to one user (a

graduate student at a university)but a low degree of explainability to another

user (a high-school student). We must ensure explainability for the specific

user, which we will also denote by i, that “consumes” the predictions at node

i ∈ V of the FL network.

The explainability of trained ML models is closely related to its simu-

latability [108–110]: How well can a user anticipate (or guess) the prediction

ŷ = ĥ(i)(x) delivered by ĥ(i) for a data point with features x. We can then

measure the explainability of ĥ(i)(x) to the user at node i by comparing the

prediction ĥ(i)(x) with the corresponding guess (or simulation) u(i)(x).

We can enforce (subjective) explainability of FL systems by modifying

the local loss functions in GTVMin. For ease of exposition we will focus on

the GTVMin instance (5.1) for training local (personalized) linear models.

For each node i ∈ V, we construct a test-set D(i)
t and ask user i to deliver a

guess u(i)(x) for each data point in D(i)
t .28

We measure the (subjective) explainability of a linear hypothesis with

28We only use the features of the data points in D(i)
t , i.e., this dataset can be constructed

from unlabeled data.

164

model parameters w(i) by

(1/
∣∣D(i)

t

∣∣) ∑
x∈D(i)

t

(
u(i)

(
x
)
− xTw(i)

)2

. (8.11)

It seems natural to add this measure as a penalty term to the local loss

function in (5.1), resulting in the new loss function

Li

(
w(i)

)
:=(1/mi)

∥∥y(i)−X(i)w(i)
∥∥2

2︸ ︷︷ ︸
training error

+ρ (1/
∣∣D(i)

t

∣∣)∑
x∈D(i)

t

(
u(i)

(
x
)
−xTw(i)

)2
︸ ︷︷ ︸

subjective explainability

.

(8.12)

The regularization parameter ρ controls the preference for a high subjective

explainability of the hypothesis h(i)(x) =
(
w(i)

)T
x over a small training

error [110]. It can be shown that (8.12) is the average weighted squared

error loss of h(i)(x) on an augmented version of D(i). This augmented version

includes the data point
(
x, u(i)(x)

)
for each data point x in the test-set D(i)

t .

So far, we have focused on the problem of explaining (the predictions of) a

trained personalized model to some user. The general idea is to provide partial

information, in the form of some explanation, about the learnt hypothesis

map ĥ. Explanations should help the user to anticipate the prediction ĥ(x)

for any given data point. Instead of explaining a given trained model ĥ, it

might be more useful to explain an entire FL algorithm [].

Mathematically, we can interpret an FL algorithm as a map A that reads

in local datasets and delivers learnt hypothesis maps ĥ(i). Explaining an FL

algorithm amounts to providing partial information about this map A. Thus,

mathematically speaking, the problem of explaining a learnt hypothesis is

essentially the same as explaining an entire FL algorithm: Provide partial

165

information (explanation) about a map such that user can anticipate the

results of applying the map to arbitrary arguments. However, the map A

might be much more complicated compared to a learnt hypothesis (which

could be a linear map for linear models). The different level of complexity

of these two families of maps requires to use different forms of explanation.

For example, we might explain a FL algorithm using a pseudo-code such as

Algorithm 5.1. Another form of explanation could be a Python code snippet

that illustrates a potential implementation of the algorithm.

166

1 from sklearn.datasets import load_iris

2 from sklearn.model_selection import train_test_split

3 from sklearn.tree import DecisionTreeClassifier

4 from sklearn.metrics import accuracy_score

5

6 # Load the Iris dataset

7 data = load_iris ()

8 X = data.data

9 y = data.target

10

11 # Split the dataset into training and test sets

12 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.3, random_state =42)

13

14 # Create a Decision Tree classifier

15 clf = DecisionTreeClassifier(random_state =42)

16

17 # Train the classifier

18 clf.fit(X_train , y_train)

19

20 # Make predictions on the test data

21 y_pred = clf.predict(X_test)

22

23 # Calculate accuracy

24 accuracy = accuracy_score(y_test , y_pred)

25 accuracy

Fig. 8.2: Python code for fitting a decision tree model on the Iris dataset.

167

8.5 Exercises

8.1. Robustness of GTVMin. Discuss the robustness of GTVMin (3.22)

for training local linear models. In particular, which attack is more effective

(detrimental): perturbing the labels, the features of data points in the local

datasets or perturbing the FL network, e.g., by removing or adding edges.

8.2. Subjectively Explainable FL. Consider GTVMin (3.22) to train local

linear models with model parameters w(i). The local datasets are modelled

as (3.29). Each local model has a user that is characterized by the user signal

u(x) := xTu(i). To ensure subjective explainability of local model with model

parameters w(i) we require the deviation (1/mi)
∥∥∥X̃(i)

(
w(i) − u(i)

)∥∥∥2

2
to be

sufficiently small. Here, we used the feature matrix X̃(i) obtained from the

realization of mi i.i.d. RVs with common probability distribution N (0, I).

We then add this deviation to the local loss functions resulting in using the

augmented loss function (8.12) used in (3.22). Study, either analytically or

by numerical experiments, the effect of varying levels of explainability (via

the parameter ρ in (8.12)) on the estimation error ŵ(i) −w(i).

168

9 Privacy-Protection in FL

The core idea of FL is to share information contained in collections of local

datasets in order to improve the training of (personalized) ML models. Chap-

ter 5 discussed FL algorithms that share information in the form of model

parameters that are computed from the local loss function. Each node i ∈ V

receives current model parameters from other nodes and, after executing a

local update, shares its new model parameters with other nodes.

Depending on the design choices for GTVMin-based methods, sharing

model parameters allows to reconstruct local loss functions and, in turn, to

estimate private information about individual data points such as health-care

customers (“patients”) [111]. Thus, the bad news is that FL systems will

almost inevitably incur some leakage of private information.The good news

is, however, that the extent of privacy leakage can be controlled by (i) careful

design choices for GTVMin and (ii) applying slight modifications of basic FL

algorithms (such as those from Chapter 5).

This chapter revolves around two main questions:

• How can we measure privacy leakage of a FL system?

• How can we control (minimize) privacy leakage of a FL system?

Section 9.2 addresses the first question while Sections 9.3 and 9.4 address the

second question.

9.1 Learning Goals

After completing this chapter, you will

169

• be aware of threats to privacy in FL and the need to protect it,

• know some quantitative measures for privacy leakage,

• understand how GTVMin can facilitate privacy protection,

• be able to implement FL algorithms with guaranteed levels of privacy

protection.

9.2 Measuring Privacy Leakage

Consider a FL system that trains a personalized model for the users, indexed

by i = 1, . . . , n, of heart rate sensors. Each user i generates a local dataset

D(i) that consists of time-stamped heart rate measurements. We define a

single data point as a single continuous activity, e.g. as a 50-minute long run.

The features of such a data point (activity) might include the trajectory in

the form of a time-series of GPS coordinates (e.g., measured every 30 seconds).

The label of a data point (activity) could be the average heart rate during

the activity. Let us assume that this average heart rate is private information

that should not be shared with anybody.29

Our FL system also exploits the information provided by a fitness expert

that determines pair-wise similarities Ai,i′ between users i, i′ (e.g., due to

body weight and height). We then use Algorithm 5.1 to learn, for each user i,

the model parameters w(i) for some AI health-care assistant [112]. In what

follows, we interpret Algorithm 5.1 as a map A(·) (see Figure 9.1). The map A
29In particular, we might not want to share our heart rate profiles with a potential future

employer who prefers candidates with a long life expectation.

170

D(i)

D

stack
{
ŵ(i)

}n

i=1

A

Fig. 9.1: Algorithm 5.1 maps the collection D of local datasets D(i) to the

learnt model parameters ŵ(i), for each node i = 1, . . . , n. These learnt model

parameters are (approximate) solutions to the GTVMin instance (3.22).

reads in the dataset D :=
{
D(i)

}n

i=1
(constituted by the local datasets D(i) for

i = 1, . . . , n) and delivers the local model parameters A
(
D
)
:= stack

{
ŵ(i)

}n

i=1︸ ︷︷ ︸
ŵ

.

A privacy-preserving FL system should not allow to infer, solely from the

learnt model parameters, the average heart rate y(i,r) during a specific single

activity r of a specific user i. Mathematically, we must ensure that the map

A is not invertible: The learnt model parameters should not change if we

would apply the FL algorithm to a perturbed dataset that includes a different

value for the average heart rate y(i,r). Figure 9.2 illustrates an algorithm that

is partially invertible in the sense of allowing to infer the label of some data

points used in the training set.

The sole requirement for a FL algorithm A to be not invertible is not

useful in general. Indeed, we can easily make any algorithm A by simple

pre- or post-processing techniques whose effect is limited to irrelevant regions

of the input space (which is the space of all possible datasets). The level

of privacy-protection offered by A can be characterized by a measure of its

“non-invertibility”.

171

0 1 2 3 4 5
0

1

2

3

4

5

r = 2

x1

x2

Fig. 9.2: Scatterplot of data points r = 1, 2, . . ., each characterized by

features x(r) =
(
x
(r)
1 , x

(r)
2

)2 and a binary label y(r) ∈ {◦,×}. The plot also

indicates the decision regions of a hypothesis ĥ that has been learnt via ERM.

Would you be able to infer the label of data point r = 2 if you knew the

decision regions?

172

T

p(ŵ;D)

ŵ

p(ŵ;D′)

Fig. 9.3: Two probability distributions of the learnt model parameters ŵ =

stack
{
ŵ(i)

}n

i=1
delivered by some FL algorithm (such as Algorithm 5.1).

These two probability distributions correspond to two different choices for

the input dataset, denoted by D′ and D. For example D′ might be obtained

from D by changing the value of a private feature of some data point in D.

We also indicate an “acceptance region” T that is used to detect if D (or a

neighbouring dataset D′) has been fed into the algorithm.

173

A simple measure of non-invertibility is the sensitivity of the output A
(
D
)

against varying the heart rate value y(i,r),∥∥A(
D
)
−A

(
D′)∥∥

2

ε
. (9.1)

Here, D denotes some given collection of local datasets and D′ is a modified

dataset. In particular, D′ is obtained by replacing the actual average heart

rate y(i,r) with the modified value y(i,r) + ε. The privacy-protection of A

is higher for smaller values (9.1), i.e., the output changes only little when

varying the value of the average heart rate.

Another measure for the non-invertibility of A is referred to as differential

privacy (DP). This measure is particularly useful for stochastic algorithms

that use some random mechanism. One example of such a random mechanism

is the selection of a random subset of data points (a batch) within Algorithm

5.1. Section 9.3 discusses another example of a random mechanism: add the

realization of a RV to the (intermediate) results of an algorithm.

A stochastic algorithm A can be described by a probability distribution

p(ŵ;D) over a measurable space that is constituted by the possible values of

the learnt model parameters ŵ (see Figure 9.3).30 This probability distribution

is parametrized by the dataset D that is fed as input to the algorithm A.

DP measures the non-invertibility of a stochastic algorithm A via the

similarity of the probability distributions obtained for two datasets D,D′

that are considered neighbouring or adjacent [96, 116]. Typically, we consider

D′ as adjacent to D if it is obtained by modifying the features or label of a

single data point in D. As a case in point, consider data points representing
30For more details about the concept of a measurable space, we refer to the literature on

probability and measure theory [113–115].

174

physical activities which are characterized by a binary feature xj ∈ {0, 1}

that indicates an excessively high average heart rate during the activity. We

could then define neighbouring datasets via flipping the feature xj of a single

data point. In general, the notion of neighbouring datasets is a design choice

used in the formal definition of DP.

Definition 1. (from [116]) A stochastic algorithm A is (ε, δ)-DP if for any

measurable set S and any two neighbouring datasets D,D′,

Prob
{
A(D) ∈ S} ≤ exp(ε)Prob

{
A(D′) ∈ S}+ δ. (9.2)

It appears that Definition 1 is the current de-facto standard for measuring

the (lack of) privacy-protection in FL systems [96,116]. Nevertheless, there

are also other measures for the similarity between probability distributions

p(ŵ;D) and p(ŵ;D′) that might be more useful for practical or theoretical

reasons [117]. One such alternative measure is the Rényi divergence of order

α > 1,

Dα

(
p(ŵ;D)

∥∥p(ŵ;D′)

)
:=

1

α− 1
Ep(ŵ;D′)

[(
dp(ŵ;D)

dp(ŵ;D′)

)α]
. (9.3)

The Rényi divergence allows to define the following variant of DP [117,118].

Definition 2. (from [116]) A stochastic algorithm A is (α, γ)-RDP if, for

any two neighbouring datasets D,D′,

Dα

(
p(ŵ;D)

∥∥p(ŵ;D′)

)
≤ γ. (9.4)

A recent use-case of (α, γ)-RDP is the analysis of DP guarantees offered

by variants of SGD [117]. This analysis uses the fact that (α, γ)-RDP implies

(ε, δ)-DP for suitable choices of ε, δ [117].

175

One important property of the DP notions in Definition 1 and Definition

2 is that they are preserved by post-processing:

Proposition 9.1. Consider a FL system A that is applied to some dataset

D and some (possibly stochastic) map B that does not depend on D. If A is

(ε, δ)-DP (or (α, γ)-RDP), then so is also the composition B ◦ A.

Proof. See, e.g., [116, Sec. 2.3].

By Prop. (9.1), we cannot reduce the (level of) DP of A by any post-

processing method B that has no access to the raw data itself. It seems

almost natural to make this “post-processing immunity” a defining property

of any useful notion of DP [118]. However, due to Prop. (9.1), this property

is already “built-in” into the Definition 1 (and the Definition 2).

Operational Meaning of DP. The above (mathematically precise)

definitions of DP might some somewhat abstract. It is instructive to interpret

them from the perspective of statistical testing: We could use the output of

an algorithm A to test (or detect) if the underlying dataset fed into A was D

or if it actually was a neighbouring dataset D′ [119]. Such a statistical test

amounts to specifying a region T and to declare either

• “dataset D seems to be used”, if A ∈ T , or

• “dataset D′ seems to be used”, if A /∈ T .

The performance of a test T is characterized by two error probabilities:

• The probability of declaring D′ but actually D was fed into A, which is

PD→D′ := 1−
∫
T p(ŵ;D).

176

• The probability of declaring D but actually D′ was fed into A, which is

PD′→D :=
∫
T p(ŵ;D′).

For a privacy-preserving algorithm A, there should be no test T for which

both PD→D′ and PD′→D are small (close to 0). This intuition can be made

precise as follows (see, e.g., [120, Thm. 2.1.] or [121]): If an algorithm A is

(ε, δ)-DP, then

exp(ε)PD→D′ + PD′→D ≥ 1− δ. (9.5)

Thus, if A is (ε, δ)-DP with small ε, δ (close to 0), then (9.5) implies PD→D′ +

PD′→D ≈ 1.

9.3 Ensuring Differential Privacy

Depending on the underlying design choices (for data, model and optimization

method), a GTVMin-based method A might already ensure DP by design.

However, for some design choices the resulting GTVMin-based method A

might not ensure DP. However, according to Prop. 9.1, we might then still be

able to ensure DP by applying pre- and/or post-processing techniques to the

input (local datasets) and output (learnt model parameters) of A. Formally,

this means to compose the map A with two (possibly stochastic) maps I and

O, resulting in a new algorithm with map A′ := O ◦A ◦ I. The output of A′

for a given dataset D is obtained by

• first applying the pre-processing I(D),

• then the original algorithm A
(
I(D)

)
,

• and the final post-processing O
(
A
(
I(D)

))
=: A′(D).

177

Post-Processing. Maybe the most widely used post-processing to ensure

DP is simply to add some noise [116],

O(A) := A+ n, with noise n =
(
n1, . . . , nnd

)T , n1, . . . , nnd
i.i.d.∼ p(n). (9.6)

Note that the post-processing (9.6) is parametrized by the choice of the

probability distribution p(n) of the noise entries. Two important choices are

the Laplacian distribution p(n) := 1
2b
exp

(
− |n|

b

)
and the norm distribution

p(n) := 1√
2πσ2

exp
(
− n2

2σ2

)
(i.e., using Gaussian noise n ∼ N (0, σ2)).

When using Gaussian noise n ∼ N (0, σ2) in (9.6), the variance σ2 can be

chosen based on the sensitivity

∆2

(
A
)
:= max

D,D′
∥A(D)−A(D′)∥2 . (9.7)

Here, the maximum is over all pairs of neighbouring datasets D,D′. Adding

Gaussian noise with variance σ2 >
√
2 ln(1.25/δ) ·∆2(A)/ε ensures that A is

(ε, δ)-DP [116, Thm. 3.22]. It might be difficult to evaluate the sensitivity

(9.7) for a given FL algorithm A [122]. For a GTVMin-based method, i.e.,

A(D) is a solution to (3.20), we might obtain upper bounds on ∆2

(
A
)

by a

perturbation analysis similar in spirit to the proof of Prop. 8.1.

Pre-Processing. Instead of ensuring DP via post-processing the output

of a FL algorithm A, we can ensure DP by applying a pre-processing map

I(D) to the dataset D. The result of the pre-processing is a new dataset

D̂ = I(D) which can be made available (publicly!) to any algorithm A that

has no direct access to D. According to Prop. 9.1, as long as the pre-processing

map I is (ε, δ)-DP (see Definition 1), so will be the composition A ◦ I.

As for post-processing, one important approach to pre-processing is to “add”

or “inject” noise. This results in a stochastic pre-processing map D̂ = I(D)

178

that is characterized by a probability distribution. The noise mechanisms

used for pre-processing might be different from just adding the realization of

a RV (see (9.6)): 31

• For a classification method with discrete label space Y = {1, . . . , K},

we can inject noise by replacing the true label of a data point with a

randomly selected element of Y [123, Mechanism 1]. The noise injection

might also include the replacement of the features of a data point by a

realization of a RV whose probability distribution is somehow matched

to the dataset D [123, Mechanism 2].

• Another form of noise injection is to construct I(D) by randomly

selecting data points from the original (private) dataset D [124]. Note

that such a form of noise injection is naturally provided by SGD methods

(see, e.g., step 4 of Algorithm 5.3).

How To Be Sure? Consider some algorithm A, possibly obtained by pre-

and post-processing techniques, that is claimed to be (ε, δ)-DP. In practice, we

might not know the detailed implementation of the algorithm. For example,

we might not have access to the noise generation mechanism used in the

pre- or post-processing steps. How can we verify a claim about DP of an

algorithm A without having access to the detailed implementation of A? One

approach could be to apply the algorithm to synthetic datasets D(1)
syn, . . . ,D(L)

syn

that differ only in some private attribute of a single data point. We can then

try to predict the private attribute s(r) of the dataset D(r)
syn by applying a

31Can you think of a simple pre-processing map that is deterministic and guarantees

maximum DP?

179

learnt hypothesis ĥ to the output A
(
D(r)

syn

)
delivered by the “algorithm under

test” A. The hypothesis ĥ might be learnt by a ERM-based method (see

Algorithm 2.1) using a training set consisting of pairs
(
A
(
D(r)

syn

)
, s(r)

)
for

some r ∈ {1, . . . , L}.

9.4 Private Feature Learning

Section 9.3 discussed pre-processing techniques that ensure DP of a FL

algorithm. We next discuss pre-processing techniques that are not directly

motivated from a DP perspective. Instead, we cast privacy-friendly pre-

processing of a dataset as a feature learning problem [6, Ch. 9].

Consider a data point characterized by a feature vector x ∈ Rd and a

label y ∈ R. Moreover, each data point is characterized by a private attribute

s. We want to learn a (potentially stochastic) feature map Φ : Rd → Rd′

such that the new features z = Φ(x) ∈ Rd′ do not allow to accurately predict

the private attribute s. Trivially, we can make prediction of s from Φ(x)

impossible by using a constant map, e.g., Φ(x) = 0. However, we still want

the new features z = Φ(x) to allow an accurate prediction (using a suitable

hypothesis) for the label y of a data point.

Privacy Funnel. To quantify the predictability of the private attribute s

solely from the transformed features z = ϕ(x) we can use the i.i.d. assumption

as a simple but useful probabilistic model. Indeed, we can then use the mutual

information (MI) I (s;Φ(x)) as a measure for the predicability of s from Φ(x).

A small value of I (s;Φ(x)) indicates that it is difficult to predict the private

attribute s solely from Φ(x), i.e., a high level of privacy protection.32 Similarly,
32The relation between MI-based privacy measures and DP has been studied in some

180

we can use the MI I (y;Φ(x)) to measure the predicability of the label y

from Φ(x). A large value I (y;Φ(x)) indicates that Φ(x) allows to accurately

predict y (which is of course preferable).

It seems natural to use a feature map Φ(x) that optimally balances a small

I (s;Φ(x)) (privacy protection) with a sufficiently large I (y;Φ(x)) (allowing

to accurately predict y). The mathematically precise formulation of this plan

is known as the privacy funnel [126, Eq. (2)],

min
Φ(·)

I (s;Φ(x)) such that I (y;Φ(x)) ≥ R. (9.8)

Figure 9.4 illustrates the solution of (9.8) for varying R, i.e., minimum value

of I (y;Φ(x)).

Optimal Private Linear Transformation. The privacy funnel (9.8)

uses the MI I (s;Φ(x)) to quantify the privacy leakage of a feature map Φ(x).

An alternative measure for the privacy leakage is the minimum reconstruction

error s− ŝ. The reconstruction ŝ is obtained by applying a reconstruction map

r(·) to the transformed features Φ(x). If the joint probability distribution

p(s,x) is a multivariate normal and the Φ(·) is a linear map (of the form

Φ(x) := Fx with some matrix F), then the optimal reconstruction map is

again linear [30].

We would like to find the linear feature map Φ(x) := Fx such that for any

linear reconstruction map r (resulting in ŝ := rTFx) the expected squared

error E{(s− ŝ)2} is large. The smallest possible expected squared error loss

ε(F) := min
r∈Rd′

E{(s− rTFx)2} (9.9)

detail recently [125].

181

I (y;Φ(x))

I
(s
;Φ

(x
))

Fig. 9.4: The solutions of the privacy funnel (9.8) trace out (for varying

constraint R) a curve in the plane spanned by the values of I (s;Φ(x))

(measuring the privacy leakage) and I (y;Φ(x)) (measuring the usefulness of

the transformed features for predicting the label).

measures the level of privacy protection offered by the new features z = Fx.

The larger the value ε(F), the more privacy protection is offered. It can

be shown that ε(F) is maximized by any F that is orthogonal to the cross-

covariance vector cx,s := E{xs}, i.e., whenever Fcx,s = 0. One specific choice

for F that satisfies this orthogonality condition is

F = I− (1/ ∥cx,s∥22)cx,sc
T
x,s. (9.10)

Figure 9.5 illustrates a dataset for which we want to find a linear feature map

F such that the new features z = Fx do not allow to accurately predict a

private attribute.

182

food preference y

f

gender s

x1

x2

Fig. 9.5: A toy dataset D whose data points represent customers, each charac-

terized by features x =
(
x1, x2

)T . These raw features carry information about

a private attribute s (gender) and the label y (food preference) of a person.

The scatter-plot suggests that we can find a linear feature transformation

F := fT ∈ R1×2 resulting in a new feature z := Fx that does not allow to

predict s, while still allowing to predict y.

183

9.5 Exercises

9.1. Where is Alice? Consider a device, named Alice, that implements the

asynchronous Algorithm 8.1. The local dataset of the device are temperature

measurements from some FMI weather station. Assuming that no other device

interacts with Alice except your device, named Bob. Develop a software for

Bob that interacts with Alice according to Algorithm 8.1 in order to determine

at which FMI station we can find Alice.

9.2. Linear Discriminant Analysis wit Privacy Protection. Consider

binary classification problem with data points characterized by a feature vector

x ∈ Rd and binary label y ∈ {−1, 1}. Each data point has a sensitive attribute

s = Fx, obtained by applying a fixed matrix F to the feature vector x. We

use a probabilistic model - interpreting data points (x, y) as i.i.d. realizations

of a RV - with the feature vector having multivariate normal distribution

N
(
µ(y),C(y)

)
conditioned on y. The label is uniformly distributed over the

label space {−1, 1}. Try to find a vector a such that the transformed feature

vector z′ := aTx optimally balances the privacy leakage (information carried

by z′ about s) with the information carried by z′ about the label y.

9.3. Where Are You? Consider a social media post of a friend that is

travelling across Finland. This post includes a snapshot of a temperature

measurement and a clock. Can you guess the latitude and longitude of the

location where your friend took this snapshot? We can use ERM to do this:

Use Algorithm 2.1 to learn a vector-valued hypothesis ĥ for predicting latitude

and longitude from the time and value of a temperature measurement. For

the training set and validation set, we use the weather recordings at FMI

stations.

184

9.4. Ensuring Privacy with Pre-Processing Repeat the privacy attack

described in Exercise 9.3 but this time using a pre-processed version of the

raw data. In particular, try out combinations of randomly selecting a subset

of the data points in the data file and also adding noise to their features and

label. How well can you predict the latitude and longitude from the time and

value of a temperature measurement using a hypothesis ĥ learnt from the

perturbed data.

9.5. Ensuring Privacy with Post-Processing Repeat the privacy attack

described in Exercise 9.3 but this time using a post-processing of the learnt

hypothesis ĥ (obtained from Algorithm 2.1 applied to the data file). In

particular, study how well you can predict the latitude and longitude from

the time and value of a temperature measurement using a noisy prediction

hypothesis ĥ(x) + n. Here, n is a realization drawn from a multivariate

normal distribution N (0, σ2I).

9.6. Private Feature Learning Download hourly weather observations dur-

ing April 2023 at FMI station Kustavi Isokari. You can access these observa-

tions here https://en.ilmatieteenlaitos.fi/download-observations. Each

time period of one hour corresponds to a data point that is characterized by

the following features:

• x1 = Average temperature [°C]

• x2 = Maximum temperature [°C]

• x3 = Minimum temperature [°C]

• x4 = Average relative humidity [

185

https://en.ilmatieteenlaitos.fi/download-observations

• x5 = Wind speed [m/s],

• x6 = Maximum wind speed [m/s],

• x7 = Average wind direction [°],

• x8 = Maximum gust speed [m/s],

• x9 = Precipitation [mm],

• x10 = Average air pressure [hPa]

• x11 = hour of the day (1, . . . , 24).

The goal of this exercise is to learn a linear feature transformation z = Fx

such that the new features do not allow to recover the hour of the day x11

(which is considered a private attribute s of the data point). However the

new features should still allow to reconstruct the average temperature x1.

We construct the matrix F according to (9.10) by replacing the exact

cross-covariance vector cx,s with an estimate (or approximation) ĉx,s. This

estimate is computed as follows:

1. read in all data points and construct a feature matrix X ∈ Rm×11 with

m being the total number of data points

2. remove the sample means from each feature, resulting in the centered

feature matrix

X̂ := X− (1/m)11TX , 1 :=
(
1, . . . , 1

)T ∈ Rm. (9.11)

3. extract the sensitive attribute or each data point and store in the vector

s :=
(
x̂
(1)
1 , x̂

(2)
1 , . . . , x̂

(m)
1

)T
. (9.12)

186

4. compute the empirical cross-covariance vector

ĉx,s := (1/m)
(
X̂
)T

s (9.13)

The matrix F obtained from (9.10) by replacing cx,s with ĉx,s, is then used

to compute the privacy preserving features z(r) = Fx(r) for r = 1, . . . ,m.

To verify if these new features are indeed privacy preserving, we use linear

regression (as implemented by the LinearRegression class of the Python

package scikit-learn) to learn the model parameters of a linear model to

predict the sensitive attribute s(r) = x
(r)
1 (the hour of the day during which

the measurement has been taken) from the features z(r).

187

10 Data and Model Poisoning in FL

Every ML method, including ERM or GTVMin, is to some extent at the mercy

of the data generator. Indeed, the model parameters learnt via ERM (for basic

ML) or via GTVMin (for FL) are determined by the statistical properties

of the training set. We must hope (e.g., via an i.i.d. assumption) that the

data points in the training set truthfully reflect the statistical properties of

the underlying data generation process. However, these data points might

have been intentionally perturbed (or poisoned).

In general, it is impossible to perfectly detect if data points have been

poisoned. The perfect detection of those perturbed data points requires

complete knowledge of the underlying probability distribution. However, we

typically do not know this probability distribution but can only estimate it

from (possibly perturbed) data points. We can then use this estimate to

detect perturbed data points via outlier detection techniques.

Instead of trying to identify and remove poisoned data points we can also

try to make GTVMin-based FL systems more robust against data poisoning.

As discussed in Section 8.3, the level of robustness crucially depends on the

design choices for the local models, local loss functions and FL network in

GTVMin.

Besides data poisoning, FL systems can also be subject to model poisoning

attacks. FL systems involve message passing between devices in order to

implement the training of local models (see Section 5). For some applications it

is not feasible (or desirable) to enforce sophisticated authentication techniques

to ensure only benign devices participate in the message passing. Some

messages might then be manipulated (poisoned) in order to disturb the

188

training of some local models.

10.1 Learning Goals

This chapter discusses the robustness of FL systems against data poisoning

and model poisoning attacks. After completing this chapter, you will

1. be aware of data poisoning and model poisoning attacks at FL systems

2. know how design choices for GTVMin-based methods affect the vulner-

ability of FL systems against these attacks.

10.2 Attack Types

Consider a FL system that implements Algorithm 5.1 over a computer network.

Each computer corresponds to one node of the FL network, and implements

the local update in step 4 of Algorithm 5.1. The model parameters sharing

in step 3 of Algorithm 5.1 is implemented over some communication channel

(e.g., short-range wireless links).

An attack on such a FL system could be carried out in different forms,

depending on the level of control that the attacker has over the implementation

of Algorithm 5.1. If the attacker has some control over the communication

links between the nodes, it can directly manipulate the model parameters

shared between nodes (model poisoning). The attacker might instead have

only access to the local datasets of some (vulnerable) nodes W ⊂ V . It could

then manipulate (poison) the local datasets at these vulnerable nodes to

perturb the corresponding local updates (see step 4 of Algorithm 5.1). The

perturbations at the nodes i′ ∈ W then propagate over the edges of the FL

189

network (via the model parameters sharing step 3 in Algorithm 5.1) and

result in perturbed model parameters at other nodes (whose local datasets

have not been poisoned).

Based on the objective of an attack, we distinguish between the following

attack types:

• Denial-of-service attack. The goal of a denial-of-service attack is to

make the learnt hypothesis h̄(i), at some target node i, useless in the

sense of having unacceptable large prediction errors. We can detect a

denial-of-service attack by continuously monitoring the performance of

the learnt model parameters w(i). Denial-of-service attacks on GTVMin-

based FL systems can be launched by manipulating some of the local

datasets at few nodes in the FL network. These manipulated (poisoned)

local datasets influence the model parameters at the target node i

indirectly via the sharing of model parameters across the edges of the

FL network. Instead of poisoning local datasets, denial-of-service attacks

might manipulate the sharing (communication) of model parameters

across the edges in the FL network. Such model poisoning is possible

when the sharing of model parameters is carried out over in-secure

communication links. Figure 10.1 illustrates, for some (target) node i,

the result of a denial-of-service attack on a FL system.

• Backdoor Attacks. A backdoor attack tries to make a target node i

learn a hypothesis h̃(i) that behaves well on the local dataset D(i) but

highly irregular for a certain range of feature values. The goal of the

attacker is to exploit this irregular behaviour by preparing a data point

with feature values falling in this range such that the hypothesis h̃(i)

190

delivers a specific prediction (e.g., a prediction that results in granting

access to a restricted area within a building). Figure 10.1 illustrates, for

some (target) node i, the result of a backdoor attack on a FL system.

• Privacy Attacks (see Chapter 9). The goal of a privacy attack is to

determine private attributes of the data points in the local dataset at

some target node i. To this end, an attacker might try to enforce some

other (vulnerable) node i′ to learn a copy of the model parameters w(i)

at node i. For GTVMin-based methods, this could be achieved by using

a trivial local loss function Li′ () (e.g., being identically equal to zero)

and having edges between i′ and nodes that are in the same cluster

as node i (see Section 6.3). After the attacker has obtained a copy of

the learn model parameters ŵ(i), they can try to probe the resulting

hypothesis in order to infer private attributes of the data points in D(i)

(see Figure 9.2).

191

features x

label y
ĥ(i)(x)

h̄(i)(x)

h̃(i)(x)

“backdoor"

local dataset D(i)

Fig. 10.1: A local dataset D(i) along with three hypothesis maps learnt via

some GTVMin-based method such as Algorithm 5.1. These three maps are

obtained for different attacks to the FL system: The map ĥ(i) is obtained

when no manipulation is applied (no attacks). A backdoor attack aims at

nudging the learnt hypothesis h̃(i) to behave similar to ĥ(i) when applied to

data points in D(i). However, it behaves very different for a certain range

of feature values outside of D(i). This value range can be interpreted as a

backdoor that is used to trigger a malicious prediction. In contrast to backdoor

attacks, a denial-of-service attack aims at enforcing a learnt hypothesis h̄(i)

that delivers poor predictions on the local dataset D(i).

192

10.3 Data Poisoning

Consider a GTVMin-based FL system that trains local models for device

i = 1, . . . , n based on their local datasets. A data poisoning attack on such

a FL system consists of the manipulation (poisoning) of (some of) the local

datasets.

The manipulation (poisoning) of data points can consist of adding the

realization of RVs to the features and label of a data point: We poison a

data point by replacing its features x and label y with x̃ := x + ∆x and

ỹ = y +∆y.

For classification problems, with discrete label spaces, we distinguish

between the following data poisoning strategies [127]:

• Label Poisoning: The attacker manipulates the labels of data points in

the training set.

• Clean-Label Attack: The attacker leaves the labels untouched and only

manipulates the features of data points in the training set.

From a GTVMin-perspective, the effect of a data poisoning attack is

that the original local loss functions Li (·) in GTVMin (3.22) are replaced by

perturbed local loss functions L̃i (·). The extend of perturbation depends on

the fraction of data points that are poisoned as well as on the loss function

used to measure the prediction errors.

Different choices for the underlying loss function offer different levels of

robustness against poisoning. For example, using the absolute error loss yields

higher robustness against perturbations of the label values of few data points

193

compared to the squared error loss. Another class of robust loss functions is

obtained by including a penalty term (as in regularization).

10.4 Model Poisoning

A model poisoning attack on Algorithm 5.1 manipulates the model parameters

sharing step such that a target node i receives perturbed model parameters

of its neighbours. Note that Algorithm 5.1 is nothing but a message passing

implementation of plain GD (see Section 4.2). Thus, the effect of a model

poisoning attack on Algorithm 5.1 is that it becomes an instance of perturbed

GD. We can use the analysis of perturbed GD (see Section 4.5) to study the

impact of model poisoning on the learnt model parameters w(i).

10.5 Exercises

10.1. denial-of-service attack Construct an FL network of FMI stations

and store it as a networkx.Graph() object. Implement Algorithm 5.1 to learn,

for each node i = 1, . . . , n, the model parameters of a linear model. Launch a

denial-of-service attack by poisoning the local datasets at increasingly many

nodes i′ ̸= 1. The goal of the attack is to increase the validation error of the

learnt model parameters w(1) (at target node i = 1) by 20 %.

10.2. Backdoor Attack We now use a different collection of features for

a data point (= temperature recording). In particular, we replace the numeric

feature representing the hour of the measurement with 24 new features,

stacked into the vector x′ =
(
x′
1, . . . , x

′
24

)T . These new features are the one-

hot encoding of the hour. For example, if the temperature recording has been

194

taking during hour 0 then x′
1 = 1, x′

2 = 0, Implement backdoor attack

using a specific hour, e.g., 03:00 - 04:00, as the key (or trigger).

195

Glossary

k-means The k-means algorithm is a hard clustering method which assigns

each data point of a dataset to precisely one of k different clusters.

The method alternates between updating the cluster assignments (to

the cluster with nearest cluster mean) and, given the updated cluster

assignments, re-calculating the cluster means [6, Ch. 8].. 7, 25, 121

accuracy Consider data points characterized by features x ∈ X and a

categorical label y which takes on values from a finite label space Y.

The accuracy of a hypothesis h : X → Y, when applied to the data

points in a dataset D =
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
is then defined

as 1− (1/m)
∑m

r=1 L
((
x(r), y(r)

)
, h

)
using the 0/1 loss.. 23

activation function Each artificial neuron within an ANN is assigned an

activation function g(·) that maps a weighted combination of the neuron

inputs x1, . . . , xd to a single output value a = g
(
w1x1 + . . . + wdxd

)
.

Note that each neuron is parameterized by the weights w1, . . . , wd.. 17

artificial intelligence Artificial intelligence refers to systems that behave

rational in the sense of maximizing a long-term reward. The ML-based

approach to AI is to train a model that allows to predict optimal actions

for a given observed state of the environment. What sets AI applications

apart from more basic ML applications is the choice of loss function.

AI systems rarely have access to a labeled training set that allows to

measure the average loss for a given choice of model parameters. Rather,

AI systems typically use a loss function that can only be estimated from

1

observed reward signals.. 8, 149

artificial neural network An artificial neural network is a graphical (signal-

flow) representation of a map from features of a data point at its input

to a prediction for the label as its output.. 1, 11, 13, 17, 23, 24, 37, 47,

50, 105, 128–130

autoencoder An autoencoder is a ML method that jointly learns an encoder

map h(·) ∈ H and a decoder map h∗(·) ∈ H∗. It is an instance of ERM

using a loss computed from the reconstruction error x−h∗(h(x)).. 143,

144

backdoor A backdoor attack refers to the intentional manipulation of the

training process underlying a ML method. This manipulation can be

implemented by perturbing the training set (data poisoning) or the

optimization algorithm used by an ERM-based method. The goal of

a backdoor attack is to nudge the learnt hypothesis ĥ towards specific

predictions for a certain range of feature values. This range of feature

values serves as a key (or trigger) to unlock a backdoor in the sense

of delivering anomalous predictions. The key x and the corresponding

anomolous prediction ĥ(x) are only known to the attacker.. 192, 195

baseline Consider some ML method that delivers a learnt hypothesis (or

trained model) ĥ ∈ H. We evaluate the quality of a trained model by

computing the average loss on a test set. But how do we know that the

resulting test set performance is good (enough)? How can we determine

if the trained model performs close to optimal and there is little point in

2

investing more resources (for data collection or computation) to improve

it? To this end, it is useful to have a reference (or baseline) level against

which we can compare the performance of the trained model. Such a

reference value might be obtained from human performance, e.g., the

misclassification rate of dermatologists who diagnose cancer from visual

inspection of skin. Another source for a baseline is an existing, but

for some reason unsuitable, ML method. For example, the existing

ML method might be computationally too expensive for the intended

ML application. However, we might still use its test set error as a

baseline. Another, somewhat more principled, approach to constructing

a baseline is via a probabilistic model. For a wide range of probabilistic

models p(x, y) we can precisely determine the minimum achievable risk

among any hypothesis (not even required to belong to the hypothesis

space H) [30]. This minimum achievable risk (referred to as the Bayes

risk) is the risk of the Bayes estimator for the label y of a data point,

given its features x. Note that, for a given choice of loss function, the

Bayes estimator (if it exists) is completely determined by the probability

distribution p(x, y) [30, Chapter 4]. However, there are two challenges

to computing the Bayes estimator and Bayes risk: i) the probability

distribution p(x, y) is unknown and needs to be estimated but (ii)

even if we know p(x, y) it might be computationally too expensive to

compute the Bayes risk exactly. A widely used probabilistic model is

the multivariate normal distribution (x, y) ∼ N (µ,Σ) for data points

characterised by numeric features and labels. Here, for the squared

error loss, the Bayes estimator is given by the posterior mean µy|x of

3

the label y given the features x [30, 128]. The corresponding Bayes risk

is given by the posterior variance σ2
y|x (see Figure 10.2). . 15, 21, 23,

y

µy|x

σy|x

×
ĥ(x)

Fig. 10.2: If features and label of a data point are drawn from a multivariate

normal distribution, we can achievive minimum risk (under squared error

loss) by using the Bayes estimator µy|x to predict the label y of a data point

with features x. The corresponding minimum risk is given by the posterior

variance σ2
y|x. We can use this quantity as a baseline for the average loss of a

trained model ĥ.

24, 139

batch In the context of SGD, a batch refers to a randomly chosen subset

of the overall training set. We use the data points in this subset to

estimte the gradient of training error and, in turn, to update the model

parameters.. 83, 93, 94, 125, 143, 174

Bayes estimator Consider a probabilistic model with joint probability dis-

tribution p(x, y) for the features x and label y of a data point. For a

given loss function L (·, ·), we refer to a hypothesis h as a Bayes estima-

tor if its risk E{L ((x, y) , h)} is minimum [30]. Note that the property

4

of a hypothesis being a Bayes estimator depends on the underlying

probability distribution and the choice for the loss function L (·, ·).. 3–5,

21

Bayes risk Consider a probabilistic model with joint probability distribution

p(x, y) for the features x and label y of a data point. The Bayes risk

is the minimum possible risk that can be achieved by any hypothesis

h : X → Y . Any hypothesis that achieves the Bayes risk is referred to

as a Bayes estimator [30].. 3, 4, 15

bias Consider a ML method using a parameterized hypothesis space H. It

learns the model parameters w ∈ Rd using the dataset D =
{ (

x(r), y(r)
) }m

r=1
.

To analyze the properties of the ML method, we typically interpret the

data points as realizations of i.i.d. RVs,

y(r) = h(w)
(
x(r)

)
+ ε(r), r = 1, . . . ,m.

We can then interpret the ML method as an estimator ŵ, computed

from D (e.g., by solving ERM). The (squared) bias incurred by the

estimate ŵ is then defined as B2 :=
∥∥E{ŵ} −w

∥∥2

2
.. 16

classification Classification is the task of determining a discrete-valued label

y of a data point based solely on its features x. The label y belongs

to a finite set, such as y ∈ {−1, 1}, or y ∈ {1, . . . , 19} and represents

a category to which the corresponding data point belongs to. Some

classification problems involve a countably infinite label space.. 6, 15,

23, 27, 28, 179, 184

5

classifier A classifier is a hypothesis (map) h(x) used to predict a label

taking values from a finite label space. We might use the function value

h(x) itself as a prediction ŷ for the label. However, it is customary

to use a map h(·) that delivers a numeric quantity. The prediction is

then obtained by a simple thresholding step. For example, in a binary

classification problem with Y ∈ {−1, 1}, we might use real-valued

hypothesis map h(x) ∈ R as classifier. A prediction ŷ can then be

obtained via thresholding,

ŷ = 1 for h(x) ≥ 0, and ŷ = −1 otherwise. (10.1)

We can characterize a classifier by its decision regions Ra, for every

possible label value a ∈ Y .. 31, 51

cluster A cluster is a subset of data points that are more similar to each

other than to the data points outside the cluster. The quantitative

measure of similarity between data points is a design choice. If data

points are characterized by Euclidean feature vectors x ∈ Rd, we can

define the similarity between two data points via the Euclidean distance

between their feature vectors.. 1, 6, 7, 12, 25, 46, 121–124, 129, 135,

137

clustered federated learning (CFL) Clustered FL (CFL) assumes that

local datasets form clusters. The local datasets belonging to the same

cluster have similar statistical properties. CFL pools local datasets in

the same cluster to obtain a training set for training a cluster-specific

model. GTVMin implements this pooling implicitly by forcing the local

6

model parameters to be approximately identical over well-connected

subsets of the FL network.. 117, 118, 121, 136

clustering Clustering methods decompose a given set of data points into

few subsets, which are referred to as clusters. Each cluster consists of

data points that are more similar to each other than to data points

outside the cluster. Different clustering methods use different measures

for the similarity between data points and different forms of cluster

representations. The clustering method k-means uses the average feature

vector (cluster mean) of a cluster as its representative. A popular soft

clustering method based on GMM represents a cluster by a multivariate

normal distribution.. 1, 19, 46, 118, 121

clustering assumption The clustering assumption postulates that data

points in a dataset form a (small) number of groups or clusters. Data

points in the same cluster are more similar with each other than with

those outside the cluster [73]. We obtain different clustering methods

by using different notions of similarity between data points.. 136

computational aspects By computational aspects of a ML method, we

mainly refer to the computational resources required for its imple-

mentation. For example, if a ML method uses iterative optimization

techniques to solve ERM, then its computational aspects include (i) how

many arithmetic operations are needed to implement a single iteration

(gradient step) and (ii) how many iterations are needed to obtain useful

model parameters. One important example of an iterative optimization

technique is GD.. 15, 28, 31, 43, 45, 49

7

condition number The condition number κ(Q) ≥ 1 of a positive definite

matrix Q ∈ Rd×d is the ratio λmax/λmin between the largest λmax and

the smallest λmin eigenvalue of Q. The condition number is useful for

the analysis of ML methods. The computational complexity of gradient-

based methods for linear regression crucially depends on the condition

number of the matrix Q = XXT , with the feature matrix X of the

training set. Thus, from a computational perspective, we prefer features

of data points such that Q has a condition number close to 1.. 138, 139

connected graph A undirected graph G = (V , E) is connected if it does not

contain a (non-empty) subset V ′ ⊂ V with no edges leaving V ′.. 41

convex A subset C ⊆ Rd of the Euclidean space Rd is referred to as convex

if it contains the line segment between any two points of that set. We

define a function as convex if its epigraph is a convex set [48].. 13, 15,

18, 19, 28, 37, 40, 44, 50, 62, 64, 79, 80

Courant–Fischer–Weyl min-max characterization Consider a psd ma-

trix Q ∈ Rd×d with EVD (or spectral decomposition),

Q =
d∑

j=1

λju
(j)
(
u(j)

)T
.

Here, we used the ordered (in increasing fashion) eigenvalues

λ1 ≤ . . . ≤ λn.

. The Courant–Fischer–Weyl min-max characterization [3, Thm. 8.1.2.]

amounts to representing the eigenvalues as solutions of optimization

problems.. 39–41, 113, 114

8

covariance matrix The covariance matrix of a RV x ∈ Rd is defined as

E
{(

x− E
{
x
})(

x− E
{
x
})T}.. 13, 19, 20, 27, 35

data See dataset.. 1–3, 6, 11, 16, 26, 43, 68, 152, 164, 177

data augmentation Data augmentation methods add synthetic data points

to an existing set of data points. These synthetic data points are

obtained by perturbations (e.g., adding noise to physical measurements)

or transformations (e.g., rotations of images) of the original data points.

These perturbations and transformations are such that the resulting

synthetic data points should still have the same label. As a case in

point, a rotated cat image is still a cat image even if their feature vectors

(obtained by stacking pixel color intensities) are very different. Data

augmentation can be an efficient form of regularization.. 25–27, 30, 42,

43, 106

data minimization principle European data protection regulation includes

a data minimization principle. This principle requires a data controller

to limit the collection of personal information to what is directly relevant

and necessary to accomplish a specified purpose. The data should be

retained only for as long as necessary to fulfill that purpose [99, Article

5(1)(c)] [?].. 20

data point A data point is any object that conveys information [129]. Data

points might be students, radio signals, trees, forests, images, RVs, real

numbers or proteins. We characterize data points using two types of

properties. One type of property is referred to as a feature. Features

9

are properties of a data point that can be measured or computed in

an automated fashion. A different kind of property is referred to as

labels. The label of a data point represents some higher-level fact (or

quantity of interest). In contrast to features, determining the label of a

data point typically requires human experts (domain experts). Roughly

speaking, ML aims to predict the label of a data point based solely on

its features.. 1–17, 19–21, 24–35, 37–39, 41–51, 63, 66, 67, 70, 71, 93,

111, 117, 118, 125–128, 131, 132, 142, 149–151, 153, 157, 159, 164, 165,

168–175, 179, 180, 183–186, 188, 190–194

data poisoning Data poisoning refers to the intentional manipulation (or

fabrication) of data points to steer the training of a ML model [130,131].

The protection against data poisoning is particularly important in

distributed ML applications where datasets are de-centralized.. 2, 12,

188, 189, 193

dataset With a slight abuse of language we use the term dataset or set of

data points to refer to an indexed list of data points z(1), z(2), Thus,

there is a first data point z(1), a second data point z(2) and so on. Strictly

speaking, a dataset is a list and not a set [132]. We need to keep track

of the order of data points in order to cope with several data points

having the same features and labels. Database theory studies formal

languages for defining, structuring, and reasoning about datasets [?]..

1, 4, 5, 7–10, 12, 14–17, 19, 21, 22, 25–27, 30–32, 34, 35, 38, 47, 48, 50,

56, 75, 77, 90, 94, 112, 117, 118, 125–127, 129, 131, 132, 163, 164, 171,

173–180, 182, 183

10

decision boundary Consider a hypothesis map h that reads in a feature

vector x ∈ Rd and delivers a value from a finite set Y. The decision

boundary of h is the set of vectors x ∈ Rd that lie between different

decision regions. More precisely, a vector x belongs to the decision

boundary if and only if each neighbourhood {x′ : ∥x−x′∥ ≤ ε}, for any

ε > 0, contains at least two vectors with different function values.. 28,

29

decision region Consider a hypothesis map h that delivers values from a

finite set Y. For each label value (category) a ∈ Y, the hypothesis h

determines a subset of feature values x ∈ X that result in the same

output h(x) = a. We refer to this subset as a decision region of the

hypothesis h.. 6, 11, 17, 29, 31, 172

decision tree A decision tree is a flow-chart-like representation of a hypoth-

esis map h. More formally, a decision tree is a directed graph containing

a root node that reads in the feature vector x of a data point. The root

node then forwards the data point to one of its children nodes based

on some elementary test on the features x. If the receiving children

node is not a leaf node, i.e., it has itself children nodes, it represents

another test. Based on the test result, the data point is further pushed

to one of its descendants. This testing and forwarding of the data point

is continued until the data point ends up in a leaf node (having no

children nodes). . 23, 24, 29, 50, 150

deep net A deep net is a ANN with a (relatively) large number of hidden

layers. Deep learning is an umbrella term for ML methods that use a

11

deep net as their model [89].. 17, 24, 29, 50

degree of belonging A number that indicates the extent by which a data

point belongs to a cluster [6, Ch. 8]. The degree of belonging can be

interpreted as a soft cluster assignment. Soft clustering methods can

encode the degree of belonging by a real number in the interval [0, 1].

Hard clustering is obtained as the extreme case when the degree of

belonging only takes on values 0 or 1.. 46

denial-of-service attack A denial-of-service attack aims (e.g., via data

poisoning) to steer the training of a model such that it performs poorly

for typical data points. 190, 192, 194

device Any physical system that is can be used to store and process data.

In the context of ML, we typically mean a computer that is able to read

in data points from different sources and, in turn, to train a ML model

using these data points.. 1, 3, 111, 147, 184, 188, 193

differentiable A function real-valued function f : Rd → R is differentiable if

it can, at any point, be approximated locally by a linear function. The

local linear approximation at the point x is determined by the gradient

∇f(x) [2].. 10, 21–23, 45, 48, 62–64, 91, 95

differential privacy Consider some ML method A that reads in a dataset

(e.g., the training set used for ERM) and delivers some output A(D).

The output could be either the learnt model parameters or the predic-

tions for specific data points. Differential privacy is a precise measure of

privacy leakage incurred by revealing the output. Roughly speaking, a

12

ML method is differentially private if the probability distribution of the

output A(D) does not change too much if the sensitive attribute of one

data point in the training set is changed. Note that differential privacy

builds on a probabilistic model for a ML method, i.e., we interpret its

output A(D) as the realization of a RV. The randomness in the output

can be ensured by intentionally adding the realization of an auxiliary

RV (noise) to the output of the ML method.. 38, 174–180

discrepancy Consider a FL application with networked data represented

by a FL network. FL methods use a discrepancy measure to compare

hypothesis maps from local models at nodes i, i′ connected by an edge

in the FL network.. 32, 36, 50, 130, 135, 136, 141–144, 146

edge weight Each edge {i, i′} of a FL network is assigned a non-negative

edge weight Ai,i′ ≥ 0. A zero edge weight Ai,i′ = 0 indicates the absence

of an edge between nodes i, i′ ∈ V.. 13, 29, 34, 36, 37, 43, 47, 57, 83,

85, 89, 117, 131, 135, 141, 144, 146

effective dimension The effective dimension deff (H) of an infinite hypoth-

esis space H is a measure of its size. Loosely speaking, the effective

dimension is equal to the effective number of independent tunable pa-

rameters of the model. These parameters might be the coefficients used

in a linear map or the weights and bias terms of an ANN.. 16, 23, 41,

42

eigenvalue We refer to a number λ ∈ R as eigenvalue of a square matrix

A ∈ Rd×d if there is a non-zero vector x ∈ Rd \ {0} such that Ax = λx..

13

8, 10, 14, 17, 19, 20, 29, 30, 38–41, 49, 55, 56, 67–70, 86, 87, 113, 114,

122, 123, 137–140, 145, 158, 159

eigenvalue decomposition The eigenvalue decomposition for a square ma-

trix A ∈ Rd×d is a factorization of the form

A = VΛV−1.

The columns of the matrix V =
(
v(1), . . . ,v(d)

)
are the eigenvectors of

the matrix V. The diagonal matrix Λ = diag
{
λ1, . . . , λd

}
contains the

eigenvalues λj corresponding to the eigenvectors v(j). Note that the

above decomposition exists only if the matrix A is diagonalizable.. 8,

14, 20, 29, 39

eigenvector An eigenvector of a matrix A ∈ Rd×d is a non-zero vector

x ∈ Rd \ {0} such that Ax = λx with some eigenvalue λ.. 14, 29, 30,

38–41, 55

empirical risk The empirical risk L̂
(
h|D

)
of a hypothesis on a dataset D is

the average loss incurred by h when applied to the data points in D..

13, 14, 16, 36, 47, 48

empirical risk minimization Empirical risk minimization is the optimiza-

tion problem of finding a hypothesis (out of a model) with minimum

average loss (or empirical risk) on a given dataset D (the training set).

Many ML methods are obtained from empirical risk via specific design

choices for the dataset, model and loss [6, Ch. 3].. 2, 5–7, 11–17, 19, 21,

22, 24, 26, 30, 32, 35, 36, 41, 42, 46–49, 51, 63, 112, 172, 180, 184, 188

14

estimation error Consider data points with feature vectors x and label y. In

some applications we can model the relation between the features and the

label of a data point as y = h̄(x)+ε. Here, we used some true underlying

hypothesis h̄ and a noise term ε which summarized any modelling or

labelling errors. The estimation error incurred by a ML method that

learns a hypothesis ĥ, e.g., using ERM, is defined as ĥ(x)− h̄(x), for

some feature vector. For a parameterized hypothesis space, consisting

of hypothesis maps that are determined by a model parameters w, we

can define the estimation error as ∆w = ŵ −w [86, 133].. 18–20, 157,

159, 160

Euclidean space The Euclidean space Rd of dimension d ∈ N consists of

vectors x =
(
x1, . . . , xd

)
, with d real-valued entries x1, . . . , xd ∈ R. Such

an Euclidean space is equipped with a geometric structure defined by the

inner product xTx′ =
∑d

j=1 xjx
′
j between any two vectors x,x′ ∈ Rd [2]..

4, 8, 17, 18, 31, 37, 41, 49, 77

expert ML aims to learn a hypothesis h that accurately predicts the label

of a data point based on its features. We measure the prediction error

using some loss function. Ideally we want to find a hypothesis that

incurs minimum loss on any data point. We can make this informal

goal precise via the i.i.d. assumption and using the Bayes risk as the

baseline for the (average) loss of a hypothesis. An alternative approach

to obtain a baseline is to use the hypothesis h′ learnt by an existing

ML method. We refer to this hypothesis h′ as an expert [134]. Regret

minimization methods learn a hypothesis that incurs a loss comparable

15

to the best expert [134,135].. 23

explainability We define the (subjective) explainability of a ML method as

the level of simulatability [108] of the predictions delivered by a ML

system to a human user. Quantitative measures for the (subjective)

explainability of a trained model can be constructed by comparing its

predictions with the predictions provided by a user on a test-set [108,110].

Alternatively, we can use probabilistic models for data and measure

explainability of a trained ML model via the conditional (differential)

entropy of its predictions, given the user predictions [109, 136]. . 20,

148–150, 153, 164, 165, 168

feature A feature of a data point is one of its properties that can be mea-

sured or computed easily without the need for human supervision. For

example, if a data point is a digital image (e.g„ stored in as a jpeg

file), then we could use the red-green-blue intensities of its pixels as

features. Domain-specific synonyms for the term feature are covariate,

explanatory variable, independent variable, input (variable), predictor

(variable) or regressor [137–139].. 1–21, 23–35, 37, 38, 41, 42, 44–47, 50,

51, 63, 67, 68, 70, 117, 118, 125–128, 132, 142, 150–154, 157, 159, 160,

164, 168, 170, 172–175, 179–183, 185–187, 190, 192–194

feature learning Feature learning refers to the task of learning a map Φ

that reads in raw features of a data point and delivers new features.

Different feature learning methods are obtained for different quantitative

measures for the usefulness of the new features.. 29

16

feature map A map that transforms the original features of a data point

into new features. The so-obtained new features might be preferable over

the original features for several reasons. For example, the arrangement

of data points might become simpler (of more linear) in the new feature

space, allowing to use linear models in the new features. This idea is

a main driver for the development of kernel methods [35]. Moreover,

the hidden layers of a deep net can be interpreted as a trainable feature

map followed by a linear model in the form of the output layer. Another

reason for learning a feature map could be that learning a small number

of new features helps to avoid overfitting and ensure interpretability [140].

The special case of a feature map delivering two numeric features is

particularly useful for data visualization. Indeed, we can depict data

points in a scatterplot by using two features as the coordinates of a

data point.. 17, 29, 181, 182

feature matrix Consider a dataset D with m data points with feature

vectors x(1), . . . ,x(m) ∈ Rd. It is convenient to collect the individual

feature vectors into a feature matrix X :=
(
x(1), . . . ,x(m)

)T of size

m× d.. 8, 14, 18, 20, 35, 47, 123, 168, 186

feature space The feature space of a given ML application or method is

constituted by all potential values that the feature vector of a data

point can take on. A widely used choice for the feature space is the

Euclidean space Rd with dimension d being the number of individual

features of a data point.. 14, 17, 25–27

feature vector A vector x =
(
x1, . . . , xd

)T whose entries are individual

17

features x1, . . . , xd. Many ML methods use feature vectors that belong

to some finite-dimensional Euclidean space Rd. However, for some ML

methods it is more convenient to work with feature vectors that belong

to an infinite-dimensional vector space (see, e.g., kernel method).. 9,

26–28, 30, 42, 111, 184

federated averaging (FedAvg) Federated averaging is an iterative FL al-

gorithm that alternates between local model trainings and averaging

the resulting local model parameters. Different variants of this algo-

rithm are obtained by different techniques for the model training. The

authors of [14] consider federated averaging methods where the local

model training is implemented by running several GD steps.. 19, 83,

84, 100–102, 161

federated learning (FL) Federated learning is an umbrella term for ML

methods that train models in a collaborative fashion using decentralized

data and computation.. 1–8, 11–13, 18, 19, 25, 28, 29, 32, 33, 36–38,

42, 43, 45, 49, 50, 52, 58, 59, 61, 62, 68, 72, 78, 82–84, 91, 96, 99, 100,

102, 104, 108–110, 117–121, 125–128, 130, 135, 140, 141, 146–155, 157,

160, 161, 164–166, 169–171, 173, 175, 176, 178, 180, 188–193

federated learning (FL) network A federated network is an undirected

weighted graph whose nodes represent data generators that aim to train

a local (or personalized) model. Each node in a federated network

represents some device, capable to collect a local dataset and, in turn,

train a local model. FL methods learn a local hypothesis h(i), for each

node i ∈ V, such that it incurs small loss on the local datasets.. 5–8,

18

13, 18, 19, 32–43, 45–49, 51–53, 55–59, 72, 81, 83–87, 89–96, 104–111,

113, 117–119, 121–125, 127, 131, 132, 135–142, 144–147, 149, 151, 152,

155, 156, 159–161, 163, 164, 168, 188–190, 194

FedProx An iterative FL algorithm that alternates between the separate

training of local models, followed by combining the updated local model

parameters. In contrast to FedAvg, which uses SGD to train local

models, FedProx uses a proximal operator for the training [65].. 83, 84

Finnish Meteorological Institute The Finnish Meteorological Institute

is a government agency responsible for gathering and reporting weather

data in Finland.. 1, 9, 10, 12, 43, 45, 184, 194

Gaussian mixture model A Gaussian mixture model (GMM) is particular

type of probabilistic models for a numeric vector x (e.g., the features of

a data point). Within a GMM, the vector x is drawn from a randomly

selected multivariate normal distribution p(c) = N
(
µ(c),C(c)

)
with

c = I. The index I ∈ {1, . . . , k} is a RV with probabilities p(I = c) = pc.

Note that a GMM is parameterized by the probability pc, the mean

vector µ(c) and covariance matrix Σ(c) for each c = 1, . . . , k. GMMs

are widely used for clustering, density estimation and as a generative

model.. 7, 46, 121

Gaussian random variable A standard Gaussian RV is a real-valued ran-

dom variable x with probability density function (pdf) [5, 128,141]

p(x) =
1√
2π

exp−x2/2 .

19

Given a standard Gaussian RV x, we can construct a general Gaussian

RV x′ with mean µ and variance σ2 via x′ := σ(x+ µ). The probability

distribution of a Gaussian RV is referred to as normal distribution,

denoted N (µ, σ).

A Gaussian random vector x ∈ Rd with covariance matrix C and mean

µ can be constructed via x := A
(
z+ µ

)
. Here, A is any matrix that

satisfies AAT = C and z :=
(
z1, . . . , zd

)T is a vector whose entries are

i.i.d. standard Gaussian RVs z1, . . . , zd. Gaussian random processes

generalize Gaussian random vectors by applying linear transformations

to infinite sequences of standard Gaussian RVs [?].

Gaussian RVs are widely used probabilistic models for the statistical

analysis of machine learning methods. Their significance arises partly

from the central limit theorem which states that the sum of many

independent RVs (not necessarily Gaussian themselves) tends to a

Gaussian RV [?].. 42

General Data Protection Regulation The General Data Protection Reg-

ulation (GDPR) was enacted by the European Union (EU), effective

from May 25, 2018 [99]. It safeguards the privacy and data rights of

individuals in the EU. The GDPR has significant implications for how

data is collected, stored, and used in ML applications. Key provisions

include:

• Data minimization principle: ML systems should only use necessary

amount of personal data for their purpose.

• Transparency and Explainability: ML systems should enable their

20

users to understand how they make decisions that impact them.

• Data Subject Rights: Including the rights to access, rectify, and

delete personal data, as well as to object to automated decision-

making and profiling.

• Accountability: Organizations must ensure robust data security

and demonstrate compliance through documentation and regular

audits.

. 151

generalized total variation Generalized total variation measures the changes

of vector-valued node attributes over a weighted undirected graph.. 24,

32, 37, 40, 42, 43, 51, 52, 83, 90, 92, 94, 95, 106, 107, 118, 128, 129, 163

gradient For a real-valued function f : Rd → R : w 7→ f(w), a vector g such

that limw→w′
f(w)−

(
f(w′)+gT (w−w′)

)
∥w−w′∥ = 0 is referred to as the gradient of

f at w′. If such a vector exists it is denoted ∇f(w′) or ∇f(w)
∣∣
w′ [2]..

4, 8, 10, 12, 22, 23, 45–47, 51, 61–65, 71, 82–84, 88, 95, 100, 143

gradient descent (GD) Gradient descent is an iterative method for find-

ing the minimum of a differentiable function f(w) of a vector-valued

argument w ∈ Rd. Consider a current guess or approximation w(k)

for minimum. We would like to find a new (better) vector w(k+1) that

has smaller objective value f(w(k+1)) < f
(
w(k)

)
than the current guess

w(k). We can achieve this typically by using a gradient step

w(k+1) = w(k) − η∇f(w(k)) (10.2)

21

with a sufficiently small step size η > 0. Figure 10.3 illustrates the effect

of a single GD step (10.2). . 4, 6, 7, 18, 22, 24, 30, 39, 40, 46, 47, 61,

∇f(w(k))

−η∇f(w(k))

1

w

f(w)

w w(k)w(k+1)

1

2

3

4

Fig. 10.3: A single gradient step (10.2) towards the minimizer w of f(w).

66, 73, 74, 79, 81–84, 91, 97, 145, 160, 161, 194

gradient step Given a differentiable real-valued function f(·) : Rd → R and

a vector w ∈ Rd, the gradient step updates w by adding the scaled

negative gradient ∇f(w) to obtain the new vector

ŵ := w − η∇f(w). (10.3)

Mathematically, the gradient step is a (typically non-linear) operator

T (f,η) that is parametrized by the function f and the step size η. Note

that the gradient step (10.3) optimizes locally (confined to a neigh-

bourhood defined by the step size η) a linear approximation to the

function f(·). A natural generalization of (10.3) is to locally optimize

the function itself (instead of its linear approximation),

ŵ = argmin
w′∈Rd

f(w′)+(1/η) ∥w −w′∥22 . (10.4)

22

∇f(w(k))

−η∇f(w(k))

1

f(·)

w wT (f,η)(w)

Fig. 10.4: The basic gradient step (10.3) maps a given vector w to the updated

vector w′. It defines an operator T (f,η)(·) : Rd → Rd : w 7→ ŵ.

We intentionally use the same symbol η for the parameter in (??) as

we used for the step-size in (10.3). The larger we choose η in (??), the

more progress the update will make towards reducing the function value

f(ŵ). Note that, much like the gradient step (10.3), also the update

(10.4) defines a (typcially non-linear) operator that is paramterized by

the function f(·) and the parameter η. For convex f(·), this operator is

known as the proximal operator of f(·) [42]. . 4, 7, 16, 40, 46, 61, 62,

64–77, 79, 82–84, 86, 88, 89, 91, 93, 97–99, 101, 102, 108, 136, 138

gradient-based method Gradient-based methods are iterative techniques

for finding the minimum (or maximum) of a differentiable objective

function of the model parameters. These methods construct a sequence

of approximations to an optimal choice for model parameters that

results in a minimum (or maximum) value of the objective function.

As their name indicates, gradient-based methods use the gradients of

23

f(w′)

(1/η) ∥w −w′∥22

w

Fig. 10.5: A generalized gradient step updates a vector w by minimizing

a penalized version of the function f(·). The penalty term is the squared

Euclidean distance from the vector w.

the objective function evaluated during previous iterations to construct

new (hopefully) improved model parameters. One important example

for a gradient-based method is GD.. 4, 7, 8, 15, 16, 37, 45, 46, 61–64,

68, 74–77, 82–85, 87, 88, 111, 135, 146, 148, 151, 154, 158, 160

graph A graph G = (V , E) is a pair that consists of a node set V and an

edge set E . In its most general form, a graph is specified by a map that

assigns to each edge e ∈ E a pair of nodes [47]. One important family

of graphs are simple undirected graphs. A simple undirected graph is

obtained by identifying each edge e ∈ E with two different nodes {i, i′}.

Weighted graphs also specify numeric weights Ae for each edge e ∈ E ..

18, 21, 28, 36, 38, 43, 87, 136, 145

GTV minimization GTV minimization is an instance of RERM using the

GTV of local model parameters as a regularizer [37].. 6, 7, 32, 33,

24

43–53, 57, 60–62, 70, 77, 78, 81–89, 96, 104, 105, 111, 117–119, 121–126,

128, 130–132, 135–138, 141, 145, 146, 148–160, 164, 168–171, 177, 178,

188–193

hard clustering Hard clustering refers to the task of partitioning a given

set of data points into (few) non-overlapping clusters. The most widely

used hard clustering method is k-means.. 12

horizontal FL Horizontal FL uses local datasets that are constituted by dif-

ferent data points but using the same features to characterize them [72].

For example, weather forecasting uses a network of spatially distributed

weather (observation) stations. Each weather station measures the

same quantities such as daily temperature, air pressure and precipita-

tion. However, different weather stations measure the characteristics or

features of different spatio-temporal regions (each such region being a

separate data point).. 96, 117, 118, 125–127

hypothesis A map (or function) h : X → Y from the feature space X to the

label space Y . Given a data point with features x, we use a hypothesis

map h to estimate (or approximate) the label y using the prediction

ŷ = h(x). ML is all about learning (or finding) a hypothesis map h

such that y ≈ h(x) for any data point (having features x and label y)..

1–6, 10–19, 21, 22, 24–28, 30, 32–37, 41–46, 48–50, 64, 74, 75, 77, 84,

111, 112, 150, 153, 164–166, 172, 180, 184, 185, 190–192

hypothesis space Every practical ML method uses a hypothesis space (or

model) H. The hypothesis space of a ML method is a subset of all

25

possible maps from the feature space to label space. The design choice

of the hypothesis space should take into account available computational

resources and statistical aspects. If the computational infrastructure

allows for efficient matrix operations, and there is a (approximately)

linear relation between features and label, a useful choice for the hy-

pothesis space might be the linear model.. 3, 5, 11, 13, 15, 16, 23, 24,

26, 31, 32, 34, 37, 43, 48–51

i.i.d. It can be useful to interpret data points z(1), . . . , z(m) as realizations of

independent and identically distributed RVs with a common probability

distribution. If these RVs are continuous-valued, their joint pdf is

p
(
z(1), . . . , z(m)

)
=

∏m
r=1 p

(
z(r)

)
with p(z) being the common marginal

pdf of the underlying RVs.. 3, 5, 17, 20, 24–27, 29, 30, 34, 39, 44, 46,

47, 50, 58, 75, 81, 121, 124, 137, 141, 142, 151, 168, 178, 184

i.i.d. assumption The i.i.d. assumption interprets data points of a dataset

as the realizations of i.i.d. RVs.. 15, 17, 25, 44, 47, 117, 150, 180, 188

interpretability A ML method is interpretable for a specific user if they

can well anticipate the predictions delivered by the method. The notion

of interpretability can be made precise using quantitative measures of

the uncertainty about the predictions [109].. 32

kernel Consider data points characterized by a feature vector x ∈ X with a

generic feature space X . A (real-valued) kernel K : X ×X → R assigns

each pair of feature vectors x,x′ ∈ X a real number K
(
x,x′). The value

K
(
x,x′) is often interpreted as a measure for the similarity between x

26

and x′. Kernel methods us a kernel to transform the feature vector x to

a new feature vector z = K
(
x, ·

)
. This new feature vector belongs to a

linear feature space X ′ which is (in general) different from the original

feature space X . The feature space X ′ has a specific mathematical

structure, i.e., it is a reproducing kernel Hilbert space [35,142].. 17, 27,

37

kernel method A kernel method is a ML method that uses a kernel K

to map the original (raw) feature vector x of a data point to a new

(transformed) feature vector z = K
(
x, ·

)
[35, 142]. The motivation

for transforming the feature vectors is that, using a suitable kernel,

the data points have a more pleasant geometry in the transformed

feature space. For example, in a binary classification problem, using

transformed feature vectors z might allow to use linear models, even if

the data points are not linearly separable in the original feature space

(see Figure 10.6). . 18, 27, 29

label A higher-level fact or quantity of interest associated with a data point.

For example, if the data point is an image, the label could indicate

whether the image contains a cat or not. Synonyms for label, commonly

used in specific domains, include response variable, output variable, and

target [137–139].. 2–6, 9–15, 17–20, 24–35, 37, 38, 41, 44–48, 51, 63, 70,

88, 111, 125, 127, 131, 142, 149, 151, 152, 154, 156, 157, 168, 172, 174,

180, 184, 185, 193

label space Consider a ML application that involves data points charac-

terized by features and labels. The label space is constituted by all

27

x(5)

x(4)

x(3)
x(2)

x(1)

z(5)z(4)z(3)z(2)

z(1)
z = K

(
x, ·

)

Fig. 10.6: Five data points characterized by feature vectors x(r) and labels

y(r) ∈ {◦,□}, for r = 1, . . . , 5. With these feature vectors, there is no

way to separate the two classes by a straight line (representing the decision

boundary of a linear classifier). In contrast, the transformed feature vectors

z(r) = K
(
x(r), ·

)
allow to separate the data points using a linear classifier.

potential values that the label of a data point can take on. Regres-

sion methods, aiming at predicting numeric labels, often use the label

space Y = R. Binary classification methods use a label space that

consists of two different elements, e.g., Y = {−1, 1}, Y = {0, 1} or

Y = {“cat image” , “no cat image”}. 1, 5, 6, 15, 25, 26, 30, 31, 131, 142,

179, 184

Laplacian matrix The structure of a graph G, with nodes i = 1, . . . , n, can

be analyzed using the properties of special matrices that are associated

with G. One such matrix is the graph Laplacian matrix L(G) ∈ Rn×n

which is defined for an undirected and weighted graph [143,144]. It is

28

1

2 3

L(G) =


2 −1 −1

−1 1 0

−1 0 1


Fig. 10.7: Left: Some undirected graph G with three nodes i = 1, 2, 3. Right:

Laplacian matrix L(G) ∈ R3×3 of G.

defined element-wise as (see Fig. 10.7)

L
(G)
i,i′ :=


−Ai,i′ for i ̸= i′, {i, i′} ∈ E∑

i′′ ̸=i Ai,i′′ for i = i′

0 else.

(10.5)

Here, Ai,i′ denotes the edge weight of an edge {i, i′} ∈ E . . 18, 33,

38–40, 44, 55, 56, 81, 86, 113, 122, 137–139

Large Language Model Large Language Models (LLMs) is an umbrella

term for ML methods that process and generate human-like text. These

methods typically use deep nets with billions (or even trillions) of

parameters. A widely used choice for the network architecture is referred

to as Transformers [?]. The training of LLMs is often based on the

task of predicting a few words that are intentionally removed from a

large text corpus. Thus, we can construct labelled data points simply

by selecting some words of a text as labels and the remaining words as

features of data points. This construction requires very little human

supervision and allows for generating sufficiently large training sets for

LLMs.. 3

29

law of large numbers The law of large numbers refers to the convergence

of the average of an increasing (large) number of i.i.d. RVs to the

mean of their common probability distribution. Different instances

of the law of large numbers are obtained using different notions of

convergence [141].. 24, 76

learning rate Consider an iterative method for finding or learning a useful

hypothesis h ∈ H. Such an iterative method repeats similar computa-

tional (update) steps that adjust or modify the current hypothesis to

obtain an improved hypothesis. A prime example of such an iterative

learning method is GD and its variants such as SGD or projected GD.

We refer by learning rate to a parameter of an iterative learning method

that controls the extent by which the current hypothesis can be modified

during a single iteration. A prime example of such a parameter is the

step size used in GD [6, Ch. 5].. 15, 46, 61, 63–70, 72, 73, 77, 79, 81,

87, 90, 92, 94, 95, 102, 111, 163

learning task Consider a dataset D constituted by several data points, each

of them characterized by features x. For example, the dataset D might

be constituted by the images of a particular database. Sometimes it

might be useful to represent a dataset D, along with the choice of

features, by a probability distribution p(x). A learning task associated

with D consists of a specific choice for the label of a data point and

the corresponding label space. Given a choice for the loss function and

model, a learning task gives rise to an instance of ERM. Thus, we could

define a learning task also via an instance of ERM, i.e., via an objective

30

function. Note that, for the same dataset, we obtain different learning

tasks by using different choices for the features and label of a data point.

These learning tasks are related, as they are based on the same dataset,

and solving them jointly (via multitask learning methods) is typically

preferable over solving them separately [145–147].. 3, 17

least absolute shrinkage and selection operator (Lasso) The least ab-

solute shrinkage and selection operator (Lasso) is an instance of struc-

tural risk minimization (SRM) to learn the weights w of a linear map

h(x) = wTx based on a training set. The Lasso is obtained from linear

regression by adding the scaled ℓ1-norm α ∥w∥1 to the average squared

error loss incurred on the training set.. 43

linear classifier Consider data points characterized by numeric features x ∈

Rd and a label y ∈ Y from some finite label space Y . A linear classifier

characterized by having decision regions separated by hyperplanes in

the Euclidean space Rd [6, Ch. 2].. 28

linear model Consider data points, each characterized by a numeric feature

vector x ∈ Rd. A linear model is a hypothesis space which consists of

all linear maps,

H(d) :=
{
h(x) = wTx : w ∈ Rd

}
. (10.6)

Note that (10.6) defines an entire family of hypothesis spaces, which is

parameterized by the number d of features that are linearly combined

to form the prediction h(x). The design choice of d is guided by

computational aspects (smaller d means less computation), statistical

31

aspects (increasing d might reduce prediction error) and interpretability.

A linear model using few carefully chosen features tends to be considered

more interpretable [140,148].. 13, 16, 17, 23, 24, 26–29, 43–45, 47, 50,

62, 70, 75, 81, 83–85, 88, 90–96, 123, 131, 132, 136, 150, 155, 156, 163,

164, 166, 168, 187, 194

linear regression Linear regression aims to learn a linear hypothesis map

to predict a numeric label based on numeric features of a data point.

The quality of a linear hypothesis map is measured using the average

squared error loss incurred on a set of labeled data points, which we

refer to as the training set.. 8, 9, 13–15, 18, 19, 27–31, 42, 44, 62, 67,

70, 81, 105, 131, 132, 187

local dataset The concept of a local dataset is in-between the concept of a

data point and a dataset. A local dataset consists of several individual

data points which are characterized by features and labels. In contrast

to a single dataset used in basic ML methods, a local dataset is also

related to other local datasets via different notions of similarities. These

similarities might arise from probabilistic models or communication

infrastructure and are encoded in the edges of a FL network.. 1–3, 5–8,

18, 25, 32–36, 38, 42, 43, 47–50, 56–59, 81, 83, 85, 87, 89, 93, 96–99,

102, 111, 112, 117–121, 123–128, 135, 136, 141–144, 147, 148, 150–153,

155–157, 159, 160, 165, 168–171, 174, 177, 184, 189–194

local model Consider a collections of local datasets that are assigned to the

nodes of a FL network. A local model H(i) is a hypothesis space assigned

to a node i ∈ V . Different nodes might be assigned different hypothesis

32

spaces, i.e., in general H(i) ̸= H(i′) for different nodes i, i′ ∈ V .. 3, 6, 18,

19, 29, 32–37, 41–43, 46, 49–51, 56–58, 60, 72, 77, 83, 85, 86, 88–92, 95,

96, 98, 105–108, 111, 117–119, 122, 123, 128–130, 133, 143, 150, 152,

153, 163, 168, 188, 189, 193

loss ML methods use a loss function L (z, h) to measure the error incurred

by applying a specific hypothesis to a specific data point. With slight

abuse of notation, we use the term loss for both, the loss function L

itself and for its value L (z, h) for a specific data point z and hypothesis

h.. 1, 2, 4, 6, 8, 11, 13–19, 21, 24–27, 34, 36, 42–44, 46, 48–51, 63, 64,

77, 83, 85, 88, 89, 97, 107, 117, 143, 144, 155

loss function A loss function is a map

L : X × Y ×H → R+ :
((
x, y

)
, h

)
7→ L ((x, y), h)

which assigns a pair of a data point, with features x and label y, and

a hypothesis h ∈ H the non-negative real number L ((x, y), h). The

loss value L ((x, y), h) quantifies the discrepancy between the true label

y and the prediction h(x). Lower (closer to zero) values L ((x, y), h)

indicate a smaller discrepancy between prediction h(x) and label y.

Figure 10.8 depicts a loss function for a given data point, with features

x and label y, as a function of the hypothesis h ∈ H. . 1, 3–6, 11, 12,

15, 16, 19, 21, 22, 30, 33–36, 42, 44, 45, 50–52, 57, 83, 89, 91, 92, 95,

101–104, 106, 107, 109, 111, 125, 127, 135, 143, 149, 152, 164, 165, 168,

169, 188, 191, 193, 194

maximum likelihood Consider data points D =
{
z(1), . . . , z(m)} that are

33

L ((x, y), h)

hypothesis h

loss

Fig. 10.8: Some loss function L ((x, y), h) for a fixed data point, with feature

vector x and label y, and varying hypothesis h. ML methods try to find

(learn) a hypothesis that incurs minimum loss.

interpreted as realizations of i.i.d. RVs with a common probability

distribution p(z;w) which depends on the model parameters w ∈

W ⊆ Rn. Maximum likelihood methods learn model parameters w

by maximizing the probability (density) p(D;w) =
∏m

r=1 p(z
(r);w) of

observing the dataset is maximized. Thus, the maximum likelihood

estimator is a solution to the optimization problem maxw∈W p(D;w)..

39, 131, 141, 143

mean The expectation E{x} of a numeric RV x.. 30

model In the context of ML methods, the term model typically refers to

the hypothesis space used by a ML method [6, 29].. 1–7, 11–14, 16, 18,

21–26, 28, 30–34, 37, 41–43, 46, 48, 51, 72, 74–76, 97, 119, 149, 152,

165, 169, 170, 177, 189

model parameters Model parameters are quantities that are used to select a

specific hypothesis map from a model. We can think of model parameters

34

as a unique identifier for a hypothesis map, similar to how a social

security number identifies a person in Finland.. 1, 2, 4–7, 9, 12, 15,

17–19, 23, 24, 26, 29–32, 34–38, 40, 42, 43, 47–51, 53, 56, 57, 59, 61, 62,

64, 77, 78, 81, 89–92, 94–99, 101–105, 108–111, 117–121, 123–125, 129,

131, 132, 135, 136, 138, 141, 143, 145, 149, 150, 152, 154–158, 161–163,

165, 168–171, 173, 174, 177, 187–191, 194

multivariate normal distribution The multivariate normal distribution

N (m,C) is an important family of probability distributions for a

continuous RV x ∈ Rd [5, 128, 149]. This family is parameterized by

the mean m and covariance matrix C of x. If the covariance matrix is

invertible, the probability distribution of x is

p(x) ∝ exp

(
− (1/2)

(
x−m

)T
C−1

(
x−m

))
.

. 3, 4, 7, 13, 19, 147, 184, 185

mutual information The mutual information I (x; y) between two RVs x,

y defined on the same probability space is given by [129]

I (x; y) := E
{
log

p(x, y)

p(x)p(y)

}
.

It is a measure for how well we can estimate y based solely from x.

A large value of I (x; y) indicates that y can be well predicted solely

from x. This prediction could be obtained by a hypothesis learnt by a

ERM-based ML method.. 38, 180, 181

neighbourhood The neighbourhood of a node i ∈ V is the subset of nodes

constituted by the neighbours of i.. 18, 38, 147

35

neighbours The neighbours of a node i ∈ V within a FL network are those

nodes i′ ∈ V \ {i} that are connected (via an edge) to node i.. 35, 36,

59, 89, 90, 92, 94, 95, 106, 147, 163

networked data Networked data consists of local datasets that are related

by some notion of pair-wise similarity. We can represent networked

data using a graph whose nodes carry local datasets and edges encode

pairwise similarities. One example for networked data arises in FL

applications where local datasets are generated by spatially distributed

devices.. 13, 36

node degree The degree d(i) of a node i ∈ V in an undirected graph is the

number of its neighbours, d(i) :=
∣∣N (i)

∣∣.. 38, 87, 122, 136, 137, 139, 140,

145, 146

objective function An objective function is a map that assigns each value

of an optimization variable, such as the model parameters w of a

hypothesis h(w), to an objective value f(w). The objective value f(w)

could be the risk or the empirical risk of a hypothesis h(w).. 18, 23, 24,

27, 30, 42, 44, 46, 50, 60–67, 71, 72, 74, 75, 77, 79, 82, 85, 88, 104, 105,

133, 144, 145

overfitting Consider a ML method that uses ERM to learn a hypothesis

with minimum empirical risk on a given training set. Such a method is

overfitting the training set if it learns hypothesis with small empirical

risk on the training set but significantly larger loss outside the training

set.. 17, 23, 41, 42

36

parameters The parameters of a ML model are tunable (learnable or ad-

justable) quantities that allow to choose between different hypothesis

maps. For example, the linear model H := {h(w) : h(w)(x) = w1x+w2}

consists of all hypothesis maps h(w)(x) = w1x + w2 with a particular

choice for the parameters w =
(
w1, w2

)T ∈ R2. Another example of

parameters is the weights assigned to the connections between neurons

of an ANN.. 13, 16, 18, 19, 26, 28, 41–43, 46–48, 60, 72, 75, 83, 85, 86,

88–90, 92, 94–96, 98, 119, 122, 123, 128–130, 133, 141, 142, 163

polynomial regression Polynomial regression aims at learning a polyno-

mial hypothesis map to predict a numeric label based on numeric

features of a data point. For data points characterized by a sin-

gle numeric feature, polynomial regression uses the hypothesis space

H(poly)
d := {h(x) =

∑d−1
j=0 x

jwj}. The quality of a polynomial hypothesis

map is measured using the average squared error loss incurred on a set

of labeled data points (which we refer to as training set).. 24

positive semi-definite A (real-valued) symmetric matrix Q = QT ∈ Rd×d

is referred to as positive semi-definite if xTQx ≥ 0 for every vector

x ∈ Rd. The property of being psd can be extended from matrices to

(real-valued) symmetric kernel maps K : X × X → R (with K(x,x′) =

K(x′,x) as follows: For any finite set of feature vectors x(1), . . . ,x(m),

the resulting matrix Q ∈ Rm×m with entries Qr,r′ = K
(
x(r),x(r′)

)
is

psd [35].. 4, 8, 10, 14, 17, 29, 38, 39, 44, 62, 67, 79

prediction A prediction is an estimate or approximation for some quantity

of interest. ML revolves around learning or finding a hypothesis map h

37

that reads in the features x of a data point and delivers a prediction

ŷ := h(x) for its label y.. 2, 6, 10, 12, 16, 17, 25, 26, 29, 31–33, 35, 36,

38, 44, 50, 51, 75, 88, 89, 150, 152, 164, 165, 190–192

privacy leakage Consider a (ML or FL) system that processes a local dataset

D(i) and shares data, such as the predictions obtained for new data

points, with other parties. Privacy leakage arises if the shared data

carries information about a private (sensitive) feature of a data point

(which might be a human) of D(i). The amount of privacy leakage can

be measured via MI using a probabilistic model for the local dataset.

Another quantitative measure for privacy leakage is DP.. 169, 170, 184

privacy protection Consider some ML method A that reads in a D and

delivers some output A(D). The output could be the learnt model

parameters ŵ or the prediction ĥ(x) obtained for a specific data point

with features x. Many important ML applications involve data points

representing humans. Each data point is characterized by features x,

potentially a label y and a sensitive attribute s (e.g., a recent medical

diagnosis). Roughly speaking, privacy protection means that it should

be impossible to infer, from the output A(D), any of the sensitive

attributes of data points in D. Mathematically, privacy protection

requires non-invertibility of the map A(D). In general, just making

A(D) non-invertible is typically insufficient for privacy protection. We

need to make A(D) sufficiently non-invertible.. 38, 170

probabilistic model A probabilistic model interprets data points as realiza-

tions of RVs with a joint probability distribution. This joint probability

38

distribution typically involves parameters which have to be manually

chosen or learnt via statistical inference methods such as maximum

likelihood [30].. 3–5, 13, 16–21, 28, 32, 38, 46, 47, 58, 95, 124, 136,

141–143, 152, 157, 180, 184

probability density function (pdf) The probability density function (pdf)

p(x) of a real-valued RV x ∈ R is a particular representation of its prob-

ability distribution. If the pdf exists, it can be used to compute the

probability that x takes on a value from a (measurable) set B ⊆ R

via p(x ∈ B) =
∫
B p(x

′)dx′ [5, Ch. 3]. The pdf of a vector-valued RV

x ∈ Rd (if it exists) allows to compute the probability that x falls into

a (measurable) region R via p(x ∈ R) =
∫
R p(x′)dx′

1 . . . dx
′
d [5, Ch. 3]..

19, 26

probability distribution To analyze ML methods it can be useful to inter-

pret data points as i.i.d. realizations of a RV. The typical properties of

such data points are then governed by the probability distribution of

this RV. The probability distribution of a binary RV y ∈ {0, 1} is fully

specified by the probabilities p(y = 0) and p(y = 1)=1−p(y = 0). The

probability distribution of a real-valued RV x ∈ R might be specified by

a probability density function p(x) such that p(x ∈ [a, b]) ≈ p(a)|b− a|.

In the most general case, a probability distribution is defined by a

probability measure [115,128].. 3–5, 13, 17, 20, 21, 24, 26, 29, 30, 34,

35, 38–40, 44, 46, 50, 76, 121, 141, 147, 168, 173–175, 178, 179, 181, 188

projected gradient descent (projected GD) Projected GD extends ba-

sic GD for unconstrained optimization to handle constraints on the

39

optimization variable (model parameters). A single iteration of pro-

jected GD consists of first taking a gradient step and then projecting

the result back into a constrain set.. 30, 61, 73, 74, 83, 84, 97, 145

proximable A convex function for which the proximal operator can be

computed efficiently are sometimes referred to as proximable or simple

[41].. 45

proximal operator Given a convex function and a vector w′, we define its

proximal operator as [42,58]

proxLi(·),2α(w
′) := argmin

w∈Rd

[
f(w)+(ρ/2) ∥w −w′∥22

]
with ρ > 0.

Convex functions for which the proximal operator can be computed

efficiently are sometimes referred to as proximable or simple [41].. 19,

23, 40, 45, 75, 80, 102

quadratic function A quadratic function f(w), reading in a vector w ∈ Rd

as its argument, is such that

f(w) = wTQw + qTw + a,

with some matrix Q ∈ Rd×d, vector q ∈ Rd and scalar a ∈ R.. 15, 18,

19, 28, 44, 62, 64, 85, 156

Rényi divergence The Rényi divergence measures the (dis-)similarity be-

tween two probability distributions [?].. 175

random variable (RV) A random variable is a mapping from a probability

space P to a value space [115]. The probability space, whose elements

40

are elementary events, is equipped with a probability measure that

assigns a probability to subsets of P . A binary random variable maps

elementary events to a set containing two different values, e.g., {−1, 1}

or {cat, no cat}. A real-valued random variable maps elementary events

to real numbers R. A vector-valued random variable maps elementary

events to the Euclidean space Rd. Probability theory uses the concept

of measurable spaces to rigorously define and study the properties of

(large) collections of random variables [115, 128].. 5, 9, 13, 16, 17, 19,

20, 24–26, 29, 30, 34, 35, 38, 39, 41, 42, 44, 47, 50, 58, 75, 81, 95, 124,

137, 141, 142, 147, 151, 168, 174, 179, 184, 193

realization Consider a RV x which maps each element (outcome, or ele-

mentary event) ω ∈ P of a probability space P to an element a of a

measurable space N [2, 114, 115]. A realization of x is any element

a′ ∈ N such that there is an element ω′ ∈ P with x(ω′) = a′.. 5, 13, 16,

17, 20, 24–27, 29, 38, 39, 42, 44, 46, 47, 50, 75, 81, 95, 121, 124, 137,

141, 142, 147, 151, 168, 174, 179, 184, 185, 193

regression Regression problems revolve around the problem of predicting a

numeric label solely from the features of a data point [6, Ch. 2].. 15,

111

regularization A key challenge of modern ML applications is that they

often use large models, having an effective dimension in the order of

billions. Using basic ERM-based methods to train a high-dimensional

model is prone to overfitting: the learn hypothesis performs well on the

training set but poorly outside the training set. Regularization refers to

41

modifications of a given instance of ERM in order to avoid overfitting,

i.e., to ensure the learnt hypothesis performs not much worse outside

the training set. There are three routes for implementing regularization:

• Model pruning. We prune the original model H to obtain a

smaller model H′. For a parametrized model, the pruning can

be implemented by including constraints on the model parame-

ters (such as w1 ∈ [0.4, 0.6] for the weight of feature x1 in linear

regression).

• Loss penalization. We modify the objective function of ERM

by adding a penalty term to the training error. The penalty term

estimates how much larger the expected loss (risk) is compared to

the average loss on the training set.

• Data augmentation. We can enlarge the training set D by

adding perturbed copies of the original data points in D. One

example for such a perturbation is to add the realization of a RV

to the feature vector of a data point.

Figure 10.9 illustrates the above routs to regularization. These routes

are often equivalent: data augmentation using Gaussian RVs to perturb

the feature vectors in the training set of linear regression has the same

effect as adding the penalty λ ∥w∥22 to the training error (which is

nothing but ridge regression).

42

feature x

label y

{h : h(x)=w1x+w0;w1 ∈ [0.4, 0.6]}

h(x)

√
α

original training set D
augmented

1
m

∑m
r=1 L

((
x(r), y(r)

)
, h

)
+αR

{
h
}

Fig. 10.9: Three approaches to regularization: data augmentation, loss

penalization and model pruning (via constraints on model parameters).

. 7, 9, 17, 23, 26, 30, 32, 44, 48, 72, 102, 104, 129, 165, 194

regularized empirical risk minimization (RERM) Synonym for SRM..

7, 24, 43

regularizer A regularizer assigns each hypothesis h from a hypothesis space

H a quantitative measure R
{
h
}

for how much its prediction error on a

training set might differ from its prediction errors on data points outside

the training set. Ridge regression uses the regularizer R
{
h
}
:= ∥w∥22

for linear hypothesis maps h(w)(x) := wTx [6, Ch. 3]. The least

absolute shrinkage and selection operator (Lasso) uses the regularizer

R
{
h
}
:= ∥w∥1 for linear hypothesis maps h(w)(x) := wTx [6, Ch. 3]..

7, 24, 26, 43, 104, 153

ridge regression Ridge regression learns the weights w of a linear hypoth-

43

esis map h(w)(x) = wTx. The quality of a particular choice for the

parameter vector w is measured by the sum of two components. The

first component is the average squared error loss incurred by h(w) on a

set of labeled data points (the training set). The second component is

the scaled squared Euclidean norm α∥w∥22 with a regularization param-

eter α > 0. It can be shown that the effect of adding to α∥w∥22 to the

average squared error loss is equivalent to replacing the original data

points by an ensemble of realizations of a RV centered around these

data points.. 26–28, 30, 31, 42–44, 62, 64, 70

risk Consider a hypothesis h used to predict the label y of a data point based

on its features x. We measure the quality of a particular prediction

using a loss function L ((x, y), h). If we interpret data points as the

realizations of i.i.d. RVs, also the L ((x, y), h) becomes the realization

of a RV. The i.i.d. assumption allows to define the risk of a hypothesis

as the expected loss E
{
L ((x, y), h)

}
. Note that the risk of h depends

on both, the specific choice for the loss function and the probability

distribution of the data points.. 3–5, 17, 21, 36, 42, 49

scatterplot A visualization technique that depicts data points by markers

in a two-dimensional plane. . 17, 172

semi-supervised learning Semi-supervised learning methods use unlabeled

data points to support the learning of a hypothesis from labeled data

points [73]. This approach is particularly useful for ML applications

that offer a large amount of unlabeled data points, but only a limited

number of labeled data points.. 125, 127

44

x

y

Fig. 10.10: A scatterplot of data points that represent daily weather condi-

tions in Finland. Each data point is characterized by its minimum daytime

temperature x as feature and its maximum daytime temperature y as the

label. The temperatures have been measured at the FMI weather station

Helsinki Kaisaniemi during 1.9.2024 - 28.10.2024.

sensitive attribute ML revolves around learning a hypothesis map that

allows to predict the label of a data point from its features. In some

applications we must ensure that the output delivered by an ML system

does not allow to infer sensitive attributes of a data point. Which parts

of a data point is considered as a sensitive attribute is a design choice

that varies across different application domains.. 13, 38, 184, 186, 187

smooth We refer to a real-valued function as smooth if it is differentiable

and its gradient is continuous [57,150]. A differentiable function f(w)

is referred to as β-smooth if the gradient ∇f(w) is Lipschitz continuous

with Lipschitz constant β, i.e.,

∥∇f(w)−∇f(w′)∥ ≤ β∥w −w′∥.

. 13, 16, 37, 50, 61, 79

soft clustering Soft clustering refers to the task of partitioning a given set of

data points into (few) overlapping clusters. Each data point is assigned

45

to several different clusters with varying degree of belonging. Soft

clustering methods determine the degree of belonging (or soft cluster

assignment) for each data point and each cluster. A principled approach

to soft clustering is by interpreting data points as i.i.d. realizations of

a GMM. We then obtain a natural choice for the degree of belonging

as the conditional probability of a data point belonging to a specific

mixture component.. 7, 12

squared error loss The squared error loss measures the prediction error of

a hypothesis h when predicting a numeric label y ∈ R from the features

x of a data point. It is defined as

L ((x, y), h) :=
(
y − h(x)︸︷︷︸

=ŷ

)2
.

. 3, 4, 13, 17, 30–32, 37, 43, 44, 50, 104, 111, 112, 131, 132, 165, 181,

194

statistical aspects By statistical aspects of a ML method, we refer to (prop-

erties of) the probability distribution of its output under a probabilistic

model for the data fed into the method.. 15, 31, 43, 49

step size See learning rate.. 22, 61, 62

stochastic gradient descent Stochastic GD is obtained from GD by re-

placing the gradient of the objective function with a stochastic ap-

proximation. A main application of stochastic gradient descent is to

implement ERM for a parametrized model and a training set D is either

very large or not readily available (e.g., when data points are stored in

46

∑m
r=1 ∑

r∈B

Fig. 10.11: Stochastic GD for ERM approximates the gradient∑m
r=1 ∇wL

(
z(r),w

)
by replacing the sum over all data points in the training

set (indexed by r = 1, . . . ,m) with a sum over a randomly chosen subset

B ⊆ {1, . . . ,m}.

a database distributed all over the planet). To evaluate the gradient

of the empirical risk (as a function of the model parameters w), we

need to compute a sum
∑m

r=1∇wL
(
z(r),w

)
over all data points in the

training set. We obtain a stochastic approximation to the gradient by

replacing the sum
∑m

r=1 ∇wL
(
z(r),w

)
with a sum

∑
r∈B ∇wL

(
z(r),w

)
over a randomly chosen subset B ⊆ {1, . . . ,m} (see Figure 10.11). We

often refer to these randomly chosen data points as a batch. The batch

size |B| is an important parameter of stochastic GD. Stochastic GD

with |B| > 1 is referred to as mini-batch stochastic GD [?]. . 4, 19, 30,

143, 175, 179

stopping criterion Many ML methods use iterative algorithms that con-

struct a sequence of model parameters (such as the weights of a linear

map or the weights of an ANN) that (hopefully) converge to an optimal

choice for the model parameters. In practice, given finite computational

resources, we need to stop iterating after a finite number of times. A

47

stopping criterion is any well-defined condition required for stopping

iterating.. 46, 61, 63, 64, 66, 67, 73, 77, 89, 90, 92, 94, 95, 99, 101, 103,

163

strongly convex A continuously differentiable real-valued function f(x) is

strongly convex with coefficient σ if f(y) ≥ f(x) +∇f(x)T (y − x) +

(σ/2) ∥y − x∥22 [57], [55, Sec. B.1.1.].. 79

structural risk minimization Structural risk minimization is the problem

of finding the hypothesis that optimally balances the average loss (or

empirical risk) on a training set with a regularization term. The regu-

larization term penalizes a hypothesis that is not robust against (small)

perturbations of the data points in the training set.. 31, 43

test set A set of data points that have neither been used to train a model,

e.g., via ERM, nor in a validation set to choose between different models..

2, 3, 37

training error The average loss of a hypothesis when predicting the labels of

data points in a training set. We sometimes refer by training error also

the minimum average loss incurred on the training set by the optimal

hypothesis from a hypothesis space.. 4, 11, 17, 21–25, 28, 30, 42, 48, 50,

75, 165

training set A dataset D, constituted by some data points used in ERM

to learn a hypothesis ĥ. The average loss of ĥ on the training set is

referred to as the training error. The comparison of the training error

with the validation error of ĥ allows to diagnose the ML method and

48

informs how to improve them (e.g., using a different hypothesis space

or collecting more data points) [6, Sec. 6.6.].. 1, 2, 4, 6, 8, 12–15, 17,

18, 21–25, 27–32, 36, 37, 41–44, 46–49, 63, 64, 67, 70, 77, 121, 131, 154,

171, 180, 184, 188, 193

trustworthiness Beside the computational aspects and statistical aspects,

a third main design aspect for ML methods is their trustworthiness [?].

The European Union has put forward seven key requirements (KRs)

for trustworthy AI (that typically build on ML methods) [90]: KR1 -

Human Agency and Oversight, KR2 - Technical Robustness

and Safety, KR3 - Privacy and Data Governance, KR4 - Trans-

parency, KR5 - Diversity Non-Discrimination and Fairness,

KR6 Societal and Environmental Well-Being, KR7 - Account-

ability. . 148

validation Consider a hypothesis ĥ that has been learnt via some ML method,

e.g., by solving ERM on a training set D. Validation refers to the practice

of evaluating the loss incurred by hypothesis ĥ on a validation set that

consists of data points that are not contained in the training set D.. 11,

21, 66, 67

validation error Consider a hypothesis ĥ which is obtained by some ML

method, e.g., using ERM on a training set. The average loss of ĥ on a

validation set, which is different from the training set, is referred to as

the validation error.. 11, 16, 21–25, 28, 48, 50, 150, 153, 194

validation set A set of data points used to estimate the risk of a hypothesis

ĥ that has been learnt by some ML method (e.g., solving ERM). The

49

average loss of ĥ on the validation set is referred to as the validation

error and can be used to diagnose a ML method (see [6, Sec. 6.6.]).

The comparison between training error and validation error can inform

directions for improvements of the ML method (such as using a different

hypothesis space).. 16, 21, 22, 25, 48, 49, 150, 184

variance The variance of a real-valued RV x is defined as the expectation

E
{(

x−E{x}
)2} of the squared difference between x and its expectation

E{x}. We extend this definition to vector-valued RVs x as E
{∥∥x −

E{x}
∥∥2

2

}
.. 4, 16

vertical FL Vertical FL uses local datasets that are constituted by the same

data points but characterizing them with different features [74]. For

example, different healthcare providers might all contain information

about the same population of patients. However, different healthcare

providers collect different measurements (blood values, electrocardiog-

raphy, lung X-ray) for the same patients.. 118, 127, 128

weights Consider a parameterized hypothesis space H. We use the term

weights for numeric model parameters that are used to scale features or

their transformations in order to compute h(w) ∈ H. A linear model uses

weights w =
(
w1, . . . , wd

)T to compute the linear combination h(w)(x) =

wTx. Weights are also used in ANNs to form linear combinations of

features or the outputs of neurons in hidden layers.. 43

zero-gradient condition Consider the unconstrained optimization problem

minw∈Rd f(w) with a smooth and convex objective function f(w). A

50

necessary and sufficient condition for a vector ŵ ∈ Rd to solve this

problem is that the gradient ∇f
(
ŵ
)

is the zero-vector,

∇f
(
ŵ
)
= 0 ⇔ f

(
ŵ
)
= min

w∈Rd
f(w).

. 46

0/1 loss The 0/1 loss L ((x, y) , h) measures the quality of a classifier h(x)

that delivers a prediction ŷ (e.g., via thresholding (10.1)) for the label

y of a data point with features x. It is equal to 0 if the prediction

is correct, i.e., L ((x, y) , h) = 0 when ŷ = y. It is equal to 1 if the

prediction is wrong, L ((x, y) , h) = 1 when ŷ ̸= y.. 1

51

References

[1] W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-

Hill, 1987.

[2] ——, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-

Hill, 1976.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Bal-

timore, MD: Johns Hopkins University Press, 2013.

[4] G. Golub and C. van Loan, “An analysis of the total least squares

problem,” SIAM J. Numerical Analysis, vol. 17, no. 6, pp. 883–893, Dec.

1980.

[5] D. Bertsekas and J. Tsitsiklis, Introduction to Probability, 2nd ed.

Athena Scientific, 2008.

[6] A. Jung, Machine Learning: The Basics, 1st ed. Springer Singapore,

Feb. 2022.

[7] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial

communication: Automation networks in the era of the internet of things

and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,

pp. 17–27, 2017.

[8] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, no. 1, pp. 30–39, Jan. 2017. [Online]. Available:

https://doi.org/10.1109/MC.2017.9

52

https://doi.org/10.1109/MC.2017.9

[9] H. Ates, A. Yetisen, F. Güder, and C. Dincer, “Wearable devices for

the detection of covid-19,” Nature Electronics, vol. 4, no. 1, pp. 13–14,

2021. [Online]. Available: https://doi.org/10.1038/s41928-020-00533-1

[10] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial

internet of things (iiot): An analysis framework,” Computers in

Industry, vol. 101, pp. 1–12, 2018. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0166361517307285

[11] S. Cui, A. Hero, Z.-Q. Luo, and J. Moura, Eds., Big Data over Networks.

Cambridge Univ. Press, 2016.

[12] A. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: a

network-based approach to human disease,” Nature Reviews Genetics,

vol. 12, no. 56, 2011.

[13] M. E. J. Newman, Networks: An Introduction. Oxford Univ. Press,

2010.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.

Arcas, “Communication-Efficient Learning of Deep Networks from

Decentralized Data,” in Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics, ser. Proceedings

of Machine Learning Research, A. Singh and J. Zhu, Eds.,

vol. 54. PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:

https://proceedings.mlr.press/v54/mcmahan17a.html

53

https://doi.org/10.1038/s41928-020-00533-1
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://proceedings.mlr.press/v54/mcmahan17a.html

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:

Challenges, methods, and future directions,” IEEE Signal Processing

Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[16] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for

privacy-preserving ai,” Communications of the ACM, vol. 63, no. 12,

pp. 33–36, Dec. 2020.

[17] N. Agarwal, A. Suresh, F. Yu, S. Kumar, and H. McMahan, “cpSGD:

Communication-efficient and differentially-private distributed sgd,” in

Proc. Neural Inf. Proc. Syst. (NIPS), 2018.

[18] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated

Multi-Task Learning,” in Advances in Neural Information Processing

Systems, vol. 30, 2017. [Online]. Available: https://proceedings.neurips.

cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf

[19] J. You, J. Wu, X. Jin, and M. Chowdhury, “Ship compute

or ship data? why not both?” in 18th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 21).

USENIX Association, April 2021, pp. 633–651. [Online]. Available:

https://www.usenix.org/conference/nsdi21/presentation/you

[20] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Athena Scientific, 2015.

[21] M. van Steen and A. Tanenbaum, Distributed Systems, 3rd ed., Feb.

2017, self-published, open publication.

54

https://proceedings.neurips.cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf
https://www.usenix.org/conference/nsdi21/presentation/you

[22] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.

Cambridge University Press, 2005.

[23] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong,

D. Ramage, and F. Beaufays, “Applied federated learning: Improving

google keyboard query suggestions,” 2018. [Online]. Available:

https://arxiv.org/abs/1812.02903

[24] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-

work for clustered federated learning,” in 34th Conference on Neural

Information Processing Systems (NeurIPS 2020), Vancouver, Canada,

2020.

[25] F. Sattler, K. Müller, and W. Samek, “Clustered federated learning:

Model-agnostic distributed multitask optimization under privacy con-

straints,” IEEE Transactions on Neural Networks and Learning Systems,

2020.

[26] G. Strang, Computational Science and Engineering. Wellesley-

Cambridge Press, MA, 2007.

[27] ——, Introduction to Linear Algebra, 5th ed. Wellesley-Cambridge

Press, MA, 2016.

[28] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone

Operator Theory in Hilbert Spaces. New York: Springer, 2011.

[29] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning

– from Theory to Algorithms. Cambridge University Press, 2014.

55

https://arxiv.org/abs/1812.02903

[30] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed.

New York: Springer, 1998.

[31] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,

and S. Thrun, “Dermatologist-level classification of skin cancer with

deep neural networks,” Nature, vol. 542, 2017.

[32] H. Lütkepohl, New Introduction to Multiple Time Series Analysis. New

York: Springer, 2005.

[33] N. Goodall, “Can you program ethics into a self-driving car?” IEEE

Spectrum, vol. 53, no. 6, pp. 28–58, June 2016.

[34] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

no. 1, pp. 81–106.

[35] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA: MIT Press, Dec. 2002.

[36] M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge: Cambridge University Press, 2019.

[37] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, “Clustered

federated learning via generalized total variation minimization,” IEEE

Transactions on Signal Processing, vol. 71, pp. 4240–4256, 2023.

[38] F. Chung, “Spectral graph theory,” in Regional Conference Series in

Mathematics, 1997, no. 92.

56

[39] D. Spielman, “Spectral and algebraic graph theory,” 2019.

[40] ——, “Spectral graph theory,” in Combinatorial Scientific Computing,

U. Naumann and O. Schenk, Eds. Chapman and Hall/CRC, 2012.

[41] L. Condat, “A primal–dual splitting method for convex optimization

involving lipschitzian, proximable and linear composite terms,” Journal

of Opt. Th. and App., vol. 158, no. 2, pp. 460–479, Aug. 2013.

[42] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[43] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear

systems,” in Proc. ACM Symposium on Theory of Computing, New

York, NY, 2014, pp. 333–342.

[44] N. K. Vishnoi, “Lx = b — Laplacian solvers and their algorithmic

applications,” Foundations and Trends in Theoretical Computer

Science, vol. 8, no. 1–2, pp. 1–141, 2012. [Online]. Available:

http://dx.doi.org/10.1561/0400000054

[45] D. Sun, K.-C. Toh, and Y. Yuan, “Convex clustering: Model,

theoretical guarantee and efficient algorithm,” Journal of Machine

Learning Research, vol. 22, no. 9, pp. 1–32, 2021. [Online]. Available:

http://jmlr.org/papers/v22/18-694.html

[46] K. Pelckmans, J. D. Brabanter, J. Suykens, and B. D. Moor, “Convex

clustering shrinkage,” in PASCAL Workshop on Statistics and Opti-

mization of Clustering Workshop, 2005.

57

http://dx.doi.org/10.1561/0400000054
http://jmlr.org/papers/v22/18-694.html

[47] R. T. Rockafellar, Network Flows and Monotropic Optimization. Athena

Scientific, Jul. 1998.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:

Cambridge Univ. Press, 2004.

[49] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models.

Athena Scientific, 1998.

[50] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted

learning,” Artif. Intell. Rev., vol. 11, no. 1–5, pp. 11–73, feb 1997.

[Online]. Available: https://doi.org/10.1023/A:1006559212014

[51] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent ker-

nel: Convergence and generalization in neural networks,” in

Advances in Neural Information Processing Systems, S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018. [Online].

Available: https://proceedings.neurips.cc/paper_files/paper/2018/file/

5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

[52] S. S. Du, X. Zhai, B. Póczos, and A. Singh, “Gradient descent provably

optimizes over-parameterized neural networks,” in 7th International

Conference on Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:

https://openreview.net/forum?id=S1eK3i09YQ

[53] W. E, C. Ma, and L. Wu, “A comparative analysis of optimization

and generalization properties of two-layer neural network and random

58

https://doi.org/10.1023/A:1006559212014
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=S1eK3i09YQ

feature models under gradient descent dynamics,” Science China

Mathematics, vol. 63, no. 7, pp. 1235–1258, 2020. [Online]. Available:

https://doi.org/10.1007/s11425-019-1628-5

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-

Performance Deep Learning Library. Red Hook, NY, USA: Curran

Associates Inc., 2019.

[55] D. P. Bertsekas, Convex Optimization Algorithms. Athena Scientific,

2015.

[56] Y. L. T. Schaul, X. Zhang, “No more pesky learning rates,” in Proc. of

the 30th International Conference on Machine Learning, PMLR 28(3),

vol. 28, Atlanta, Georgia, June 2013, pp. 343–351.

[57] Y. Nesterov, Introductory lectures on convex optimization, ser.

Applied Optimization. Kluwer Academic Publishers, Boston,

MA, 2004, vol. 87, a basic course. [Online]. Available: http:

//dx.doi.org/10.1007/978-1-4419-8853-9

[58] H. Bauschke and P. Combettes, Convex Analysis and Monotone Opera-

tor Theory in Hilbert Spaces, 2nd ed. New York: Springer, 2017.

[59] V. Istrăt,escu, Fixed point theory: An Introduction, ser. Mathematics

and its applications ; 7. Dordrecht: Reidel, 1981.

59

https://doi.org/10.1007/s11425-019-1628-5
http://dx.doi.org/10.1007/978-1-4419-8853-9
http://dx.doi.org/10.1007/978-1-4419-8853-9

[60] B. Ying, K. Yuan, Y. Chen, H. Hu, P. PAN, and W. Yin,

“Exponential graph is provably efficient for decentralized deep training,”

in Advances in Neural Information Processing Systems, M. Ranzato,

A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,

vol. 34. Curran Associates, Inc., 2021, pp. 13 975–13 987. [Online].

Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/

74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf

[61] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a

graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[62] D. Mills, “Internet time synchronization: the network time protocol,”

IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,

1991.

[63] J. Hirvonen and J. Suomela. (2023) Distributed algorithms 2020.

[64] R. Diestel, Graph Theory. Springer Berlin Heidelberg, 2005.

[65] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and

V. Smith, “Federated optimization in heterogeneous networks,” in

Proceedings of the Third Conference on Machine Learning and

Systems, MLSys 2020, Austin, TX, USA, March 2-4, 2020, I. S.

Dhillon, D. S. Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020.

[Online]. Available: https://proceedings.mlsys.org/paper_files/paper/

2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

[66] A. Tanenbaum and D. Wetherall, Computer Networks, 5th ed. USA:

Prentice Hall Press, 2010.

60

https://proceedings.neurips.cc/paper_files/paper/2021/file/74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

[67] P. Tseng, “Convergence of a block coordinate descent method for

nondifferentiable minimization,” Journal of Optimization Theory and

Applications, vol. 109, no. 3, pp. 475–494, 2001. [Online]. Available:

https://doi.org/10.1023/A:1017501703105

[68] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed

Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers. Hanover, MA: Now Publishers, 2010, vol. 3,

no. 1.

[69] J. Liu and C. Zhang, “Distributed learning systems with first-order

methods,” Foundations and Trends in Databases, vol. 9, no. 1, p. 100.

[70] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated

Learning, 1st ed. Springer, 2022.

[71] D. J. Spiegelhalter, “An omnibus test for normality for small samples,”

Biometrika, vol. 67, no. 2, pp. 493–496, 2024/03/25/ 1980. [Online].

Available: http://www.jstor.org/stable/2335498

[72] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Horizontal

Federated Learning. Cham: Springer International Publishing, 2020, pp.

49–67. [Online]. Available: https://doi.org/10.1007/978-3-031-01585-4_

4

[73] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning.

Cambridge, Massachusetts: The MIT Press, 2006.

[74] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Vertical

Federated Learning. Cham: Springer International Publishing, 2020, pp.

61

https://doi.org/10.1023/A:1017501703105
http://www.jstor.org/stable/2335498
https://doi.org/10.1007/978-3-031-01585-4_4
https://doi.org/10.1007/978-3-031-01585-4_4

69–81. [Online]. Available: https://doi.org/10.1007/978-3-031-01585-4_

5

[75] H. Ludwig and N. Baracaldo, Eds., Federated Learning: A Comprehen-

sive Overview of Methods and Applications. Springer, 2022.

[76] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized

federated learning using hypernetworks,” in Proceedings of the 38th

International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, M. Meila and T. Zhang, Eds., vol.

139. PMLR, 18–24 Jul 2021, pp. 9489–9502. [Online]. Available:

https://proceedings.mlr.press/v139/shamsian21a.html

[77] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,

“Learning to compare: Relation network for few-shot learning,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 1199–1208.

[78] V. Satorras and J. Bruna, “Few-shot learning with graph

neural networks.” in ICLR (Poster). OpenReview.net, 2018.

[Online]. Available: http://dblp.uni-trier.de/db/conf/iclr/iclr2018.

html#SatorrasE18

[79] B. Bollobas, W. Fulton, A. Katok, F. Kirwan, and P. Sarnak, Random

graphs. Cambridge studies in advanced mathematics., 2001, vol. 73.

[80] J. Tropp, “An introduction to matrix concentration inequalities,” Found.

Trends Mach. Learn., May 2015.

62

https://doi.org/10.1007/978-3-031-01585-4_5
https://doi.org/10.1007/978-3-031-01585-4_5
https://proceedings.mlr.press/v139/shamsian21a.html
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#SatorrasE18
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#SatorrasE18

[81] G. Keiser, Optical Fiber Communication, 4th ed. New Delhi: Mc-Graw

Hill, 2011.

[82] D. Tse and P. Viswanath, Fundamentals of wireless communication.

USA: Cambridge University Press, 2005.

[83] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-

ical Journal,, vol. 23, no. 2, pp. 298–305, 1973.

[84] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their

applications,” Bull. Amer. Math. Soc., vol. 43, no. 04, pp. 439–562, Aug.

2006.

[85] Y.-T. Chow, W. Shi, T. Wu, and W. Yin, “Expander graph and

communication-efficient decentralized optimization,” in 2016 50th Asilo-

mar Conference on Signals, Systems and Computers, 2016, pp. 1715–

1720.

[86] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Englewood Cliffs, NJ: Prentice Hall, 1993.

[87] S. Chepuri, S. Liu, G. Leus, and A. Hero, “Learning sparse graphs under

smoothness prior,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech

and Signal Processing, 2017, pp. 6508–6512.

[88] J. Tan, Y. Zhou, G. Liu, J. H. Wang, and S. Yu, “pFedSim: Similarity-

Aware Model Aggregation Towards Personalized Federated Learning,”

arXiv e-prints, p. arXiv:2305.15706, May 2023.

63

[89] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.

[90] E. Commission, C. Directorate-General for Communications Networks,

and Technology, The Assessment List for Trustworthy Artificial Intelli-

gence (ALTAI) for self assessment. Publications Office, 2020.

[91] H.-L. E. G. on Artificial Intelligence, “Ethics guidelines for trustworthy

AI,” European Commission, Tech. Rep., April 2019.

[92] D. Kuss and O. Lopez-Fernandez, “Internet addiction and problem-

atic internet use: A systematic review of clinical research.” World J

Psychiatry, vol. 6, no. 1, pp. 143–176, Mar 2016.

[93] L. Munn, “Angry by design: toxic communication and technical

architectures,” Humanities and Social Sciences Communications, vol. 7,

no. 1, p. 53, 2020. [Online]. Available: https://doi.org/10.1057/

s41599-020-00550-7

[94] P. Mozur, “A genocide incited on facebook, with posts from myanmar’s

military,” The New York Times, 2018.

[95] A. Simchon, M. Edwards, and S. Lewandowsky, “The persuasive effects

of political microtargeting in the age of generative artificial intelligence.”

PNAS Nexus, vol. 3, no. 2, p. pgae035, Feb 2024.

[96] J. Near and D. Darais, “Guidelines for evaluating differential privacy

guarantees,” National Institute of Standards and Technology, Gaithers-

burg, MD, Tech. Rep., 2023.

64

https://doi.org/10.1057/s41599-020-00550-7
https://doi.org/10.1057/s41599-020-00550-7

[97] S. Wachter, “Data protection in the age of big data,” Nature

Electronics, vol. 2, no. 1, pp. 6–7, 2019. [Online]. Available:

https://doi.org/10.1038/s41928-018-0193-y

[98] P. Samarati, “Protecting respondents identities in microdata release,”

IEEE Transactions on Knowledge and Data Engineering, vol. 13, no. 6,

pp. 1010–1027, 2001.

[99] E. Comission, “Regulation (eu) 2016/679 of the european parliament

and of the council of 27 april 2016 on the protection of natural persons

with regard to the processing of personal data and on the free movement

of such data, and repealing directive 95/46/ec (general data protection

regulation) (text with eea relevance),” no. 119, pp. 1–88, May 2016.

[100] U. N. G. Assembly, The Universal Declaration of Human Rights

(UDHR), New York, 1948.

[101] N. Kozodoi, J. Jacob, and S. Lessmann, “Fairness in credit scoring:

Assessment, implementation and profit implications,” European Journal

of Operational Research, vol. 297, no. 3, pp. 1083–1094, 2022.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0377221721005385

[102] J. Gonçalves-Sá and F. Pinheiro, Societal Implications of Recom-

mendation Systems: A Technical Perspective. Cham: Springer

International Publishing, 2024, pp. 47–63. [Online]. Available:

https://doi.org/10.1007/978-3-031-41264-6_3

65

https://doi.org/10.1038/s41928-018-0193-y
https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://doi.org/10.1007/978-3-031-41264-6_3

[103] A. Abrol and R. Jha, “Power optimization in 5g networks: A step

towards green communication,” IEEE Access, vol. 4, pp. 1355–1374,

2016.

[104] J. R. Taylor, An Introduction to Error Analysis: The study of uncer-

tainties in physical measurements, second edition. ed. Sausalito, Calif:

University Science Books, 1997.

[105] A. Jung, “A fixed-point of view on gradient methods for big data,”

Frontiers in Applied Mathematics and Statistics, vol. 3, 2017. [Online].

Available: https://www.frontiersin.org/article/10.3389/fams.2017.00018

[106] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,

pp. 102–114, 2002.

[107] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of feder-

ated mobile devices under computational and statistical heterogeneity,”

IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2,

pp. 394–410, 2021.

[108] J. Colin, T. Fel, R. Cadène, and T. Serre, “What I Cannot Predict, I

Do Not Understand: A Human-Centered Evaluation Framework for

Explainability Methods.” Advances in Neural Information Processing

Systems, vol. 35, pp. 2832–2845, 2022.

[109] A. Jung and P. Nardelli, “An information-theoretic approach to person-

alized explainable machine learning,” IEEE Sig. Proc. Lett., vol. 27, pp.

825–829, 2020.

66

https://www.frontiersin.org/article/10.3389/fams.2017.00018

[110] L. Zhang, G. Karakasidis, A. Odnoblyudova, L. Dogruel, Y. Tian, and

A. Jung, “Explainable empirical risk minimization,” Neural Computing

and Applications, vol. 36, no. 8, pp. 3983–3996, 2024. [Online]. Available:

https://doi.org/10.1007/s00521-023-09269-3

[111] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou,

M. Milchenko, W. Xu, D. Marcus, R. R. Colen, and S. Bakas, “Federated

learning in medicine: facilitating multi-institutional collaborations

without sharing patient data,” Scientific Reports, vol. 10, no. 1, p. 12598,

2020. [Online]. Available: https://doi.org/10.1038/s41598-020-69250-1

[112] P. Amin, N. R. Anikireddypally, S. Khurana, S. Vadakkemadathil, and

W. Wu, “Personalized health monitoring using predictive analytics,”

in 2019 IEEE Fifth International Conference on Big Data Computing

Service and Applications (BigDataService), 2019, pp. 271–278.

[113] R. B. Ash, Probability and Measure Theory, 2nd ed. New York:

Academic Press, 2000.

[114] P. R. Halmos, Measure Theory. New York: Springer, 1974.

[115] P. Billingsley, Probability and Measure, 3rd ed. New York: Wiley, 1995.

[116] C. Dwork and A. Roth, “The algorithmic foundations of differential

privacy,” Foundations and Trends® in Theoretical Computer

Science, vol. 9, no. 3–4, pp. 211–407, 2014. [Online]. Available:

http://dx.doi.org/10.1561/0400000042

67

https://doi.org/10.1007/s00521-023-09269-3
https://doi.org/10.1038/s41598-020-69250-1
http://dx.doi.org/10.1561/0400000042

[117] S. Asoodeh, J. Liao, F. P. Calmon, O. Kosut, and L. Sankar, “A Better

Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via

f -Divergences,” arXiv e-prints, p. arXiv:2001.05990, Jan. 2020.

[118] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer

Security Foundations Symposium (CSF), 2017, pp. 263–275.

[119] S. M. Kay, Fundamentals of statistical signal processing. Vol. 2., Detec-

tion theory, ser. Prentice-Hall signal processing series. Upper Saddle

River, NJ: Prentice-Hall PTR, 1998.

[120] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem

for differential privacy,” in Proceedings of the 32nd International

Conference on Machine Learning, ser. Proceedings of Machine

Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,

France: PMLR, 07–09 Jul 2015, pp. 1376–1385. [Online]. Available:

https://proceedings.mlr.press/v37/kairouz15.html

[121] Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in

differential privacy,” IEEE Transactions on Information Theory, vol. 62,

no. 2, pp. 925–951, 2016.

[122] H. Shu and H. Zhu, “Sensitivity analysis of deep neural networks,”

in Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence, ser. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33014943

[123] R. Busa-Fekete, A. Munoz-Medina, U. Syed, and S. Vassilvitskii,

“Label differential privacy and private training data release,” in

68

https://proceedings.mlr.press/v37/kairouz15.html
https://doi.org/10.1609/aaai.v33i01.33014943

Proceedings of the 40th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, vol.

202. PMLR, 23–29 Jul 2023, pp. 3233–3251. [Online]. Available:

https://proceedings.mlr.press/v202/busa-fekete23a.html

[124] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by sub-

sampling: tight analyses via couplings and divergences,” in Proceedings

of the 32nd International Conference on Neural Information Processing

Systems, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,

2018, pp. 6280–6290.

[125] P. Cuff and L. Yu, “Differential privacy as a mutual information

constraint,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’16. New York, NY,

USA: Association for Computing Machinery, 2016, pp. 43–54. [Online].

Available: https://doi.org/10.1145/2976749.2978308

[126] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the

information bottleneck to the privacy funnel,” in 2014 IEEE Information

Theory Workshop (ITW 2014), 2014, pp. 501–505.

[127] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor

attacks,” 2019. [Online]. Available: https://openreview.net/forum?id=

HJg6e2CcK7

[128] R. Gray, Probability, Random Processes, and Ergodic Properties, 2nd ed.

New York: Springer, 2009.

69

https://proceedings.mlr.press/v202/busa-fekete23a.html
https://doi.org/10.1145/2976749.2978308
https://openreview.net/forum?id=HJg6e2CcK7
https://openreview.net/forum?id=HJg6e2CcK7

[129] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

New Jersey: Wiley, 2006.

[130] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-enhanced

federated learning against poisoning adversaries,” IEEE Transactions

on Information Forensics and Security, vol. 16, pp. 4574–4588, 2021.

[131] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “Poisongan:

Generative poisoning attacks against federated learning in edge com-

puting systems,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.

3310–3322, 2021.

[132] P. Halmos, Naive set theory. Springer-Verlag, 1974.

[133] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning, ser. Springer Series in Statistics. New York, NY, USA:

Springer, 2001.

[134] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. New

York, NY, USA: Cambridge University Press, 2006.

[135] E. Hazan, Introduction to Online Convex Optimization. Now Publishers

Inc., 2016.

[136] J. Chen, L. Song, M. Wainwright, and M. Jordan, “Learning to explain:

An information-theoretic perspective on model interpretation,” in Proc.

35th Int. Conf. on Mach. Learning, Stockholm, Sweden, 2018.

[137] D. Gujarati and D. Porter, Basic Econometrics. Mc-Graw Hill, 2009.

70

[138] Y. Dodge, The Oxford Dictionary of Statistical Terms. Oxford Univer-

sity Press, 2003.

[139] B. Everitt, Cambridge Dictionary of Statistics. Cambridge University

Press, 2002.

[140] M. Ribeiro, S. Singh, and C. Guestrin, “ “Why should i trust you?”: Ex-

plaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD,

Aug. 2016, pp. 1135–1144.

[141] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochas-

tic Processes, 4th ed. New York: Mc-Graw Hill, 2002.

[142] C. Lampert, “Kernel methods in computer vision,” Foundations and

Trends in Computer Graphics and Vision, 2009.

[143] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and

Computing, vol. 17, no. 4, pp. 395–416, Dec. 2007.

[144] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis

and an algorithm,” in Adv. Neur. Inf. Proc. Syst., 2001.

[145] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1,

pp. 41–75, 1997. [Online]. Available: https://doi.org/10.1023/A:

1007379606734

[146] A. Jung, G. Hannak, and N. Görtz, “Graphical LASSO Based Model

Selection for Time Series,” IEEE Sig. Proc. Letters, vol. 22, no. 10, Oct.

2015.

71

https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734

[147] A. Jung, “Learning the conditional independence structure of station-

ary time series: A multitask learning approach,” IEEE Trans. Signal

Processing, vol. 63, no. 21, Nov. 2015.

[148] C. Rudin, “Stop explaining black box machine learning models for high-

stakes decisions and use interpretable models instead,” Nature Machine

Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[149] A. Lapidoth, A Foundation in Digital Communication. New York:

Cambridge University Press, 2009.

[150] S. Bubeck, “Convex optimization. algorithms and complexity.” in Foun-

dations and Trends in Machine Learning. Now Publishers, 2015, vol. 8.

72

	Introduction
	Main Tools
	Main Goal of the Book
	Outline
	Exercises

	ML Basics
	Learning Goals
	Three Components and a Design Principle
	Computational Aspects of ERM
	Statistical Aspects of ERM
	Validation and Diagnosis of ML
	Regularization
	Upgrading a Linear Model
	Exercises

	A Design Principle for FL
	Learning Goals
	FL Networks
	Generalized Total Variation
	Generalized Total Variation Minimization
	Computational Aspects of GTVMin
	Statistical Aspects of GTVMin

	How to Handle Non-Parametric Models
	Interpretations
	Exercises
	Proofs
	Proof of Proposition 3.1

	Gradient Methods
	Learning Goals
	Gradient Descent
	Learning Rate
	When to Stop?
	Perturbed Gradient Step
	Handling Constraints - Projected Gradient Descent
	Generalizing the Gradient Step
	Gradient Methods as Fixed-Point Iterations
	Exercises

	FL Algorithms
	Learning Goals
	Gradient Descent for GTVMin
	Message Passing Implementation
	FedSGD
	FedAvg
	FedProx
	FedRelax
	Asynchronous FL Algorithms
	Exercises
	Proofs
	Proof of Proposition 5.1
	Proof of Proposition 5.2

	Main Flavours of FL
	Learning Goals
	Single-Model FL
	Clustered FL
	Horizontal FL
	Vertical FL
	Personalized Federated Learning
	Few-Shot Learning
	Exercises
	Proofs
	Proof of Proposition 6.1

	Graph Learning
	Learning Goals
	Edges as Design Choice
	Measuring (Dis-)Similarity Between Datasets
	Graph Learning Methods
	Exercises

	Trustworthy FL
	Learning Goals
	Seven Key Requirements by the EU
	KR1 - Human Agency and Oversight.
	KR2 - Technical Robustness and Safety.
	KR3 - Privacy and Data Governance.
	KR4 - Transparency.
	KR5 - Diversity, Non-Discrimination and Fairness.
	KR6 - Societal and Environmental Well-Being.
	KR7 - Accountability.

	Technical Robustness of FL Systems
	Sensitivity Analysis
	Estimation Error Analysis
	Network Resilience
	Stragglers

	Subjective Explainability of FL Systems
	Exercises

	Privacy-Protection in FL
	Learning Goals
	Measuring Privacy Leakage
	Ensuring Differential Privacy
	Private Feature Learning
	Exercises

	Data and Model Poisoning in FL
	Learning Goals
	Attack Types
	Data Poisoning
	Model Poisoning
	Exercises

	Glossary

