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Abstract. Graphene, a two-dimensional material composed of carbon
atoms arranged in a hexagonal lattice, possesses a unique array of proper-
ties that make it a highly sought-after material for a wide range of appli-
cations. Its extraction process, a chemical reaction’s result is represented
as an image which shows areas of synthesized material. Knowing initial
conditions (oxidizer) the synthesis result could be modeled by generating
possible visual outcome. A novel text2image pipeline to generate exper-
imental images from chemical oxidizers are proposed. Key components
of such pipeline are a textual input encoder and a conditional generative
model. In this work the capabilities of certain text model and generative
diffusion model are investigated and some conclusions are drawn provid-
ing further suggestions for further full text2image pipeline development.

1 Introduction

Graphene is an exotic wonder material with many advantages. It is the thinnest
and strongest measured material in the universe. Graphene can maintain 106

times higher current density than copper, has record thermal conductivity and
stiffness, is impermeable to gases, and combines contradictory properties such as
brittleness and ductility [6]. It is a one-atom-thick material - a plane made up of
carbon atoms lined up in a hexagonal lattice, resembling a beehive. Graphene has
a very wide range of applications: manufacture of transistors [1]; production of
conductive plates with single-electron-transistor (SET) circuitry; digital memory
for quantum repeaters [27]; plasma displays [23] and much more.

Graphene could be synthesized using methods described in [21, 20]. Yet,
development of a digital tool capable of visualizing the potential output of a
graphene synthesis reaction using a selected oxidant could give an insight about
expected result beforehand. Instead of complext chemical process modelling,
such process could be modelled by analyzing images. The mathematical model
for image encoding in our case is a neural network, which uses the process of au-
tomatic conversion of text into an image (text2image [19]), like Stable Diffusion
or DALL-E 2 [22, 18]. Model input - chemical name (text) of the oxidant used in
graphene synthesis. Then the output of the model - a visual representation (pic-
ture) of the result of a possible reaction. However, this will be discussed in more
detail in a later work, in the future. And in the current context, more attention is
paid to the separate components of the model architecture: the component that
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prepares the input text embeddings that condition the output and the generative
component that provides the visual result of the synthesis simulation (diffusion
model selected).

For the component which prepares the input text embeddings (text encoder)
the Contrastive Language-Image Pre-training model (CLIP) was selected [17].
The CLIP model can be conceptualized as a conventional image classifier with
the ability to learn from the natural textual description of a photo. The usage of
this model does not need complex and limiting data labeling methodologies. Also,
the CLIP model can extract latent text embeddings, which can later influence
the generative diffusion model in the process of conditional image generation.
The simulation tool for the graphene synthesis reaction described in this paper
specifically requires the text encoder component of the CLIP model for the
latent text representations (text embeddings), precisely because of the influence
on the diffusion model. The challenge here is to adapt appropriately this model
to classify images of graphene synthesis correctly. As the images among oxidant
classes look similarly and the amount of data available is very limiting currently.

For the generative component a diffusion model [24, 12] was selected. In this
context, it is a generative neural network, like generative adversarial networks
(GANs) [7] or variational autoencoders (VAEs) [4] capable of generating images
from the input vector by applying a denoising process. The text latents encoded
by the CLIP text encoder can influence the input vector of the diffusion model,
thus conditioning the output of the diffusion model. In this way, potential imag-
ing results of the graphene synthesis reaction can be generated conditioned by
the entered name of the oxidant. However, this paper presents the capabilities
of the diffusion model to generate imaging results for the graphene synthesis
reaction by discarding this conditional input application and leaves this task for
the future. The challenge here is to inspect the capability of a diffuser to gen-
erate graphene synthesis images and draw further conclusions about usage of a
conditional diffuser for the general development objective.

The novelty of this work is a proposed usage of CLIP for digital components
required for the subsequent modeling of the graphene synthesis simulation tool.
This proposed solution allows to create a digital tool that can visually represent
the possible output of the graphene synthesis reaction using the chosen oxidant.
The tasks of the work include investigating the applicability of the CLIP model,
the training process, and the ability of the diffusion-based generator (diffuser) to
unconditionally generate images matching graphene synthesis reaction results.

2 Methodology

2.1 CLIP

The CLIP model [17] was introduced by the OpenAI company and is able to
learn to predict which caption matches which image from the natural textual
description of the photo. In this way, the limiting usability of computer vision
systems is avoided, since conventional systems of this type require additional la-
beling information for any other visual concept. In implement experimentation
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the CLIP model is trained by providing (photo, text) data pairs, where text
corresponds to the oxidant which was used to synthesize the result seen in the
given photo. Conventional image classifiers simultaneously train a visual feature
extractor and a linear classifier to predict the class label, while the CLIP model
simultaneously trains a visual feature encoder and a text encoder to predict suit-
able (photo, text) pairs. Encoded oxidizer namings (latents) during training are
encouraged to match synthesis result image latents as much as possible by mini-
mizing pairs of their the dot products. The minimized values locate on the main
diagonal of this resulting matrix. The used architecture in our experimentation
can be seen in Fig. 1.

Fig. 1. CLIP training

During inference the text encoder simulates a zero-shot linear classifier by
embedding the oxidizer class names of the graphene images dataset and classifies
the graphene synthesis results by their corresponding oxidizers. The image latent
vector is scalar multiplied with each of the possible naming latent vectors and the
smallest value of all obtained is selected. Then an oxidizer naming, which latent
vector provided this smallest value in product with image latent, is selected and
passed as an output. This process is illustrated by Fig. 2.

Due to the property of learning from the natural textual description of an
image, the CLIP model requires less data to achieve the same accuracy result
compared to conventional computer vision classification models. These require a
larger volume of training material corresponding to the distribution of use. This
is relevant as the available amount of graphene data is very limited.

The CLIP model and its ability to embed textual input is also used in models
for generating images from text: DALL-E 2, Stable Diffusion [18, 22]. It is this
use case that is relevant to the purpose of this paper. Other use cases of the
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Fig. 2. CLIP inference

CLIP model: content moderation [5]; image captioning [2]; image search engine
[14]; and much more.

2.2 Diffusion model

The invention of the diffusion model was inspired by the idea of non-equilibrium
thermodynamics: to systematically and slowly destroy the data structure through
an iterative process of diffusion. The reverse diffusion process can then be learned
by reconstructing the previously destroyed data structure - this method creates
an extremely flexible and easy-to-manage generative model [24].

The diffusion process (forward process) is a Markov chain [15] and is per-
formed by gradually adding Gaussian noise to the image data based on the noise
variance schedule (variance schedule) β1, β2, ..., βT , where T is the duration of the
schedule (how many times noise will be added to the data). Fig. 3 diffusion pro-
cess is marked q(xt|xt−1), where x0 ∼ q(x0) - initial data; x1, x2, ..., xt−1, xt, ..., xT

- latents (data with applied Gaussian noise).
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Fig. 3. Diffusion process - Markov chain

Mathematically, the diffusion process q(x1:T |x0) is written [12]:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt|
√
1− βtxt−1, βtI) (1)

The reverse process Fig. 3 is denoted by pθ(xt−1|xt). Is run to reconstruct
image data destroyed by noise and is described by a Markov chain with learned
Gaussian transitions starting from p(xT ) = N (xT |0, I) :

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1|µθ(xt, t),Σθ(xt, t))

(2)
We can write a closed-form expression for the loss function [12, 13]:

L = c+

T∑
t=1

κtEx0,ϵ

∣∣∣∣∣∣ϵ− ϵθ(

√√√√ t∏
s=1

(1− βt) · x0 +

√√√√1−
t∏

s=1

(1− βt) · ϵ, t)
∣∣∣∣∣∣2
2

(3)

Here, c and κt are constants independent of θ. κt =
βt

2(1−βt)(1−
∏t

s=1(1−βt−1))
when

t > 1, but κ1 = 1
2(1−β1)

. Also, ϵθ : RL × N → RL is a neural network that takes
a latent variable xt and a diffusion step t as the input

Below are the pseudocodes for the diffusion model training and inference (sam-
pling) algorithms based on all the above information.

Algorithm 1 Training
repeat

x0 ∼ q(x0)
t ∼ Uniform({1, ..., T})
ϵ ∼ N (0, I)
Gradient descent step:

∇θ

∣∣∣∣∣∣(ϵ−ϵθ(
√∏t

s=1(1− βt) ·x0+√
1−

∏t
s=1(1− βt) · ϵ, t)

∣∣∣∣∣∣2
until converged

Algorithm 2 Sampling

xT ∼ N (0, I)
for t = T, ..., 1 do

z ∼ N (0, I) if t > 1, else z = 0
xt−1 = 1√

(1−βt)
(xt −

βt√
1−

∏t
s=1(1−βt)

ϵθ(xt, t)) + σtz

end for
return x0
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During inference, a noise latent is passed through the diffuser and an image
representing graphene synthesis result is expected to appear.

To solve this work tasks, it is enough to realize that the diffusion model can
generate images of possible graphene synthesis results, so this model was chosen
for this very reason. Using the cross-attention layers in the model architecture
can influence the model’s generative processes, thus, through the input, condi-
tioning the model’s output. And this is relevant for the general goal of the work,
which will be worked on in the future. This work is limited to research to deter-
mine the capabilities of the diffusion model to unconditionally generate images
of possible graphene synthesis results.

Fig. 4. Optical microscopy samples of graphite bisulfate (GBS)

3 Computational experiments

All studies were performed in the Google Colab Premium environment using
A100 SXM4 40GB GPU.
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3.1 Data

Before conducting the research, 79 images of graphene synthesis results (optical
microscopy photographs of graphite bisulfate (GBS) samples) with specified oxi-
dants and reagents, which were used during the synthesis, were obtained from the
Faculty of Chemistry and Geosciences of Vilnius University. In GBS synthesis,
three different oxidants were used:

– Ammonium persulfate - (NH4)2S2O8

– Potassium persulfate - K2S2O8

– Chromium trioxide - CrO3

The GBS synthesis procedure was repeated using all the oxidants and addition-
ally adding a water binding reagent - phosphorus pentoxide P2O5 to the oxidizing
mixture. Thus, a total of six data classes were obtained, which are named:

– NH4)2S2O8
– K2S2O8
– CrO3
– NH4)2S2O8_P2O5
– K2S2O8_P2O5
– CrO3_P2O5

3.2 Data processing

The raw data are JPG format photos with a resolution of 2560 x 1920. The
pictures show the result in a large scale, but the number of pictures is not
large, so for a better quality of network generalization, a 1000 x 1000 resolution
frame is selected at a random place in the picture and the picture is cropped
around the frame. However, the resolution of a 1000 x 1000 photo is extremely
high and its processing would theoretically require a very large neural network,
the calculations of which would be extremely expensive, so the resolution of the
photo is reduced to 128 x 128. These augmentations are chosen for optimal model
training and subsequent exploitation without damaging essential information in
the data.

3.3 CLIP model training

The individual components that make up the CLIP model were downloaded us-
ing the Hugging Face transformers library [26]: the CLIP photo encoder com-
ponent and the CLIP text encoder component. This decomposition is chosen for
convenience in the later implementation of the overall goal of the work, which
requires only the CLIP text encoder component. Also downloaded: CLIP feature
extractor and CLIP tokenizer in "openai/clip-vit-base-patch32" configura-
tion. Settings for the CLIP video encoder and text input encoder components
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can be found in appendix A. Projection heads of photo embeddings and text em-
beddings were also used, which unify the dimensions of the embeddings. These
heads are small neural networks consisting of one residual block [9], the diagram
is presented in appendix B.

The CLIP model was trained by providing it with (picture, text) data pairs:

1. The photo is passed through the
CLIP image feature extractor

2. The resulting processed photo is
passed through the CLIP image
encoder

3. The resulting latents are passed
through the projection head

1. The text is passed through the
CLIP tokenizer.

2. The resulting tokens are passed
through the CLIP text encoder

3. The resulting latents are passed
through the projection head

Later, the probabilities are calculated, the value of the cross entropy loss function
is estimated, the gradient is calculated and the CLIP components weights are up-
dated. For the training process an Adam optimizer [3] and a cosine learning rate
scheduler [10] were used. It was performed using the Hugging Face accelerate
library for training over 200 epochs [8].

3.4 Diffusion model training

The diffusion model was downloaded from the Hugging Face diffusers library
[16]. Unet architecture for this model was used. A scheme describing the model
architecture is given in appendix D. Settings and hyperparameters are given in
appendix C. Also, from the diffusers library a DDPM noise scheduler according
to [12] was downloaded.

The diffusion model was trained by loading batches of pictures to it:

1. Noise is added to photos according to the noise schedule
2. Noisy pictures are passed through a diffusion model
3. The obtained noise estimate of the model is evaluated with the noise schedule

reference and the value of the mean square error (MSE) loss function is
calculated

4. Based on the received value, the gradient is calculated and the model weights
are updated

For training, over 200 epochs, the Adam optimizer [3] with decoupled weight
loss regularization [11], the cosine learning rate scheduler [10] were used, and the
training process was performed using the Hugging Face accelerate library [8].
Afterwards, the diffuser images were generated using the DDPMPipeline class
from the diffusers library. The implementation code will be shared in the
future.
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4 Results

4.1 CLIP results

For this work, CLIP model inference provided disappointing results. Currently,
the model is not able to reliably classify the imaging data of graphene synthesis
- for each of the classes of oxidants with which graphene was synthesized, the
model assigns approximately equal probabilities during classification, when try-
ing to guess the real oxidant.

Table 1. CLIP inference 1

Top predictions
NH4)2S2O8_P2O5 16.76%
NH4)2S2O8 16.71%
K2S2O8_P2O5 16.67%
Actual text prompt NH4)2S2O8_P2O5

Table 2. CLIP inference 2

Top predictions
CrO3 16.78%
K2S2O8 16.74%
CrO3_P2O5 16.72%
Actual text prompt NH4)2S2O8

Table 3. CLIP inference 3

Top predictions
NH4)2S2O8_P2O5 16.73%
NH4)2S2O8 16.70%
K2S2O8_P2O5 16.67%
Actual text prompt NH4)2S2O8

The figures above show three attempts to determine the oxidant, used to synthe-
size graphene, from a photograph. The "Actual text prompt" box in the tables
shows the actual graphene synthesis result class, and above it, in descending or-
der, the class predictions with probabilities. From the Table 1 example, we can
see that the model correctly identified the oxidant class, but the other guesses
get slightly lower probabilities. Similar classification probabilities are also seen in
the Table 2-3 examples, where the model failed to correctly identify the graphene
synthesis oxidant, and Table 2 the correct oxidizer class is not even among the
three most likely guesses. It is believed that in this design, the CLIP model fails
to draw strong differences between graphene synthesis samples synthesized with
different oxidants, and in the latent space, all latents: both text and photos, are
too closely spaced.

4.2 Diffusion model results

A mathematical expression for evaluating the quality of the model, except for
the loss function, was not designed, therefore the most optimal hyperparameter
values were selected by comparing the values of the loss function calculated after
the appropriate number of training epochs (40). It was found that the most op-
timal tested learning rate value for this model is equal to 3 ∗ 10−4. With values
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of this hyperparameter higher than 10−3, the model diverged. The study result
figure for the learning rate is provided in Fig. 5.

10−6 10−5 10−4 10−3

Learning rate value

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss
 fu

nc
tio

n 
va

lu
e 
af
te
r 4

0 
ep

oc
hs

Fig. 5. Learning rate study for the dif-
fuser
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Fig. 6. Learning rate scheduler warm up
study for the diffuser

The warm-up [10] of the cosine training step planner was also investigated.
Warm-up values of different lengths were tested as a percentage (%) of the
number of warm-up steps from the total number of model training steps. The
optimal value of this hyperparameter was found to be 0%. A warm-up study of
the cosine training step scheduler is displayed in Fig. 6.

The results of diffusion model generation were evaluated visually and by
Frechet Inception Distance (FID) metric [25]. The images generated uncondi-
tionally by the model look similar to the images that were fed to the model
during training. However, a closer look at the results reveals a lack of detail
clarity - it is difficult to accurately distinguish graphene regions in generated
images. This problem may be caused by the small amount of data and the low
resolution of the generated photo (128 x 128). Examples of generated images are
provided in Fig. 9.

Frechet Inception Distance was calculated comparing original photos (train-
ing data), disregarding the classes of the sample, with:

1. Same sample of original data
2. Same sample of original data, but within the same classes
3. Random images
4. Generated images by the first iteration model
5. Generated images by the best model

The results are shown in Fig. 7 - original FID score values and Fig. 8 - percentages
of the scores compared with the highest score. The highest FID score, indicating
the worst result, are reached by the first iteration’s model generated images. Best
model’s generated images reach 68.51% of the highest score and indicate better
generated photos resemblance to the original than comparing original data with
random images. Yet the score is far from original data’s comparison as it reaches
negligible FID value and is the target of this task.
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Fig. 7. Frechet Inception Distance scores
Fig. 8. Frechet Inception Distance score
percentages

Fig. 9. Generated samples (resolution 128 x 128)

Conclusion

The novel text2image usage to encode chemical formulas for chemical images gen-
eration was proposed and successfully implemented. The results demonstrated
the image generation part to be working more sufficient than graphene synthe-
sis results classification. The encoder model assigns similar probabilities to all
guess variants of the class. Furthermore, the diffusion model (generator) gener-
ates images similar to what would be expected, but these images are not detailed
enough, lacking resolution. However, based on the tasks of text2image, these two
models can be adapted to predict the results of graphene synthesis reactions.
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On the other hand, for the development of a high-quality image prediction
tool, there remain a number of tasks related to the adaptation of the CLIP model
and the generative diffuser.
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A CLIP configuration

A.1 CLIP image encoder configuration

Table 4. CLIP image encoder configuration

Hidden layers dimension (hidden_size) 768
Encoder’s feed forward layer dimension (intermediate_size) 3072
Number of hidden layers (num_hidden_layers) 12
Number of attention heads (num_attention_heads) 12
Number of image color channels (num_channels) 3
Resolution of images (image_size) 128 x 128
Resolution of an attention patch (patch_size) 32
Hidden layers’ activation function (hidden_act) "quick_gelu"
Normalization layers’ epsilon ϵ value (layer_norm_eps) 1e-05
Dropout probability in fully connected layers (dropout) 0.0
Dropout probability in attention layers (attention_dropout) 0.0
Standard deviation of model weights initiation (initializer_range) 0.02
Model weights initiation factor (initializer_factor) 1.0

A.2 CLIP text encoder configuration

Table 5. CLIP text encoder configuration

Vocabulary size (vocab_size) 49408
Hidden layers dimension (hidden_size) 512
Encoder’s feed forward layer dimension (intermediate_size) 2048
Number of hidden layers (num_hidden_layers) 12
Number of attention heads (num_attention_heads) 8
The maximum tokenized sequence length (max_position_embeddings) 77
Hidden layers’ activation function (hidden_act) "quick_gelu"
Normalization layers’ epsilon ϵ value (layer_norm_eps) 1e-05
Dropout probability in fully connected layers (dropout) 0.0
Dropout probability in attention layers (attention_dropout) 0.0
Standard deviation of model weights initiation (initializer_range) 0.02
Model weights initiation factor (initializer_factor) 1.0
The ID of the padding token (pad_token_id) 1
The ID of the beginning-of-stream token (bos_token_id) 0
The ID of the end-of-stream token (eos_token_id) 2
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A.3 General CLIP configuration and hyperparameters

Table 6. General CLIP configuration and hyperparameters

Training batch size 26
Number of training epochs 200
Gradient accumulation steps 1
Learning rate 5 · 10−2

CLIP temperature 0
Learning rate warm-up steps 0
Latents dimension 256

B Embeddings projection head scheme

Fig. 10. Embeddings projection head scheme
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C Diffusion model configuration and hyperparameters

Table 7. Diffusion model configuration and hyperparameters

Resolution of generated photos 128
Number of input image channels 3
Number of output image channels 3
Number of training epochs 200
Gradient accumulation steps 1
Learning rate 3 · 10−4

Learning rate warm-up steps 0
Number of diffusion steps 1000

D Architecture of the diffusion model - Unet

Fig. 11. Architecture of the diffusion model - Unet


