
EasyChair Preprint

№ 231

Epistemic Logic Programs with World View

Constraints

Patrick Kahl and Anthony Leclerc

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 4, 2018

Epistemic Logic Programs with World View
Constraints
Patrick Thor Kahl
Space and Naval Warfare Systems Center Atlantic
North Charleston, SC, USA
patrick.kahl@navy.mil

Anthony P. Leclerc
Space and Naval Warfare Systems Center Atlantic | College of Charleston
North Charleston, SC, USA | Charleston, SC, USA
anthony.leclerc@navy.mil | leclerca@cofc.edu

Abstract
An epistemic logic program is a set of rules written in the language of Epistemic Specifications, an
extension of the language of answer set programming that provides for more powerful introspect-
ive reasoning through the use of modal operators K and M. We propose adding a new construct
to Epistemic Specifications called a world view constraint that provides a universal device for
expressing global constraints in the various versions of the language. We further propose the use
of subjective literals (literals preceded by K or M) in rule heads as syntactic sugar for world view
constraints. Additionally, we provide an algorithm for finding the world views of such programs.

2012 ACM Subject Classification Software and its engineering → Software notations and tools
→ General programming languages → Language features → Constraints

Keywords and phrases Epistemic Specifications, Epistemic Logic Programs, Constraints, World
View Constraints, World View Rules, WV Facts, Answer Set Programming, Logic Programming

Acknowledgements The authors wish to express their thanks to Evan Austin, Michael Gelfond,
and ICLP anonymous reviewers for their valued suggestions and comments on drafts of this work.

1 Introduction

The language of Epistemic Specifications extends answer set programming (ASP) by adding
modal operators K (“known”) and M (“may be true”). It was introduced by Gelfond [16]
after observing a need for more powerful introspective reasoning than that offered by ASP
alone. A program written in this language is called an epistemic logic program (ELP), with
semantics defined using the notion of a world view—a collection of sets of literals (belief
sets), analogous to answer sets of an ASP program. Recent interest has led to a succession
of proposed semantics [18, 22, 13, 36, 45] advocating differing perspectives with respect to
the meaning of connectives and intended world views of programs. This clash of intuition is
only one aspect of the problem as defining a semantics that facilitates understanding and yet
accurately reflects intuition appears to be quite difficult as discussed in Section 2.

In this paper, we don’t try to resolve the clash; instead, we focus on the important problem
of modeling knowledge using purely epistemic constraints. With the original semantics, such
constraints could be used to eliminate possible worlds. As will be shown, this property
was lost with the more recent semantics. This leads to substantial difficulties in modeling
knowledge. Thus, in an attempt to facilitate ELP development in the midst of language
evolution, we propose extending the language with a syntactic construct called a world view

mailto:patrick.kahl@navy.mil
mailto:anthony.leclerc@navy.mil ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~|~ leclerca@cofc.edu

1:2 ELPs with WVCs

constraint (WVC) to distinguish certain constraints as global. WVCs are universal—immune
by design to the various devices (e.g., maximality requirements) used to tweak the semantics.

As an introductory example, let us look at a simple epistemic logic program that features
a purely epistemic constraint:

p or q.

← not K p. % purely epistemic constraint
The second rule is purely epistemic in that its body consists solely of a subjective literal
whose interpretation is global in the sense that its truth value depends on the entire collection
of belief sets in some possible world view rather than some current (local) working set. To
be precise, the truth value of not K p depends on whether p is in all belief sets of some
possible world view under consideration. For example, considering W = {{p}, {q}} as a
possible world view, not K p evaluates to true, thus violating the constraint.

As W is the only possible world view that is consistent with the rest of the program (i.e.,
the first rule), this program has no world view under the original semantics [16]. However,
under most of the recently proposed semantics [22, 13, 36], its world view is {{p}}—a result
that some may consider unexpected. To achieve the same result as that of the original
semantics, we propose replacing the second rule with the following:

wv← not K p. % world view constraint
which results in no world view for any of the proposed ELP semantics (if extended with our
new construct). This motivating example and others are discussed in Sections 3 and 5.

The paper is organized as follows. We begin with a summary of related work in develop-
ment of the language semantics and ELP solvers. Next we discuss the use of constraints in
both ASP and Epistemic Specifications, providing motivational argument for the introduction
of WVCs. We then present the syntax and semantics of the extended language. We follow
with examples demonstrating its use. Finally, we give an algorithm for computing the world
views of an ELP with WVCs, and close with suggestions for related extensions.

2 Background and Related Work

With his good friend and colleague Vladimir Lifschitz, the foundations for what we now
call answer set programming (ASP) had been laid down in the seminal works of Michael
Gelfond [20, 21] by 1991. It seems strange in hindsight that, in the same year, a far less
known language called Epistemic Specifications was proposed by Gelfond [16] in an attempt
to address an observed inadequacy in the expressiveness of its better known predecessor.
Gelfond noticed that the following ASP program does not entail a required interview for a
scholarship applicant whose eligibility is not able to be established:

% rules for scholarship eligibility at a certain college where S represents a scholarship applicant
eligible(S)← highGPA(S).
eligible(S)← fairGPA(S), minority(S).
¬eligible(S)← ¬highGPA(S), ¬fairGPA(S).
% ASP attempt to express that an interview is required if applicant eligibility can’t be determined
interview(S)← not eligible(S), not ¬eligible(S).
% applicant data
fairGPA(mike) or highGPA(mike).

The program correctly reflects that Mike’s eligibility can not be determined, but its answer sets,
{fairGPA(mike), interview(mike)} and {highGPA(mike), eligible(mike)}, do not conclude
that an interview is required since only one contains interview(mike).

P.T. Kahl and A.P. Leclerc 1:3

Gelfond’s solution was to extend the language by adding modal operator K (“known”)
and changing the fourth rule above as follows:

% updated rule to express interview requirement using modal operator K
interview(S)← not K eligible(S), not K ¬eligible(S).

The updated rule says that interview(S) is to be believed if both eligible(S) and ¬eligible(S)
are each not known (i.e., not in all belief sets of the world view). The program has world view
{{fairGPA(mike), interview(mike)}, {highGPA(mike), eligible(mike), interview(mike)}}
with its belief sets both containing interview(mike); thus, the required interview is entailed.

Although the language of Epistemic Specifications was revised in the first years of its
introduction, after 1994 [6, 17] (referred to hereafter as ES1994) little concerning its semantics
was seen in the literature for almost two decades. In the intervening years before 2011,
Chen [11] proposed GOL, a generalization of Levesque’s logic of only knowing (OL) [29],
that “covers Gelfond’s important notion of Epistemic Specifications.” Preda [34] proposed an
alternative to Epistemic Specifications using multiple levels of negation (perhaps a precursor
to the 2016 Shen-Eiter proposal discussed later). Wang and Yan Zhang [42] offered another
alternative, proposing an epistemic extension to Pearce’s equilibrium logic of here-and-there
[33]. Efforts in 2011 by Faber & Woltran [14] and Truszczyński [40] mark the beginning of a
renewed interest in Epistemic Specifications.

With the resurgence of interest, Gelfond felt an update to Epistemic Specifications was
needed. His proposal [18] (referred to hereafter as ES2011) specifically addressed unintended
world views due to recursion through modal operator K, as exemplified here:

p← K p.

Under ES1994 semantics, this program has two world views, {{}} and {{p}}. Under ES2011
semantics, only the first is a world view, which is arguably more intuitive. It was observed,
however, that unintended world views due to recursion through modal operator M remain,
as demonstrated by the following one-line program:

p← M p.

Under ES2011 semantics the program has two world views, {{}} and {{p}}. This result did
not seem intuitive. Following Gelfond’s lead, Kahl et al. [23, 22] proposed another update
(referred to hereafter as ES2014) to address the issue, with semantics supporting only the
latter world view.

It was suggested by Fariñas del Cerro et al. [13] that there remain unintended world
views for certain programs with ES2014 semantics, particularly the following:

p← M q, not q.

q ← M p, not p.

Per ES2014, the program has two world views, {{}} and {{p}, {q}}, of which the first,
they argue, seems unintended. Their notion of autoepistemic equilibrium models (AEEMs)
attempts to address this concern with a new epistemic extension of equilibrium logic that
includes a maximality condition on epistemic equilibrium models. Using AEEMs successfully
eliminates {{}} from the above program’s world views.

Shen and Eiter [36] offered another update to the semantics, albeit using different syntactic
notation, that focused on resolving unintended world views due to:
• epistemic circular justification in which a literal is considered true solely on the

assumption that it is in all belief sets (i.e., belief in ` is justified only by K `); and
• not satisfying the property of knowledge minimization with epistemic negation.

The property of knowledge minimization with epistemic negation is based on a maximality
requirement on a guess (i.e., a set of epistemic negations—equivalent to subjective literals of
the forms not K ` and M `—considered true within the program under consideration) for

1:4 ELPs with WVCs

its associated collection of belief sets to be a world view, all other conditions being satisfied.
In [24], the authors provided a revision of ES2014 semantics by adding this maximality
requirement (referred to hereafter as ES2016).

Following suit, Zhizheng Zhang [46] updated his semantics for answer set programming
with graded modality (ASPGM) by adding a maximality condition in line with Shen and Eiter.
With some syntactic liberty, Epistemic Specifications can be viewed as a proper subset of
ASPGM with ASPGM allowing for expressing a lower and upper bound on the number of belief
sets containing a specified literal within a world view. (We will revisit ASPGM in Section 7.)

Recently, Yan Zhang and Yuanlin Zhang [45] offered a different semantics for ELPs, with
a stricter view on circular justification. To illustrate, they argue that the program

p← M p.

should have the world view {{}} rather than {{p}} as they do not consider circular justification
of p as sufficient reason to accept the latter. To them, justification for M p being true requires
that belief in p is forced in some belief set of the rational agent.1 Others argue that M p is
equivalent to not K not p and that the rationality principle (which states that a rational
agent should believe only what it is forced to believe) favors not knowing (not K) over
knowing (K), so {{p}} is the preferred world view. In contrast, Zhang & Zhang use this
same principle to argue against {{p}} since the possibility of p is not viewed as enough by
itself to force belief in p.

Regardless of differing views, it appears there remains room for improvement. As one
example, in [36] the problem of unintended world views due to recursion through M is defined
as a semantics for which “its world views do not satisfy the property of knowledge minimization
with epistemic negation.” Use of this definition avoids the question of whether, based on
intuition, a program has unintended world views. Consider again the program

p← M q, not q.

q ← M p, not p.

for which {{p}, {q}} is the only world view per this knowledge minimization property. Adding
r ← M p, M q.

results in the world view {{p, r}, {q, r}}, as one might expect. But now if we add the rule
s← K r.

we get two world views: {{p, r, s}, {q, r, s}} and {{}}. In lieu of the other results, this seems
unintuitive in spite of following the property of knowledge minimization with epistemic
negation. We believe this demonstrates the difficulty in defining an intuitive semantics.

In conjunction with development of the language, there has been concomitant development
of tools for finding world views. Attempts at developing a solver or inference engine include
ELMO by Watson [43], sismodels by Balduccini [3], Wviews by Kelly [25, 26, 41] using Yan
Zhang’s algorithm [44], ESmodels by Zhizheng Zhang et al. [35, 47], ELPS by Balai [1, 2],
ELPsolve by the authors [24], EP-ASP by Son et al. [27, 37], EHEX by Strasser [38], and selp
by Bichler et al. [7, 8]. A thorough discussion of these tools is left for another paper [28]. It
deserves note, however, that all extant solvers use an ASP solver for backend processing, and
as ASP solver development has matured, ELP solver development has slowly followed.

3 Motivation for World View Constraints

It is well known (see, for example, Proposition 2 in [31]) that constraints (headless rules)
in an ASP program have the net effect of, at most, ruling out certain answer sets from the

1 See the notion of an externally-supported M-cycle in [23].

P.T. Kahl and A.P. Leclerc 1:5

program (modulo its constraints). To illustrate, consider the following ASP program:
p or q.

p← q.

which has one answer set {p}. If we add the constraint
← p, not q.

the resulting program has no answer set since {p} violates this constraint.
With Epistemic Specifications, constraints can have an additive or subtractive effect on

belief sets or entire world views. Consider, for example, the following ELP:
p or q.

r ← M q.

with world view {{p, r}, {q, r}}. If we add the constraint
← q.

the resulting program has world view {{p}}. Let’s look at another example:
p or q.

r ← M p.

s or t← K p.

This program has a single world view, {{p, r}, {q, r}}. If we add the constraint
← M p, M q.

the resulting program has two world views per ES2016: {{p, r, s}, {p, r, t}} and {{q}}.
The previous examples illustrate potential differences in the effect of constraints on an

ELP compared to an ASP program. The last may also show how constraints can be a possible
source of confusion with respect to world views.2 Consider another example:

p or q.

← not K p.

Under ES2016 semantics, its world view is {{p}}; however, under the original semantics [16],
the program has no world view. This raises the question:

Which result is intended?
If the intent of the constraint is to rule out world views that do not contain p in every
belief set, then the latter (from the original semantics) would seem correct. Under the later
semantics, the net effect of the constraint is to eliminate belief sets that would otherwise
result in a world view that violates the constraint.

For ES2014 semantics, it was shown in [22] that, in general, to eliminate world views that
do not contain p in every belief set (and not simply eliminate belief sets from a world view
that would otherwise not meet this requirement), two constraints are required instead of the
one given above, resulting here in the following program:

p or q.

← p, not K p.

← not M p.

So with ES2014 semantics we now have a program with no world view. The same is true
in this case with the later ES2016 semantics; however, the new maximality requirement in
ES2016 means such “tricks” won’t work for all programs. Consider the following:

p← M q, not q.

q ← M p, not p.

r ← M p, M q.

Under ES2014 semantics, {{}} and {{p, r}, {q, r}} are the world views. Per ES2016, only
the latter is a world view. If we now add the constraint

2 Should the program even have a world view? Under the earlier ES1994 semantics, it does not!

1:6 ELPs with WVCs

← K r.

the resulting program has world view {{}}, which is not an ES2016 world view without this
constraint. We observe that there does not appear to be a general way to simply rule out
world views under ES2016 semantics. This observation leads to our thesis.

As the semantics of Epistemic Specifications has evolved to address uninten-
ded world views and support intuition with respect to certain programs, we
believe the added complexity has had a negative side effect with respect to in-
tuitive understanding of certain other programs—particularly those involving
constraints with subjective literals. Thus, in an attempt to facilitate correct problem
encoding/program development in line with intuition, we propose a new language construct
called a world view constraint (WVC) and introduce symbol wv← read as “it is not a world
view (if...)” for use in forming a WVC. For example,

wv← K p.

is read “it is not a world view if p is known” and means (informally) that any world view
satisfying K p is ruled out from the set of world views of the program under consideration.
This is analogous to how constraints affect answer sets in ASP, though at the world view
level for Epistemic Specifications.

4 Syntax and Semantics

For the purpose of demonstrating the use of WVCs, we first define the syntax and semantics
for two versions of the language: ES2014 and ES2016. We direct the reader to the papers
referenced earlier for information on other versions of Epistemic Specifications. We present
our proposal for extending the language in Section 4.3, and follow by suggesting a means of
expressing the bounds for the grounding of variables within the context of the new constructs.

In general, the syntax and semantics of the language of Epistemic Specifications follow
that of ASP with the notable addition of modal operators K and M, plus the new notion of a
world view which is a collection of belief sets analogous to answer sets. We assume familiarity
with ASP [5, 9, 15, 19, 30]. We use AS(P) to denote the set of answer sets of ASP program
P. We use symbol |= for satisfies and 6|= for does not satisfy.

4.1 Syntax [ES2014 and ES2016]
An epistemic logic program is a set of rules of the form

`1 or ... or `k ← e1, ..., en.

where k ≥ 0, n ≥ 0, each `i is a literal (an atom or a classically-/strongly-negated atom;
called an objective literal when needed to avoid ambiguity), and each ei is a literal or a
subjective literal (a literal immediately preceded by K or M) possibly preceded by not (default
negation). As in ASP, a rule having an objective/subjective literal with a variable term is a
shorthand for all ground instantiations of the rule. By body(R) we denote the set {e1, ..., en}
from the body of rule R.

4.2 Semantics
I Definition 1. [When a Subjective Literal Is Satisfied]
Let W be a non-empty set of consistent sets of ground literals, and ` be a ground literal.
• W |= K ` if ∀A ∈W : ` ∈ A. • W |= not K ` if ∃A ∈W : ` /∈ A.
• W |= M` if ∃A ∈W : ` ∈ A. • W |= not M` if ∀A ∈W : ` /∈ A.

P.T. Kahl and A.P. Leclerc 1:7

I Definition 2. [Modal Reduct]
Let Π be a ground epistemic logic program, W be a non-empty set of consistent sets of
ground literals, and ` be a ground literal. We denote by ΠW the modal reduct of Π with
respect to W defined as the ASP program3 obtained from Π by replacing/removing subjective
literals in rule bodies or deleting associated rules per the following table:

subjective literal ϕ if W |= ϕ then... if W 6|= ϕ then...

K ` replace K ` with ` delete rule containing K `

not K ` remove not K ` replace not K ` with not `

M` remove M` replace M` with not not `

not M` replace not M` with not ` delete rule containing not M`

I Definition 3. [World View under ES2014 Semantics]
Let Π be a ground epistemic logic program and W be a non-empty set of consistent sets of
literals. W is a world view of Π under ES2014 semantics if W= AS(ΠW).

I Definition 4. [Epistemic Negations4]
Let Π be a ground epistemic logic program, W be a non-empty set of consistent sets of literals,
and ` be a ground literal. We denote by EP (Π) the set of distinct subjective literals appearing
(regardless of being negated) in Π, each taking the form of not K` or M` (referred to as
epistemic negations) as follows:

EP (Π) = { not K` : K` appears in Π } ∪ { M` : M` appears in Π }.

In context with Π, we use Φ to denote a subset of EP (Π), and denote by ΦW the subset of
epistemic negations in EP (Π) that are satisfied by W ; i.e., ΦW = { ϕ : ϕ ∈ EP (Π) ∧W |= ϕ }.

I Definition 5. [World View under ES2016 Semantics]
Let Π be a ground epistemic logic program and W be a non-empty set of consistent sets of
literals. W is a world view of Π under ES2016 semantics if:
(1) W= AS(ΠW); and (2) there is no W ′ such that W ′= AS(ΠW ′) and ΦW ′ ⊃ ΦW .5

4.3 World View Constraints and World View Rules
We extend the language of Epistemic Specifications by introducing a world view constraint as a
construct for restricting the world views of an ELP, and a world view rule as a syntactic device
for specifying a world view constraint in an effort to facilitate problem encoding/program
development. The syntax and semantics of ES2016 are assumed here for the core ELP,
though the definitions should work with other language versions.

4.3.1 World View Constraints
A world view constraint (WVC) is an epistemic logic program rule of the form

wv← s1, ..., sn.

where each si is a (possibly negated) subjective literal.6

3 with nested expressions of the form not not ` as defined in [31]
4 introduced in [36] using a different syntax
5 The maximality requirement on ΦW comes from the general epistemic semantics of Shen and Eiter [36].
6 A negated subjective literal is of the form not K ` or the form not M ` in ES2016 syntax.

1:8 ELPs with WVCs

I Definition 6. [When a World View Constraint Is Violated]
Let W be a non-empty set of consistent sets of ground literals, and C be a ground WVC of
the form wv← s1, ..., sn. We say that W violates C if ∀si ∈ body(C) : W |= si.7

I Definition 7. [Semantics of an ELP with WVCs]
Let Π be a ground ELP with WVCs such that Π = Π0 ∪ Πwvc where Πwvc is the set of all
WVCs in Π and Π0 = Π \Πwvc (i.e., the part of the program without WVCs). Let W be a
non-empty set of consistent sets of ground literals. W is a world view of Π if:
(1) W is a world view of Π0; and (2) W does not violate any rule in Πwvc.

Returning to our example, let Π be the following program, partitioned as shown:
p← M q, not q.

q ← M p, not p.

r ← M p, M q.

}
Π0

wv← K r. } Πwvc

Per ES2016 semantics, Π0 has one world view W = {{p, r}, {q, r}}, but by our definition W

violates the WVC in Πwvc since W |= K r ; hence, Π has no world view.

4.3.2 World View Rules and World View Facts
A world view rule (WVR) is an epistemic logic program rule of the form

s1 or ... or sk
wv← sk+1, ..., sn.

where each si is a (possibly negated) subjective literal. We define a WVR as follows:

s1 or ... or sk
wv← sk+1, ..., sn.

def= wv← not s1, ..., not sk, sk+1, ..., sn.

where not not ϕ ≡ ϕ for a subjective literal ϕ. A WVR is thus syntactic sugar for a WVC.
Similar to a fact in ASP, the wv← symbol can be omitted from a WVR with no body. We

refer to such rules as world view facts, or WV facts,8 and use below in our example:
p← M q, not q.

q ← M p, not p.

r ← M p, M q.

not K r. % equivalent to wv← K r.

Note that with these definitions, any WVC can be written as a WVR, or equivalently as a
WV fact. To demonstrate, the following three rules are all strongly equivalent:

wv← K p, not K q, M r, not M s. % expressed here as a WVC
not K p or K q

wv← M r, not M s. % expressed here as a WVR
not K p or K q or not M r or M s. % expressed here as a WV fact

4.4 Grounding Concerns
The issue of grounding an ELP received attention by both Kelly [25] and Cui et al. [12]. In
[23], Kahl proposed an ELP solver algorithm that first creates a corresponding ASP program
from the ungrounded ELP, and then uses an ASP grounder to determine the associated
ground terms. This requires the rules in the ELP to be safe in the sense that any variable

7 Likewise, we say that W satisfies C (i.e., W |= C) if ∃si ∈ body(C) : W 6|= si.
8 In addition to being a notational convenience, solver developers can avoid introducing a new token for
the wv← symbol since any WVC can be expressed as a (possibly disjunctive) WV fact.

P.T. Kahl and A.P. Leclerc 1:9

term appearing in a rule has a corresponding positive literal (either an objective literal or a
subjective literal of the form K `) in the body with the same variable term.

Having only subjective literals of the form K ` available for rule safety is too restrictive
for WVCs. One could argue that the use of a sorted signature, such as in an epistemic logic
program with sorts [2], would suffice if rule safety were the only issue; however, being able to
limit the grounding of variable terms to less than the full range of their acceptable domains
is key to abstraction. Without such capability, flexibility and elaboration tolerance suffer.

To address the practical need of having a reasonable way to express limits on the domain
of a variable term in a WVC, we propose an extended syntax for a WV fact as follows:

s1 or ... or sm ← d1, ..., dn.

where each si is a (possibly negated) subjective literal, and each di is a domain atom9—also
referred to as a domain predicate [39]—or a comparison atom (typically expressed using
an infix “built-in” predicate; e.g., X 6= a). The body is used here only to determine the
appropriate grounding of variable terms in the head of the rule. The use of the ← symbol is
intentional as the body is not (after grounding and translation) part of any WVC.10 The
program rules below demonstrate the use of this extended syntax:

% domain atoms
d_x(a). d_x(b).
d_y(0). d_y(1). d_y(2). d_y(3).
% WV fact using the extended syntax
not K p(X, Y) or M q(X)← d_x(X), d_y(Y), Y < 2.

Grounding11 the last rule results in four WV facts:
not K p(a, 0) or M q(a). not K p(b, 0) or M q(b).
not K p(a, 1) or M q(a). not K p(b, 1) or M q(b).

5 Examples and Simplifications

Henceforth, ES2016 extended with WVCs is assumed unless stated otherwise.

5.1 Epistemic Conformant Planning Module
The epistemic conformant planning module12 for ES2014 with a sorted signature is as follows:

occurs(A, S)← M occurs(A, S), S < n.

¬occurs(A2, S)← occurs(A1, S), A1 6= A2.

success← goal(n).
← success, not K success.

← not M success.

where constant n ∈ N represents the plan horizon, variables A, A1, and A2 range over actions,
and variable S ranges over integral time steps where 0 ≤ S ≤ n. The last two rules are
constraints that together (as discussed in Section 3) rule out world views that do not satisfy
K success. With the proposed extension, we can replace these two constraints with one WVC
that is succinct, intuitive, and easier to understand than the original pair of constraints:

9 The associated ground domain atoms are understood to be the same in every belief set.
10 It also fits well with the idea that the solver developer need not introduce a new token for the wv← symbol.
11 to include forward propagation with removal of body literals that are always true and removal of any

rule where a body literal is always false (so-called “smart” grounding)
12 See [22] for details on the use of ELPs to solve conformant planning problems using this module.

1:10 ELPs with WVCs

wv← not K success.

This is also relevant in that the proof of correctness for solving conformant planning problems
encoded using the original epistemic conformant planning module (with the other elements of
this methodology) depends in part on the two constraints ruling out world views that do not
satisfy K success; however, that part of the proof is not valid for ES2016 semantics. Using
the proposed WVC instead of the two original constraints elucidates this for both semantics.

5.2 Autonomous Control
Consider an exploratory robot operating on Mars with a round-trip communication delay
of 30 minutes with Earth. Although an Earth operator may receive a continuous stream of
data from the robot, the data is already 15 minutes old when received, and any instruction
sent will not be received by the robot for another 15 minutes. As Thomas Ormston [32] of
the European Space Agency put it, “there’s a lot that can happen in half an hour on Mars.”
It is important, for example, that the robot does not fall off a cliff. Though intermittent
goals may be provided from Earth, some autonomous control is needed for the robot to move
at a reasonable pace. We envision as part of the on-board control system13 of the robot
an epistemic planning component that uses information about the terrain and observable
surroundings to help form and select a plan to get to a specified goal. Included in rules used
to plan could be WVCs as follows:

wv← M likelihood_of_falling_off_a_cliff(high).
wv← M likelihood_of_falling_off_a_cliff(moderate).

These would prevent selecting a plan where the possibility of falling off a cliff is high/moderate.

5.3 Subsumption and Simplification
In the table below are subjective literal forms that can subsume others in a rule body.14

subsumer subsumed
M `

K ` not M `

not K `

M ` not K `

not M ` not K `

For example:
wv← K p, M p, not M ¬p, not K ¬p. ≡ wv← K p.

wv← M p, not K ¬p. ≡ wv← M p.
wv← not M p, not K p. ≡ wv← not M p.

With world view constraints, subsumption can also occur across multiple rules, perhaps most
easily seen using the WV fact form. Consider the following pair of WV facts:

K p. M p.

The subsumer-subsumed list above applies to pairs of non-disjunctive WV facts. Any world
view satisfying the first rule must satisfy the second; thus, the second rule can be removed.

Identifying tautologies can also help in program simplification. For example, WV fact
K p or not K p.

is worthless and can be removed. For a more complex example, consider the following rules:
M q or K p. M q or not K p.

With respect to any world view of a program containing this pair, either Kp or not Kp will
be satisfied (but not both), so these two rules can be reduced to the one rule: M q.

13Details of such a control system are beyond the scope of this paper and left to the reader’s imagination.
14The symbol ` in the table indicates the logical complement of (ground) objective literal `; e.g., if ` = ¬p

then ` = p. Logical subsumption follows from Definition 1 and the definition of a world view.

P.T. Kahl and A.P. Leclerc 1:11

6 Algorithm for Computing World Views of an ELP with WVCs

The following is a generic algorithm for finding the world views of an ELP with WVCs:
Generic Algorithm
INPUT: Π (a ground ELP with WVCs)

1. partition Π into Πwvc (the WVCs of Π) and Π0 = Π \Πwvc

2. use your favorite ELP solver to find the world views of Π0
3. eliminate any world view of Π0 that violates a WVC of Πwvc

OUTPUT: remaining world views of Π0 not eliminated in Step 3

For those interested in implementing a solver, we now provide a more detailed algorithm.
Details of an algorithm to compute the world views of an ELP under ES2016 semantics are
given in [24]. We use a simplified version, modified to handle WVCs. Although we provided
a grounding strategy for WVCs in Section 4.4, for brevity, the input is assumed ground.

Notation: From a ground ELP with WVCs Π = Π0 ∪Πwvc, ASP program Π′
0 is created

as a modal reduct framework to aid in computing the world views of Π0. For each literal `

appearing in an epistemic negation of the form not K ` in EP (Π0), fresh atoms k_`, k0_`,
k1_` are created by prefixing ` with k_, k0_, and k1_ (respectively), and substituting 2
for ¬ if ` is a classically-/strongly-negated atom. Likewise, for ` appearing in an epistemic
negation of the form M ` in EP (Π0), fresh atoms m_`, m0_`, m1_` are created. These
fresh atoms are referred to as k-/m-atoms, or, allowing for negated forms, k-/m-literals. For
example, given an epistemic negation of the form not K `, if ` = p(a) then k_` denotes
k_p(a), but if `=¬p(a) then k_` denotes k_2p(a). Fresh atoms k_` (in negated form) and
m_` are used as substitutes for K ` and M `, respectively, in the ASP representation of the
modal reduct of Π with respect to a potential world view. The intended meaning of k1_` is
“K ` is true”; k0_` means “K ` is false”; m1_` means “M ` is true”; and m0_` means “M ` is
false”. Additionally, given a set W of sets of literals (including k-/m-literals), we use W\km to
denote W modulo k-/m-literals (i.e., the result of removing all k-/m-literals from sets in W).

The algorithm uses a “guess and check” method to compute the world views of Π0. Each
guess corresponds to a set of truth value assignments for the elements of EP (Π0). A systematic
approach is used, starting with the guess corresponding to the elements of EP (Π0) being all
true, working down by increasing the number of false elements by 1 at each successive level.
Each computed world view of Π0 is checked to ensure no WVC in Πwvc is violated before it
is considered a world view of Π. Any guess for which the epistemic negations assigned as true
are a subset of those for a guess associated with a previously computed Π0 world view will
be filtered out. The order of computation and subsequent filtering enforces the maximality
requirement of ES2016 semantics. (For ES2014, remove this filtering; also, computation
order w.r.t. guesses is irrelevant.)

The algorithm iterates through all relevant guesses, one-guess-at-a-time, requiring (in
general) computing answer sets of up to 2n ASP programs where n = |EP (Π0)|. This is
inefficient but relatively easy to understand. A more complex algorithm may involve including
multiple guesses in each ASP program (at the expense of the need for aggregating computed
answer sets) and parallelization. See [24] for a solver that uses this approach. Steps that
handle WVCs can be applied there, as well as to other approaches, such as the one in [37].

Since we start with a proven algorithm for computing world views of Π0, correctness
of the algorithm is clear from the definitions and semantics of an ELP with WVCs given
herein. We note that filtering out guesses that would violate WVCs during the computation
of world views (rather than filtering out world views as a post-processing step as proposed
here) could prune the search if EP (Π0) ∩ EP (Πwvc) 6= ∅, but would (in general) not be correct

1:12 ELPs with WVCs

per ES2016 semantics. (That approach may be useful for an ES2014 solver.) If, however,
there are epistemic negations in Πwvc that are not in Π0, the search space of guesses is
pruned significantly from what it might be without WVCs, assuming those from
Πwvc would otherwise be included in other rules.

Finally, as the algorithm simply checks if world views of Π0 violate the WVCs in Πwvc, the
effective complexity of solving Π is the same as for solving an equivalent15 ELP Π2 (without
WVCs), assuming Π2 differs only in constraints, with |EP (Π)| ≤ |EP (Π2)| .

Algorithm 1. [Computing the World Views of an ELP with WVCs]

input: a ground ELP with WVCs Π output: the world views of Π

1. Program Partition: Partition Π into Πwvc (the WVCs of Π) and Π0 = Π \Πwvc.

2. Translation: Create ASP program16 Π′
0 from Π0 by:

• leaving rules without subjective literals unchanged;
• otherwise, replacing subjective literals and adding new rules per the following table:

subj. lit. ϕ replace ϕ with add rules

K ` not ¬k_`, ` ¬k_` ← k0_`.

not K ` ¬k_` ¬k_` ← k1_`, not `.

M ` m_` m_`← m1_`.

not M ` not m_` m_`← m0_`, not not `.

3. Guess & Check: Repeat (a)-(c) until all relevant guesses are generated and checked.
a. Generate Guess: For each iteration, generate a guess Φ, starting with Φ = EP (Π0)

for the first iteration and moving on in popcount order17 for further iterations,
filtering out any guess that is a subset of a guess associated with a previously found
world view of Π0. Create Π′′

0 by appending to Π′
0 the ASP representation of Φ (i.e.,

k-/m-atoms as facts corresponding to the epistemic negations in Φ) as follows:
Π′′

0 = Π′
0 ∪ {k0_`. | not K ` ∈ Φ} ∪ {k1_`. | not K ` ∈ EP (Π0) ∧ not K ` 6∈ Φ}
∪ {m1_`. | M ` ∈ Φ} ∪ {m0_`. | M ` ∈ EP (Π0) ∧M ` 6∈ Φ}.

b. Compute Answer Sets: Use an ASP solver to compute the answer sets of Π′′
0 .

c. Check: If Π′′
0 is consistent, let W be the collection of answer sets computed in (b).

Verify the following conditions:
• if k1_` is in the sets of W , then ` is in every set of W ;
• if k0_` is in the sets of W , then ` is missing from at least one set of W ;
• if m1_` is in the sets of W , then ` is in at least one set of W ; and
• if m0_` is in the sets of W , then ` is missing from every set of W .

W\km is a world view of Π0 if the conditions are met. W\km is a world view of Π
if W\km is a world view of Π0 and W\km doesn’t violate any WVC in Πwvc.

7 Conclusions and Future Work

World view constraints provide a straightforward device for encoding restrictions on the
world views of an ELP, allowing the specification of high-level conditions that must not be
violated. They do not fix all semantics issues, but WVCs retain consistent meaning in all.

15We note there may not be a straightforward equivalent program without WVCs under ES2016 semantics.
16with nested expressions of the form not not ` as defined in [31]
17 guess size (|Φ|) will be reduced by one after exhausting all guesses of the current size

P.T. Kahl and A.P. Leclerc 1:13

WVCs can also be a useful addition to languages extending Epistemic Specifications,
such as ASPGM [46]. Subjective literals in ASPGM have the form M[lb:ub] ` where lb, ub ∈ N,
lb ≤ ub, and ` is a literal. For M[lb:ub] ` to be satisfied by a world view, the number of belief
sets containing ` must be in the closed range [lb, ub]. To indicate no upper bound, ub can be
omitted. The definitions in Section 4.3.1 can be used to extend ASPGM with WVCs; however,
support for negated subjective literals needs to be added for the later definitions to apply.

For future work, we would like to incorporate the notion of weak WVCs into Epistemic
Specifications in a manner analogous to weak constraints [10] in ASP, but at the world view
level. In principle, these would function like normal WVCs unless the program is inconsistent,
where they would be systematically relaxed (perhaps in order by given weight/level) until
consistency or exhaustion. Ergo, we introduce symbol wv

¢ and suggest the following syntax:
wv
¢ s1, ..., sn. [w@l]

where n > 0, each si is a (possibly negated) subjective literal, and both w and l are non-
negative integers representing weight and level values, respectively. Returning to the Martian
robot example of Section 5.2, it may be more appropriate for planning to use the following:

wv← M likelihood_of_falling_off_a_cliff(high).
wv
¢ M likelihood_of_falling_off_a_cliff(moderate). [1@0]

These rules express a preference for plans where likelihood of falling off a cliff is neither high
nor moderate, but if none exist, moderate likelihood is accepted by relaxing the weak WVC.

References
1 Evgenii Balai. ELPS, 2015. Texas Tech. URL: https://github.com/iensen/elps/wiki/.
2 Evgenii Balai and Patrick Kahl. Epistemic logic programs with sorts. In Daniela In-

clezan and Marco Maratea, editors, Proc. 7th Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP 2014). URL: https://sites.google.com/site/
aspocp2014/paper_4.pdf.

3 Marcello Balduccini. sismodels, 2001. See http://www.mbal.tk/ for more information.
4 Marcello Balduccini and Tran Cao Son, editors. Logic Programming, Knowledge Repres-

entation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the
Occasion of His 65th Birthday, volume 6565 of LNCS. Springer, 2011. doi:10.1007/
978-3-642-20832-4.

5 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York, NY, USA, 2003.

6 Chitta Baral and Michael Gelfond. Logic programming and knowledge representation. J.
Log. Program., 19/20:73–148, 1994. doi:10.1016/0743-1066(94)90025-6.

7 Manuel Bichler, Michael Morak, and Stefan Woltran. selp, 2018. URL: http://dbai.
tuwien.ac.at/proj/selp/.

8 Manuel Bichler, Michael Morak, and Stefan Woltran. Single-shot epistemic logic program
solving. In Jérôme Lang, editor, Proc. 27th Intl. Joint Conf. on AI (IJCAI 2018) [to
appear], 2018. URL: http://dbai.tuwien.ac.at/proj/selp/ijcai2018.pdf.

9 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

10 Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and weak constraints in
disjunctive datalog. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proc. 4th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), volume 1265 of
LNCS, pages 2–17. Springer, 1997. doi:10.1007/3-540-63255-7_2.

11 Jianhua Chen. The generalized logic of only knowing (GOL) that covers the notion of epi-
stemic specifications. J. Log. Comput., 7(2):159–174, 1997. doi:10.1093/logcom/7.2.159.

https://github.com/iensen/elps/wiki/
https://sites.google.com/site/aspocp2014/paper_4.pdf
https://sites.google.com/site/aspocp2014/paper_4.pdf
http://www.mbal.tk/
http://dx.doi.org/10.1007/978-3-642-20832-4
http://dx.doi.org/10.1007/978-3-642-20832-4
http://dx.doi.org/10.1016/0743-1066(94)90025-6
http://dbai.tuwien.ac.at/proj/selp/
http://dbai.tuwien.ac.at/proj/selp/
http://dbai.tuwien.ac.at/proj/selp/ijcai2018.pdf
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1007/3-540-63255-7_2
http://dx.doi.org/10.1093/logcom/7.2.159

1:14 ELPs with WVCs

12 Rongcun Cui, Zhizheng Zhang, and Kaikai Zhao. ESParser: An epistemic specification
grounder. In James P. Delgrande and Wolfgang Faber, editors, Proc. 1st Intl. Conf. on
Computer Science and Service System (CSSS 2012), pages 1823–1827. IEEE Computer
Society CPS, 2012. doi:10.1109/CSSS.2012.454.

13 Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su. Epistemic equilibrium logic. In
Qiang Yang and Michael Wooldridge, editors, Proc. 24th Intl. Joint Conf. on AI (IJCAI
2015), pages 2964–2970. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/419.

14 Wolfgang Faber and Stefan Woltran. Manifold answer-set programs and their applications.
In Balduccini and Son [4], pages 44–63. doi:10.1007/978-3-642-20832-4_4.

15 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on AI and ML. Morgan and Claypool, 2012.

16 Michael Gelfond. Strong introspection. In Thomas L. Dean and Kathleen McKeown, editors,
Proc. 9th National Conf. on Artificial Intelligence (AAAI-91), pages 386–391. AAAI/MIT
Press, 1991. URL: http://www.aaai.org/Papers/AAAI/1991/AAAI91-060.pdf.

17 Michael Gelfond. Logic programming and reasoning with incomplete information. Ann.
Math. Artif. Intell., 12(1-2):89–116, 1994. doi:10.1007/BF01530762.

18 Michael Gelfond. New semantics for epistemic specifications. In James P. Delgrande and
Wolfgang Faber, editors, Proc. 11th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2011), volume 6645 of LNCS, pages 260–265. Springer, 2011. doi:
10.1007/978-3-642-20895-9_29.

19 Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press,
2014. doi:10.1017/CBO9781139342124.

20 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth A. Bowen, editors, Proc. 5th Intl. Conf. and Symposium
on Logic Programming (ICLP/SLP 1988), pages 1070–1080. MIT Press, 1988.

21 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New Generation Comput., 9(3/4):365–386, 1991. doi:10.1007/BF03037169.

22 Patrick Kahl, Richard Watson, Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. The
language of epistemic specifications (refined) including a prototype solver. Journal of Logic
and Computation, 2015. doi:10.1093/logcom/exv065.

23 Patrick Thor Kahl. Refining the Semantics for Epistemic Logic Programs. PhD thesis,
Texas Tech, Lubbock, TX, USA, May 2014. URL: http://hdl.handle.net/2346/58710.

24 Patrick Thor Kahl, Anthony P. Leclerc, and Tran Cao Son. A parallel memory-efficient epi-
stemic logic program solver: Harder, better, faster. In Bart Bogaerts and Amelia Harrison,
editors, Proc. 9th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2016), 2016. URL: https://arxiv.org/abs/1608.06910.

25 Michael Kelly. Wviews: A World View Solver for Epistemic Logic Programs, October 2007.
26 Michael Kelly. Wviews, 2018. URL: https://github.com/galactose/wviews.
27 Tiep Le and Tran Cao Son. EP-ASP, 2017. NMSU. URL: https://github.com/tiep/

EP-ASP.
28 Anthony P. Leclerc and Patrick Thor Kahl. A survey of advances in epistemic logic program

solvers. In Jorge Fandinno and Johannes K. Fichte, editors, Proc. 11th Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP 2018) [to appear], 2018.

29 Hector J. Levesque. All I know: A study in autoepistemic logic. Artif. Intell., 42(2-3):263–
309, 1990. doi:10.1016/0004-3702(90)90056-6.

30 Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P. Gomes,
editors, Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), pages 1594–1597.

31 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic pro-
grams. Ann. Math. Artif. Intell., 25(3-4):369–389, 1999. doi:10.1023/A:1018978005636.

http://dx.doi.org/10.1109/CSSS.2012.454
http://ijcai.org/Abstract/15/419
http://dx.doi.org/10.1007/978-3-642-20832-4_4
http://www.aaai.org/Papers/AAAI/1991/AAAI91-060.pdf
http://dx.doi.org/10.1007/BF01530762
http://dx.doi.org/10.1007/978-3-642-20895-9_29
http://dx.doi.org/10.1007/978-3-642-20895-9_29
http://dx.doi.org/10.1017/CBO9781139342124
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1093/logcom/exv065
http://hdl.handle.net/2346/58710
https://arxiv.org/abs/1608.06910
https://github.com/galactose/wviews
https://github.com/tiep/EP-ASP
https://github.com/tiep/EP-ASP
http://dx.doi.org/10.1016/0004-3702(90)90056-6
http://dx.doi.org/10.1023/A:1018978005636

P.T. Kahl and A.P. Leclerc 1:15

32 Thomas Ormston. Time delay between Mars and Earth. In: ESA’sMars Express blog. URL:
http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/.

33 David Pearce. A new logical characterisation of stable models and answer sets. In Jür-
gen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski, editors, Proc. Non-Monotonic
Extensions of Logic Programming (NMELP 1996), volume 1216 of LNCS, pages 57–70.
Springer, 1996. doi:10.1007/BFb0023801.

34 Mircea Preda. Modeling epistemic knowledge in logic programs with negation as failure. In
Dimitris Dranidis and Illias Sakellariou, editors, Proc. 3rd South-East European Workshop
on Formal Methods (SEEFM’07). SEERC, 2007.

35 SEU. ESmodels, 2015. URL: http://cse.seu.edu.cn/people/seu_zzz/indexe.htm.
36 Yi-Dong Shen and Thomas Eiter. Evaluating epistemic negation in answer set programming.

Artif. Intell., 237:115–135, 2016. doi:10.1016/j.artint.2016.04.004.
37 Tran Cao Son, Tiep Le, Patrick Kahl, and Anthony Leclerc. On computing world views

of epistemic logic programs. In Carles Sierra, editor, Proc. 26th Intl. Joint Conf. on AI
(IJCAI 2017), pages 1269–1275. doi:10.24963/ijcai.2017/176.

38 Anton Strasser. EHEX, 2018. TU Wien. URL: https://github.com/hexhex/ehex.
39 Tommi Syrjänen and Ilkka Niemelä. The Smodels system. In Thomas Eiter, Wolfgang

Faber, and Miroslaw Truszczyński, editors, Proc. 6th Intl. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), volume 2173 of LNCS, pages 434–438. Springer,
2001. doi:10.1007/3-540-45402-0_38.

40 Miroslaw Truszczyński. Revisiting epistemic specifications. In Balduccini and Son [4], pages
315–333. doi:10.1007/978-3-642-20832-4_20.

41 UWS. Wviews, 2007. URL: http://staff.scem.uws.edu.au/~yan/Wviews.html.
42 Kewen Wang and Yan Zhang. Nested epistemic logic programs. In Chitta Baral, Gian-

luigi Greco, Nicola Leone, and Giorgio Terracina, editors, Proc. 8th Intl. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2005), volume 3662 of LNCS, pages
279–290. Springer, 2005. doi:10.1007/11546207_22.

43 Richard Glenn Watson. An Inference Engine for Epistemic Specifications, May 1994.
44 Yan Zhang. Computational properties of epistemic logic programs. In Patrick Doherty,

John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th Intl. Conf. on Principles
of Knowledge Representation and Reasoning, pages 308–317. AAAI Press, 2006.

45 Yan Zhang and Yuanlin Zhang. Epistemic specifications and conformant planning. In
Roman Barták, Thomas Leo McCluskey, and Enrico Pontelli, editors, Proc. 2017 Workshop
on Knowledge-based Techniques for Problem Solving and Reasoning (KnowProS 2017).

46 Zhizheng Zhang. Answer set programming with graded modality. In Marcello Balduccini
and Tomi Janhunen, editors, Proc. 14th Intl. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2017), volume 10377 of LNCS, pages 205–211. Springer, 2017.
doi:10.1007/978-3-319-61660-5_18.

47 Zhizheng Zhang, Kaikai Zhao, and Rongcun Cui. ESmodels: An inference engine of epi-
stemic specifications. In Proc. 25th Intl. Conf. on Tools with Artificial Intelligence (ICTAI
2013), pages 769–774. IEEE Computer Society, 2013. doi:10.1109/ICTAI.2013.118.

http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/
http://dx.doi.org/10.1007/BFb0023801
http://cse.seu.edu.cn/people/seu_zzz/indexe.htm
http://dx.doi.org/10.1016/j.artint.2016.04.004
http://dx.doi.org/10.24963/ijcai.2017/176
https://github.com/hexhex/ehex
http://dx.doi.org/10.1007/3-540-45402-0_38
http://dx.doi.org/10.1007/978-3-642-20832-4_20
http://staff.scem.uws.edu.au/~yan/Wviews.html
http://dx.doi.org/10.1007/11546207_22
http://dx.doi.org/10.1007/978-3-319-61660-5_18
http://dx.doi.org/10.1109/ICTAI.2013.118

	Introduction
	Background and Related Work
	Motivation for World View Constraints
	Syntax and Semantics
	Syntax [ES2014 and ES2016]
	Semantics
	World View Constraints and World View Rules
	World View Constraints
	World View Rules and World View Facts

	Grounding Concerns

	Examples and Simplifications
	Epistemic Conformant Planning Module
	Autonomous Control
	Subsumption and Simplification

	Algorithm for Computing World Views of an ELP with WVCs
	Conclusions and Future Work

