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Abstract—This paper is to recognize the current traffic light phase 

to reliably detect the status of the traffic light. eg; Red, Green and, 

Off-status and to focus cases where cameras have difficulties eg; 

Traffic light high above the ground, Out of field-of-view, the traffic 

light is front-or backlit by the sun and to achieve an improved 

redundancy leading to batter confidence in driving assistance 

systems and for future automated driving solutions. In this paper,  

two methods are used;  The first method presents a vision-based 

traffic light structure detection and convolutional neural network 

(CNN) based state recognition method, which is robust under 

different illumination and weather conditions. The second method 

presents a deep fusion network for robust fusion without a large 

corpus of labeled training data covering all asymmetric 

distortions.  

Keywords-traffic light detection; CNN; deep fusion networks; 

 

I.  INTRODUCTION  

In this paper,  we present two different methods to detect the 

traffic light in challenging environmental conditions; the first 

method presents a purely vision-based traffic light state 

detection method which is robust under different illumination 

conditions. The proposed method uses color segmentation and 

area-based rejection filters for traffic light candidate region 

extraction. Localization of traffic light structure is done using 

MSER (Maximally Stable Extremal Regions). To further 

validate the potential traffic light candidate regions, HOG 

features are extracted. The detected traffic light structures were 

then used to determine the state of the signal using the CNN- 

based model. The second method presents a multimodal fusion 

method for traffic light detection in adverse weather, including 

fog, snow, and harsh rain. This method presents an adaptive 

single-shot deep fusion architecture that exchanges features in 

intertwined feature extractor blocks.  

 

II. OVERVIEW OF THE PROPOSED SYSTEM 

 

1.METHOD 1: 

 

The main objective of this paper is to design an efficient purely 

vision-based traffic light detection and state recognition system.  

The pipeline of the proposed system is shown in Figure 1 and 

the steps are as follows.  

• Candidate region extraction  

– Input images are pre-processed to limit the number of 

candidate regions using HSV based color segmentation method. 

– Further, these candidates are filtered using aspect ratio and 

area-based analysis.  

– MSER is applied to the candidate regions to localize the 

structure of the traffic light in diverse background scenarios. 

• Detection of traffic light structure 

– HOG features are extracted from each candidate region.  

– Detection of traffic light structure was done based on 

extracted HOG features using SVM. 

• Recognition of traffic light state  

– The state of the traffic light was recognized using CNN based 

methods. 

 

A.  Candidate Regions Extraction 

 

Input images were pre-processed to limit the number of 

candidate regions using HSV based color segmentation 

method. Further these candidates were filtered using aspect 

ratio and area-based analysis. MSER was applied on the 

candidate regions to localize the structure of the traffic light in 

diverse background scenarios. Traffic lights are exposed to     

varied lighting conditions, therefore it is very important to make 

the system invariant to illumination.Hence we used HSV color 

space which separates luminance and chrominance 

components. Hue and saturation are the two features that we are 

more interested in HSV color space, thereby also reducing the 

feature space from 3-D in RGB color space to 2-D in HSV 

space. Color segmentation technique results in detection of 
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objects which have chrominance similar to that of traffic light, 

thereby yielding many false positives (non-traffic attributes).  

Majority of these false positives are eliminated by applying 

traffic light specific rejection criteria (i.e. aspect ratio and area 

of the detected candidates). At the end of this process 

substantial amount of false positives were eliminated, however 

many false positives still remain and they will be removed using 

shape based features as explained in next section. The outcome 

of color segmentation and area based filtering process is shown 

in Figure 2.  

 

 
 

The contour detected using color segmentation contains traffic 

light and other similar colored objects. Size of the traffic light 

is pretty small and number of features resulting from traffic 

light is relatively insufficient to represent a complex structure 

of the traffic light. Therefore, we extract the entire traffic light 

structure for more relevant features, which results in more 

efficient detection and recognition phases. Figure 3(c) shows a 

contour containing a traffic light, whereas Figure 3(d) shows a 

contour containing an entire traffic light structure. Extraction of 

traffic light structure is done by initially fitting a bounding box 

over the traffic light. The size of the bounding box was fixed 

based on the maximum size of the traffic light structure that can 

be encountered by the system. The maximum size of the 

bounding box was determined from ground-truth. Figure 3(a) 

and 3(b) depict the area covered by a fixed size bounding box 

when the signal is far from camera and when the signal is close 

to camera.  

 
 

In absence of a localization method for traffic light structure, 

the bounding box for a signal which is far from camera will 

contain traffic signal along with diverse background which are 

non-traffic regions.This makes it difficult to effectively detect 

and recognize the state of a traffic signal. Thus it is very 

important to localize the traffic light structure effectively select 

two seed points. One seed point corresponding to the centre of 

the signal, as detected using color segmentation and another 

seed point corresponding to any point of the signal structure. 

Figure 4(a), shows the input image and Figures 4(c) and (d) 

indicate the seed points 1 and 2 respectively.The clusters that 

do not correspond to the seed points are eliminated (example, 

cluster in Figure 4(e)). Next step is to shortlist the clusters 

which best represents a traffic signal. Clusters which 

correspond to seed point 1 (Figure 4(f)) and seed point 2 Figure 

4(g) are selected, then the two clusters are  integrated and the 

resultant output is a contour corresponding to the localized 

traffic signal structure as shown in Figure 4(h). The outcome of 

this stage is processed in next stage for detection and 

recognition of traffic light. 

 

 
 

B. Traffic Light Structure Detection 

 

For each of the candidate regions resulting from the previous 

step, Histograms of Oriented Gradients (HOG) features were 

extracted to aid in the detection of the traffic light structures, 

thereby eliminating most of the false positives.HOG. The 

feature was developed with the aim of detecting humans in an 

image. Later on, the utility of the feature was extended to 

pedestrian detection, object detection and other computer vision 

problems. HOG features are relatively invariant to scale and 

rotation which is important for traffic lights. HOG features are 

computed by taking orientation histograms of edge intensity in 

a local region. As indicated previously, color is a major 

characteristic of a traffic signal. Many researcher suggested that 

performance of the conventional HOG can be improved by 

combining HOG features over multiple color channels 

Therefore, in this paper we have incorporated color information 
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with HOG feature. A simple visualization of HOG feature 

extraction is illustrated in Figure 5. For extracting the HOG 

features, the detection window size was fixed at (width × height 

= 90 × 180) empirically. HOG feature descriptors are then fed 

to a non-linear SVM classifier for detecting traffic light 

structures. Nonlinear SVMs will create a space transformation, 

it will be a linear SVM in the feature space, but a non-linear 

separation border in the input space.Lower the number of input 

features, easier it is for the non-linear SVM to perform space 

transformation.Due to large amount of training data and 

relatively small number of HOG features, we chose nonlinear 

SVM classifier. SVM is a supervised learning model, it 

constructs a hyper-plane in a high dimensional space to separate 

the feature points into two or more classes. The feature points 

from which the separated hyperplane is located at the maximum 

margin are known as support vectors. For a test data consisting 

of a potential candidate regions, the HOG features are extracted 

and classified by calculating the distance between the extracted 

feature points of the test image with the support vectors found 

during training phase. 

 

 
 

C. Traffic light state recognition 

 

The state of the traffic light was recognized using CNN based 

methods. Thereby achieving high accuracy in classification. 

Hence we have opted for CNN based classifier for traffic light 

state recognition. However by incorporating application 

specific modifications in the network, we have been able to 

reduce the number of parameters to 76000 from the original 

1400000 which amounts to reduction of complexity by about 

95 percent. Block diagram of the network is given in Figure 6. 

Output of detection algorithm is resized to 48 × 96 pixel size 

before being given as an input to CNN. Initial convolution layer 

consists of 20 filters of size 5 × 5. Filter stride across the input 

image during each iteration is 2 pixels. After convolution layer 

we have a max pool layer with a pixel stride of 2. Max pool 

layer is followed by a second convolution layer with 50 filters 

of 5×5 with a stride length of 2 pixels. Output convolution layer 

is followed by second pooling layer. After the second pooling 

layer two consecutive fully connected layers map the network 

to three neurons which correspond to three classes of traffic 

lights. Parameter reduction is primarily achieved by reducing 

number of filters and increasing the stride length to two. 

 

 
 

 

2. METHOD 2: 

 

A. Multimodal Adverse Weather Dataset 

 

To assess object detection in adverse weather,we have acquired 

a large-scale automotive dataset providing 2D and 3D detection 

bounding boxes for multimodal data with a fine classification 

of weather, illumination, and scene type in rare adverse weather 

situations. Table 1 compares our dataset to recent large-scale 

automotive datasets In Figure 2, we plot the weather 

distribution of the proposed dataset. The statistics were 

obtained by manually annotating all synchronized frames at a 

frame rate of 0.1 Hz. We guided human annotators to 

distinguish light from dense fog when the visibility fell below 

1 km and 100 m, respectively. If fog occurred together with 

precipitation, the scenes were either labeled as snowy or rainy 

depending on the environment road conditions. For our 

experiments, we combined snow and rainy conditions. Note 

that the statistics validate the rarity of scenes in heavy adverse 

weather, which is in agreement to and demonstrates the 

difficulty and critical nature of obtaining such data in the 

assessment of truly self-driving vehicles, i.e. without the 

interaction of remote operators outside of geo-fenced areas. We 

found that extreme adverse weather conditions occur only 

locally and change very quickly. 
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B. Multimodal Sensor Setup 

 

For acquisition we have equipped a test vehicle with sensors 

covering the visible, mm-wave, NIR, and FIR band, see Figure 

2. We measure intensity, depth, and weather condition. Stereo 

Camera As visible-wavelength RGB cameras, we use a stereo 

pair of two front-facing high-dynamic rangeautomotive RCCB 

cameras, consisting of two On- Semi AR0230 imagers with a 

resolution of 1920 × 1024, a baseline of 20.3 cm and 12 bit 

quantization. The cameras run at 30 Hz and are synchronized 

for stereo imaging. Using Lensagon B5M8018C optics with a 

focal length of 8 mm, a field-of-view of 39.6 ° × 21.7 ° is 

obtained. Gated camera We capture gated images in the NIR 

band at 808 nm using a BrightwayVision BrightEye camera 

operating at 120 Hz with a resolution of 1280 × 720 and a bit 

depth of 10 bit. The camera provides a similar field-of-view as 

the stereo camera with 31.1 ° × 17.8 °. Gated imagers rely on 

time-synchronized camera and flood-lit flash laser sources . The 

laser pulse emits a variable narrow pulse, sand the camera 

captures the laser echo after an adjustable delay. This enables 

to significantly reduce backscatter from particles in adverse 

weather [3]. Furthermore, the high imager speed enables to 

capture multiple overlapping slices with different range-

intensity profiles encoding extractable depth information in 

between multiple slices . Following , we capture 3 broad slices 

for depth estimation and additionally 3-4 narrow slices together 

with their passive correspondence at a system sampling rate of 

10 Hz. Radar For radar sensing, we use a proprietary frequency 

modulated continuous wave (FMCW) radar at 77 GHz with 1 ° 

angular resolution and distances up to 200 m. The radar 

provides position-velocity detections at 15 Hz. Lidar On the 

roof of the car, we mount two laser scanners from Velodyne, 

namely HDL64 S3D and VLP32C. Both are operating at 903 

nm and can provide dual returns (strongest and last) at 10 Hz. 

While the Velodyne HDL64 S3D provides equally distributed 

64 scanning lines with an angular resolution of 0.4 °, the 

Velodyne VLP32C offers 32 nonlinear distributed scanning 

lines. HDL64 S3D and VLP32C scanners achieve a range of 

100m and 120 m, respectively. FIR camera Thermal images are 

captured with an Axis Q1922 FIR camera at 30 Hz. The camera 

offers a resolution of 640 × 480 with a pixel pitch of 17 μm and 

a noise equivalent temperature difference (NETD) < 100 mK. 

Environmental Sensors We measured environmental 

information with an Airmar WX150 weather station that 

provides temperature, wind speed and humidity, and a 

proprietary road friction sensor. All sensors are 

timesynchronized and ego-motion corrected using a proprietary 

inertial measurement unit (IMU). The system provides a 

sampling rate of 10 Hz. 

 

 

  

C. Adaptive Multimodal Single-Shot fusion Data 

Representation 

 

The camera branch uses conventional three-plane RGB inputs, 

while for the lidar and radar branch, we depart from recent 

bird’s eye-view (BeV) projection  schemes or raw point-cloud 

representations . BeV projection or point-cloud inputs do not 

allow for deep early fusion as the feature representatnios in the 

early layers are inherently different from the camera features. 

Hence, existing BeV fusion methods can only fuse features in a 

lifted space, after matching region proposals, but not earlier. 

Figure 4 visualizes the proposed input data encoding, which 

aids deep multimodal fusion. Instead of using a naive depth-

only input encoding, we provide depth, height, and pulse 

intensity as input to the lidar network. For the radar network, 

we assume that the radar is scanning in a 2D-plane orthogonal 

to the image plane and parallel to the horizontal image 

dimension. Hence, we consider radar invariant along the 

vertical image axis and replicate the scan along vertical axis. 

Gated images are transformed into the image plane of the RGB 

camera using a homography mapping, see supplemental 

material. The proposed input encoding allows for a position and 

intensity-dependent fusion with pixel-wise correspondences 

between different streams. We encode missing measurement 

samples with zero value. 
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D.  Feature extraction 

 

Feature Extraction As feature extraction stack in each stream, 

we use a modified VGG backbone. Similar we reduce the 

number of channels by half and cut the network at the conv4 

layer. Inspired by , we use six feature layers from conv4-10 as 

input to SSD detectionlayers. The feature maps decrease in 

size1, implementing a feature pyramid for detections at 

different scales. As shown in Figure 4, the activations of 

different feature extraction stacks are exchanged. To steer 

fusion towards the most reliable information, we provide the 

sensor entropy to each feature exchange block. We first 

convolve the entropy, apply a sigmoid, multiply with the 

concatenated input features from all sensors, and finally 

concatenate the input entropy. The folding of entropy and 

application of the sigmoid generates a multiplication matrix in 

the interval [0,1]. This scales the concatenated features for each 

sensor individually based on the available information. Regions 

with low entropy can be attenuated, while entropy rich regions 

can be amplified in the feature extraction. Doing so allows us 

to adaptively fuse features in the feature extraction stack itself, 

which we motivate in depth in the next section. 

 

 

III. EXPERIMENTAL RESULTS 

 

 

The performance of different TLD algorithms were evaluated 

using the following steps: 

• For the training and testing a common set of image sequence 

is selected. 

• The detection output is quantified with the manuall annotated 

ground truth. 

• Each of the candidates are placed under one of the 4 classes - 

True Positive(TP), False Positive(FP), True 

Negative (TN) and False Negative (FN), based on the 

comparison with ground truth. 

• A set of statistics (Precision, Recall and F-measure) is 

calculated for each implemented algorithm. Each of the TL 

detection algorithm is evaluated based upon the following 

information retrieval measurements: 

• Precision and Recall, as seen in equation 1 

• F-measure, as seen in equation 2 

Precision and Recall quantify how well the detected TLs 

matches with the ground-truth. High precision or high recall 

value means high performance. F-measure, indicates the 

overall accuracy of the system 

Precision =     TP 

                   TP + FP 

Recall =        TP 

                  TP + FN                         (1) 

Precision is the ratio of correct TL detections compared to 

the total number of detections. True positives indicate the 

number of traffic signals which were rightly classified as 

a traffic signal. False positives indicate the number of non 

traffic signals classified as a traffic signals. Recall is the ratio 

of correct TL detections compared to the actual number of 

TLs. 

F = 2∗ Precision ∗ Recall 

            Precision + Recall                (2) 

F-measure is the geometric mean of precision and recall. 

The proposed algorithm was tested under varying lights and 

different weather conditions. Figure 7 demonstrates the visual 

outcome of the proposed method for traffic light recognition in 

different environment conditions.  The bounding box around 

the traffic light indicates the detection results and solid circle in 

the left corner of the image shows the state recognition results. 

The detection and recognition of the multiple traffic lights in 

urban scenario is shown in Figure 7 (a)-(d) while Figure 7(e)-

(f) shows the detection and recognition of traffic lights in rainy 

conditions. 
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III.  CONCLUSION 

 

This paper presents two methods to recognize the current traffic 

light phase to reliably detect the status of the traffic light. eg; 

Red, Green and, Off-status and to focus cases where cameras 

have difficulties eg; Traffic light high above the ground, Out of 

field-of-view, the traffic light is front-or backlit by the sun and 

to achieve an improved redundancy leading to batter confidence 

in driving assistance systems and for future automated driving 

solutions.  The first method presents a vision-based traffic light 

structure detection and convolutional neural network (CNN) 

based state recognition method, which is robust under different 

illumination and weather conditions. And it is purely vision-

based real-time traffic light detection and state recognition 

method which is robust under different illumination conditions. 

Results also shows that accuracy and consistency of the 

proposed method are better than conventional approaches The 

second method presents a deep fusion network for robust fusion 

without a large corpus of labeled training data covering all 

asymmetric distortions. This  introduce a novel adverse weather 

dataset covering camera, lidar, radar, gated NIR, and FIR sensor 

data. 
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