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Abstract. Federated Learning (FL) is extensively used to train AI/ML
models in distributed and privacy-preserving settings. Participant edge
devices in FL systems typically contain non-independent and identically
distributed (Non-IID) private data and unevenly distributed computa-
tional resources. Preserving user data privacy while optimizing AI/ML
models in a heterogeneous federated network requires us to address
data and system/resource heterogeneity. To address these challenges,
we propose Resource-aware Federated Learning (RaFL). RaFL allocates
resource-aware specialized models to edge devices using Neural Archi-
tecture Search (NAS) and allows heterogeneous model architecture de-
ployment by knowledge extraction and fusion. Combining NAS and FL
enables on-demand customized model deployment for resource-diverse
edge devices. Furthermore, we propose a multi-model architecture fu-
sion scheme allowing the aggregation of the distributed learning results.
Results demonstrate RaFL’s superior resource efficiency compared to
SoTA.
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1 Introduction

Federated Learning (FL) has emerged as a privacy-aware decentralized AI/ML
model training and optimizing paradigm, widely adopted by the technology
industry, to leverage the massive data generated at the edge (e.g., mobile phones
and IoT devices). FL involves local client nodes distributively training and
optimizing AI models, with an aggregating server integrating the decentralized
results without accessing users’ private data.

However, FL introduces two key challenges: data heterogeneity and re-
source/system heterogeneity, making it difficult to scale. The private data col-
lected on edge devices is non-independent and identically distributed (Non-IID),
causing uncertainties and optimization failures when training with naïve decen-
tralized methods [4]. Additionally, resource heterogeneity, where edge devices
have different specifications and computational capacities, leads to inefficient
resource utilization. Moreover, the expensive communication overhead produced
by frequently sharing weights/gradients between edge clients and servers be-
comes a bottleneck for scaling up the network, especially in cross-device and
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model-centric FL settings involving possibly millions of edge devices, resulting in
massive bandwidth consumption.

State-of-the-art (SoTA) FL baselines mainly focus on addressing data hetero-
geneity (i.e., non-IID data on edge devices), while ignoring system and resource
heterogeneity among edge devices, which exhibit significant variations, particu-
larly in cross-device FL settings. Simply deploying the same model architecture
to every client leads to poor resource utilization, causing resource-hungry edge
devices to consume precious energy supplies while underutilizing more capable
edge devices. Although AutoML solutions, such as Neural Architecture Search
(NAS) [20, 1], have achieved success in generating high-performance neural archi-
tecture models for resource-heterogeneous environments, integrating NAS into
existing FL solutions presents challenges, as it requires identical neural architec-
ture among clients for aggregating decentralized training results. Recent efforts [8,
27] dedicated to integrating NAS, network pruning, and weights dropout in FL
rely on zero-padding model weights to enable multi-neural architectures, helping
in model sparsity but offering limited contributions to model size reduction and
communication efficiency.

To address both data and system heterogeneity, we propose Resource-aware
Federated Learning (RaFL), a multi-architecture FL framework. RaFL leverages
a weight-sharing supernet to efficiently specialize resource-aware models on edge
devices, tailored to their specific resource constraints. This approach enables
the deployment of diverse model architectures across edge-FL clients while
maintaining the ability to aggregate and share knowledge. Central to RaFL is
the use of a small-size knowledge network that cooperates with the resource-
aware local model for neural knowledge sharing among clients. RaFL clients
engage in deep mutual learning [30] to co-train their network pairs and diffuse
knowledge into their knowledge networks. The RaFL server then aggregates
the local knowledge from each client’s knowledge network, effectively combining
the decentralized training results and supporting multi-architecture FL. Given
the availability of public data, RaFL provides the option of using ensemble
distillation to improve the robustness of knowledge fusion. RaFL makes the
following contributions:

– Mitigates resource/system heterogeneity by deploying resource-aware neural
architectures, and maximizes resource utilization.

– Provides ensemble knowledge distillation and transfer learning algorithms
specifically designed for federated learning, which aim to improve the robust-
ness of knowledge fusion.

– Employs high-performing specialized neural architectures to accelerate infer-
ence at the edge.

– Reduces FL communication overhead by using a smaller interceding knowledge
network.

– Provides alternative configurations to take advantage of transfer learning,
and public data, making it scalable and applicable in real-world scenarios.
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2 Related Works

Federated Learning The pioneering FL research by [19] introduced FedAvg,
which combined local stochastic gradient descent (SGD) model optimization with
global model averaging. Recently, several variants of FedAvg have emerged. For
example, FedProx [17] was proposed to address convergence issues associated with
data and device heterogeneity, which was achieved by permitting the participation
of “straggler” devices and introducing a proximal term in the local loss. FedNova
[23] normalized and scaled local updates by modifying weights to mitigate gradient
bias. SCAFFOLD [13] introduced gradient-based control variates to correct
client drift and speed up convergence. These SoTA methods inherently assume
uniformity in edge resource capacities by deploying architecturally identical
models onto resource-heterogeneous edge devices. In contrast, heterogeneous edge
computational capacities require the deployment of specialized client network
architectures. As such, accounting for potential network architectural diversity is
imperative.
Personalized FL Personalized FL [5, 3, 6, 12, 29] has gained attention as a
solution to the challenges posed by statistical heterogeneity, such as non-IID data
distribution, varied sample sizes among clients, and imbalanced class distributions
across local datasets. Uniform FL models can degrade overall performance, while
personalized models increase robustness. Personalized FL allows edge clients to
tune model weights to better fit local data, but these approaches still adopt the
same model architecture at the client, failing to address the heterogeneity of
computational capacities.
Knowledge Distillation in Federated Learning Knowledge distillation (KD)
has been adopted in FL as a means to address model heterogeneity [15, 7, 21,
22, 18]. For example, Fed-ensemble [22] integrates the prediction output of all
client models; FedKD [24] proposes an adaptive mutual distillation framework to
learn a student and a teacher model simultaneously on the client side; FedDF
[18] distills the ensemble of client and teacher models to a server student model;
[15], proposes the application of a public dataset as a medium of exchanging
knowledge among customized client models; [28] proposes the use of KD to
transfer knowledge between a global network and a student network rather than
using a direct assignment. In contrast, our approach utilizes local deep mutual
learning [30] coupled with an optional ensemble-based multi-model fusion in the
cloud whenever public data is available. In the absence of public data, we perform
global model aggregation. This makes our pipeline quite flexible and applicable
in real-world scenarios.

3 Methodology

There are three main stages in RaFL: resource-aware model specialization, local
knowledge fusion with deep mutual learning, and cloud knowledge aggregation
(Figure 1). RaFL performs an on-demand model architecture search from weight-
sharing supernet [1] to tailor to the resource utilization requirements of edge
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Fig. 1: During initialization, edge clients request for specialized resource-aware
models from the weight-sharing supernet with neural architecture search (NAS).
During local training, the local resource-aware model and knowledge network
are co-trained together via deep mutual learning. The server fuses the neural
knowledge from clients and performs optional ensemble learning if public data is
present.

devices, unlike mainstream FL systems that deploy identical model architectures
on all devices (➊ in Figure 1). Local devices train their specialized model on local
data and transfer the model’s knowledge to a smaller knowledge network via deep
mutual learning (➋). Edge clients then communicate their local knowledge to the
cloud server (➌), which aggregates the received knowledge into a global knowledge
network (➍). When public data is available, RaFL optionally provides ensemble
distillation to further improve the robustness of the knowledge aggregation stage
(➎). Finally, the RaFL server transfers the global knowledge to the edge devices
(➏).

3.1 Resource-aware Federated Learning using Specialized Models

Mainstream FL solutions assume homogeneous resource capacities across clients,
which is impractical in cross-device settings with varying computational resources.
Simply deploying an identical model architecture leads to poor resource utilization.
RaFL proposes a resource-aware federated neural architecture search to obtain
resource-tailored models for heterogeneous edge devices.

We first deploy a weight-sharing super-network on the cloud. During FL
initialization, clients query this supernet [1] to obtain resource-aware subnets
matched to their computational constraints. The supernet is trained by minimizing
a validation loss over a distribution of subnet architectures (Equation 1).

min
Θ

∑
archi

Lval(C(Θ, archi)) (1)

Where Θ represents the super-network weights, archi is a subnetwork configu-
ration, and C(Θ, archi) samples the subnetwork weights from the super-network.
Once trained, subnetworks can be efficiently derived without retraining the
super-network.

In the NAS process, RaFL defines a search space S that encompasses the
possible architectures for the specialized models. The search space is constrained
by a set of resource requirements R, which includes memory, computational
power, and energy consumption limitations of the edge devices. The objective is
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to find an optimal architecture arch∗ that maximizes performance while satisfying
the resource constraints:

arch∗ = arg max
arch∈S

P (arch) s.t. R(arch) ≤ R (2)

where P (arch) represents the performance metric of the architecture arch,
and R(arch) denotes the resource consumption of arch. RaFL employs a search
strategy to efficiently explore the search space and extract the specialized models
Mi from the supernet, tailored to the specific capabilities of each edge device i.
This process ensures that the obtained models maximize resource utilization and
performance in the federated learning setting.

3.2 Local Knowledge Fusion

Traditional FL methods deploy a uniform model across clients, enabling simple
weight/gradient averaging for aggregation. However, in RaFL, where varying
resource-aware architectures are used, weight averaging is infeasible. Instead, we
propose communicating extracted knowledge from local models via deep mutual
learning (DML) [30].

For the lth client Cl, we denote its resource-aware model as θl and a down-
loaded knowledge network as θkl . Cl jointly optimizes θl and θkl on its local data.
For an input batch, we first computes the cross-entropy loss Lc(θ;B) (Equation
3) for both networks independently.

Lc(θ;B) = − 1

|B|
∑

x,y∈B

yT log(σ(θ(x))) (3)

It then measures the Kullback-Leibler (KL) divergence DKL(θl||θkl ;B) (Equa-
tion 4) between the predicted distributions.

DKL(θl||θkl ;B) =
1

|B|
∑

x,y∈B

σ(θl(x)
T ) log(

σ(θl(x))

σ(θkl )
) (4)

The mutual learning loss (Equations 5 and 6) combines the cross-entropy loss
and KL divergence, enabling learning from data while aligning the networks.

Lθl = Lc(θl;B) +DKL(θ
k
l ||θl;B) (5)

Lθk
l
= Lc(θ

k
l ;B) +DKL(θl||θkl ;B) (6)

DML outperforms solo learning due to the dissimilarity between the par-
ticipating models (θl and θkl ). Their varying architectures and the intermittent
aggregation of θkl enable learning different data representations, allowing them
to capture each other’s knowledge. Moreover, while the smaller θkl reduces com-
munication overhead, co-learning with the larger θl boosts its performance.

As clients communicate their θkl networks, they share local knowledge and
receive global knowledge. Successive DML steps further converge both θl and θkl
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on the global data distribution. Overall, initializing clients with resource-specific
NAS subnetworks paired with a smaller θkl addresses device heterogeneity and
reduces communication overhead.

3.3 Cloud Knowledge Aggregation and Ensemble Distillation

RaFL utilizes the knowledge network as a medium to support interoperability
among multi-model FL clients. The function of the knowledge network is to ex-
change knowledge among Non-IID clients (Figure 1 ➌ and ➏). RaFL provides two
model fusion solutions, weight aggregating and ensemble knowledge distillation,
to support comprehensive FL practical scenarios (Figure 1 ➍ and ➎).

Assume θk is the global knowledge network, and θkl as the lth client’s knowledge
network. We select a set of communication clients S in the current communication
round. Once we receive the knowledge from edges, we aggregate the knowledge
networks (Equation 7).

θk ← nl

NS

∑
l∈S

θkl (7)

Here, NS is the total data size in selected clients S, and nl is the number
of data samples in the lth client. When public data is available, RaFL provides
an ensemble knowledge distillation option for boosting cloud aggregation. RaFL
ensembles knowledge networks using the average logits strategy (Equation 8) to
produce a combined output on the public dataset. The outputted soft labels are
then coupled with the unlabeled dataset to train the global knowledge network
in tandem. The distillation loss is defined in Equation 9.

θens(x) = Avg(θkl (x))l∈S (8)

Ld = DKL(θens||θk;B) (9)

Notably, the knowledge network is a small-sized network derived from the
NAS super-network. Our ablation study shows the trade-off between the size and
the overall performance of the knowledge network, indicating no significant gain
in increasing the size of the knowledge network.

4 Experiments

4.1 Experimental Setup

Datasets and models. We conducted experiments on datasets consistent with
the baselines: CIFAR-10/100 [14], FEMNIST [2] under Non-IID benchmark
settings [16]. The models we deployedwere sampled from MobileNetV2/V3 [11,
10] or ResNet [9] super-networks [1]. To avoid confusion, we identify networks by
their FLOPs, e.g., we identify ResNet-34 as ResNet with 76 MFLOPs.
Federated Learning settings. We set up different numbers of clients from 30 to
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3000 in our experimental FL environment, with 10% to 70% client participation
rate in each round of communication. We simulated scaled, dynamic sporadic,
and asynchronous FL scenarios. Clients are allocated to Non-IID local datasets
following the benchmark’s Non-IID settings [16].
NAS settings. We initialize an weight-sharing supernet with architectures for
ResNet, MobileNetV2, and MobileNetV3.
Baselines. We compare RaFL with state-of-the-art (SoTA) FL algorithms,
including:

– Strong FL optimization methods, such as FedAvg [19], FedProx [17], FedNova
[23], SCAFFOLD [13], SPATL [26].

– Knowledge distillation-based methods, such as FedDF [18].
– Neural architecture search in FL methods, such as FedNAS [8].
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Fig. 2: Comparison of RaFL with SoTAs under vanilla aggregation setting.

4.2 Learning Efficiency

We explore the learning efficiency and optimization ability of RaFL by evaluating
the training performance with respect to communication rounds and comparing
it with FedAvg [19], FedNova [23], and FedProx [17]. We consider all possible
practical situations ((a), (b), and (c) settings in below) for a fair and extensive
comparison.
(a) Vanilla aggregation. RaFL with vanilla aggregation (Figure 1 step ➍ and
Equation 7) is used to aggregate local models in each communication round
without requiring public data. Figure 2 shows the comparison results on training
performance versus communication rounds under different model architectures
and capacities. RaFL outperforms the baselines with a large margin and exhibits
a stable optimization process while consuming fewer resources. For example,
when optimizing MobileNet-v3, RaFL produces 28% higher accuracy than the
baselines. Figure 4a illustrates that RaFL consistently outperforms the baselines
across diverse settings and achieves higher convergence accuracy. RaFL effectively
resists overfitting and shows better learning capacity (Figure 5a).
(b) Public data with ensemble and knowledge distillation. RaFL offers
an ensemble distillation option to enhance server aggregation (steps ➍ and
➎). Figure 3 RaFL(b) shows that RaFL equipped with ensemble distillation
outperforms strong baselines with significant margins. Ensemble distillation
improves and stabilizes training in sporadic connected FL (Figure 3 (4)). However,
its effectiveness depends on the similarity of public and private client data
distributions.
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Fig. 3: Comparison of SoTAs with RaFL using (a) vanilla aggregation, (b)
ensemble distillation and (c) transfer learning settings.

(c) Transfer learning with NAS. RaFL takes advantage of transfer learning
on its pre-trained NAS subnetworks when specialized networks are applied to
the Non-IID FL dataset. Figure 3 RaFL(c) shows that RaFL (c) benefits from
pre-trained initial weights, resulting in high accuracy in the initial training stage
and quick convergence during fine-tuning.
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Fig. 4: Performance comparison of RaFL and baselines.
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Fig. 5: Performance analysis of RaFL.

4.3 Communication Efficiency

RaFL exhibits significant superiority in communication efficiency compared to
SoTAs, attributed to utilizing smaller knowledge networks for communication.
We demonstrate RaFL’s communication efficiency by optimizing models to reach
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Table 1: Communication cost to achieve target accuracy.
Method Model Arc. Resource Usage

(MFLOPs) Clients Dataset Target Accuracy Communication Cost
Round/Client Total ∆ Cost Speed Up

FedAvg [19] ResNet

40

100
CIFAR100 40% 0.85 GB 388 GB 0GB (1 ×)

76 1.6 GB 580 GB 0GB (1 ×)
40 CIFAR10 60% 3.4 GB 323 GB 0GB (1 ×)
76 6.4 GB 608 GB 0GB (1 ×)

FedNova [23] ResNet

40

100
CIFAR100 40% 1.7 GB 496 GB +108 GB (0.78 ×)

76 3.2 GB 858 GB +278 GB (0.68 ×)
40 CIFAR 10 60% 6.7 GB 1126 GB +803 GB (0.29 ×)
76 12.8 GB 2010 GB +1402 GB (0.30 ×)

FedProx [17] ResNet

40

100
CIFAR100 38% 0.85 GB 424 GB +36 GB (0.92 ×)

76 40% 1.6 GB 789 GB +209 GB (0.74 ×)
40 CIFAR 10 60% 3.4 GB 377 GB +54 GB (0.86 ×)
76 6.4 GB 710 GB +102 GB (0.86 ×)

RaFL (Ours) ResNet
28

100 CIFAR100 40% 0.66 GB 13.2 GB -374.8 GB (29.4 ×)
51 1.07 GB 31.0 GB -549 GB (18.70 ×)
28 CIFAR10 60% 2.2 GB 77 GB -246 GB (4.19 ×)

target performance and achieve converged performance, considering the vanilla
aggregation setting (Section 4.2.a).
Optimizing Model to Achieve Target Performance.Table 1 shows that
RaFL consistently outperforms SoTAs in communication overhead under various
configurations. For example, when using ResNet on CIFAR-100, RaFL reduces
communication cost by up to 29.4× compared to FedAvg [19] while using sig-
nificantly less computational resources. Figure 4b further demonstrates RaFL’s
superiority on larger model capacities (76 MFLOPs and 152 MFLOPs), requiring
fewer communication rounds to achieve target performance.

RaFL’s communication efficiency stems from two main factors: (1) high-
performance neural architectures generated using Neural Architecture Search,
enabling faster convergence, and (2) knowledge network communication, resulting
in a reduced communication cost with up to 4× less bandwidth per round
(Table 1).
Optimizing Model for Convergent Performance. Table 2 summarizes
the results on CIFAR-100, showing that RaFL uses less communication cost
while achieving significantly better model performance. For instance, RaFL
reaches around 65% accuracy on ResNet-74MFLOPs, while the next best method,
FedNova, converges at around 43% with a total cost 1200 GB higher.

Overall, RaFL results in a lower communication cost to achieve both tar-
get performance and overall convergence across a wide range of FL settings.
Additionally, the model deployed by RaFL requires fewer FLOPs at the edge
and demonstrates lower resource consumption while achieving higher accuracy,
enabling faster inference and better downstream task applications.

4.4 Resource-aware System Heterogeneity

We investigated RaFL’s ability to cope with resource heterogeneity by eval-
uating its resource utilization efficiency and learning efficiency under system
heterogeneity.
Resource Utilization Comparison. Compared with uniform model deployment
FL methods (such as FedAvg [19], FedNova [23], FedProx [17], SCAFFOLD [13]),
Table 3 shows that RaFL demonstrates significant resource utilization efficiency
and high accuracy overhead. At least 90% of the resources were utilized by RaFL
across different resource constraints, with the highest utilization being 99%. In
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Table 2: Communication cost to model converge
Method Model datasets Resource Usage

(MFLOPs) Clients Round Cost Total Cost Converged Accuracy ∆ Accuracy

FedAvg [19]
ResNet

CIFAR-100

40 MFLOPs

100

0.85 GB 425GB (40.00±1.21)% 0%
76 MFLOPs 1.6 GB 800GB (42.21± 0.80)% 0%

MobileNet-V2 15 MFLOPs 280MB 137GB (27.80±0.80)% 0%
MobileNet-V3 9 MFLOPs 230MB 112GB (25.89±0.87)% 0%

FedNova [23]
ResNet

CIFAR-100

40 MFLOPs

100

1.7 GB 850GB (42.29±1.23)% +2.29%
76 MFLOPs 3.2 GB 1600GB (43.02±0.76)% +0.81%

MobileNet-V2 15 MFLOPs 560MB 273GB (27.98±0.55)% +0.18%
MobileNet-V3 9 MFLOPs 460MB 225GB (26.25±0.82)% +0.36%

FedProx [17] ResNet
CIFAR-100

40 MFLOPs

100

0.85 GB 425GB (36.43±1.10)% -3.57%
76 MFLOPs 1.6 GB 800GB (38.04±1.59)% -4.17%

MobileNet-V2 15 MFLOPs 280MB 137GB (26.65±0.82)% -1.15%
MobileNet-V3 9 MFLOPs 230MB 112GB (24.39±0.52)% -1.50%

RaFL (Ours)
ResNet

CIFAR-100

47 MFLOPs

100

0.66 GB 340 GB (62.01±1.84)% +22.01%
74 MFLOPs 0.80GB 400GB (65.28±1.22)% +23.07%

MobileNet-V2 12 MFLOPs 180MB 88GB (58.66±1.40)% +30.86%
MobileNet-V3 6.5 MFLOPs 140MB 68GB (50.49±2.49)% +24.6%

Table 3: Resource utilization efficiency
Method Model Total

Resource
Utilized

Resources
Resource

Utilization Accuracy

Uniformed
Baselines

ResNet 5GFLOPs 2.75GFLOPs 55% 41%
8GFLOPs 5.02GFLOPs 63% 43%

MobileNet-V2 1.2GFLOPs 1.07GFLOPs 89% 29%
MobileNet-V3 0.7GFLOPs 0.49MFLOPs 70% 27%

RaFL
ResNet 5GFLOPs 4.63GFLOPs 93% 65%

8GFLOPs 7.26GFLOPs 91% 67%
MobileNet-V2 1.2GFLOPs 1.15GFLOPs 99% 60%
MobileNet-V3 0.7GFLOPs 0.64GFLOP 91% 57%

contrast, the single model deployment in the baselines would have their resource
utilization limited by the clients with the lowest resource capacity.
Model Performance under Different Resource Budget. Figure 5b illus-
trates the impact of different resource budgets on model accuracy optimized by
RaFL. RaFL exhibits stable performance under various resource heterogeneity
scenarios. Even with significant differences in preset resource overhead, RaFL
maximizes learning efficiency and resource efficiency, producing stable final model
performance. This adaptability and effectiveness highlight RaFL’s ability to
address diverse resource constraints while maintaining consistent performance
across various systems.
Edge Performance under System Heterogeneity. We set up two systems
with different average resource constraints (74MFLOPs and 47MFLOPs). Figure 6
(a) shows the heterogeneous resource distributions within these systems. Despite
the significant variance in local client resources, Figure 6 (b) demonstrates that the
models running at the edge exhibit similar performance. This can be attributed to
the optimal architecture search performed by the neural architecture search under
the provided resource constraints, emphasizing RaFL’s effectiveness in addressing
system heterogeneity and ensuring consistent performance across diverse edge
devices.

4.5 Scaled and Sporadic FL

In practice, a typical FL system interacts with a large number of clients. The
system is dynamic and asynchronous, meaning new clients may join and leave
the network at any stage of FL training, and the number of participating clients
may be large. Figure 7 shows RaFL’s performance under scaled and sporadic FL
settings. Large-scale federated learning is one of the biggest challenges in FL, as
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Fig. 7: Scaled and Sporadic Connected FL.

shown in Figure 7 (a), we set up 3000 clients with distinct heterogeneous local
data on FEMNIST, RaFL converges quickly and remains stable. Figure 7 (b)
shows the sporadic FL in CIFAR-100. We implemented a client stream to simulate
a sporadic FL setting. For each round of communication, we uniformly replace
10% of clients with new ones, to mimic 10% of clients losing connections and 10%
of clients joining the current stage of training. RaFL achieves impressive results
under sporadic FL and produces competitive model performance compared to the
standard FL setting. This is despite the total clients flowing through the sporadic
FL setting equalling 3500, which is 35× more than the standard setting. The
results highlight RaFL’s robustness and adaptability in dynamic and large-scale
federated learning scenarios.

4.6 Comparison with FL approaches that use Neural Architecture
Search

Learning Efficiency Comparison. We compared RaFL to FedNAS [8], which
deploys super-networks directly to edge devices and searches sub-networks locally
for edge applications. Figure 5a(b) shows that FedNAS diverged due to overfitting
in our experiment settings. We also analyzed DecNAS [25]. It is important to note
that RaFL has a different objective compared to FedNAS [8] and DecNAS [25].
While FedNAS and DecNAS aim to optimize the NAS super-network via federated
learning on user private data, RaFL focuses on efficiently deploying resource-aware
specialized networks to heterogeneous clients to maximize resource utilization
and achieve robust performance in dynamic and large-scale federated learning
scenarios.
Distinguishing RaFL from Other NAS-based Federated Learning Ap-
proaches. Other approaches may not yield efficient neural architectures. For
instance, FedNAS performs neural architecture search at the beginning of the train-
ing, which may not result in high-performance architectures. Existing methods
might not effectively tackle resource heterogeneity in edge devices. For example,
FedNAS conducts neural architecture search directly on edge devices, which can
be computationally demanding and unsuitable for resource-limited edge devices.
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Optimizing super-networks in FL environments can easily lead to divergence.
These approaches might work when the number of clients is limited. However,
when the number of clients in FL becomes large, it becomes almost impossible
to converge the over-parameterized super-networks. In contrast, RaFL aims to
efficiently deploy resource-aware specialized networks to heterogeneous clients to
maximize resource utilization and achieve robust performance in dynamic and
large-scale federated learning scenarios.

RaFL ingeniously avoids the above limitations by dynamically deploying
specialized high-performance networks to edge clients based on their local resource
overhead, enabling efficient utilization of local resources and better downstream
tasks.

4.7 Comparison with KD-based FL

As shown in Table 4, utilizing knowledge distillation to aggregate local models
may not enhance the learning efficiency of the FL system. The performance of
knowledge distillation heavily relies on the similarity between public data and
local data, making it unsuitable for all general FL environments. We compared
RaFL with the knowledge distillation baseline FedDF [18] under various public
data scenarios. RaFL is more robust; it initializes the global knowledge network
by weighted averaging local knowledge networks using Equation 7 and then
optionally performs ensemble knowledge distillation. In cases where the public
data significantly deviates from the overall local data distribution in FL, RaFL
experiences fewer negative effects.

4.8 Extra Burdens of Knowledge Networks

To address concerns regarding the potential extra computational overhead intro-
duced by incorporating knowledge networks and performing local deep mutual
learning in the RaFL framework, we designed and conducted experiments using
two distinct FL environments: Environment A: 12 MFLOPs MobileNet-V3 and
an 8 MFLOPs MobileNet-V3 knowledge network deployed at each local client.
Environment B: 20 MFLOPs MobileNet-V3 deployed at each local client, directly
updating the model with the SGD algorithm without knowledge distillation. Both
FL environments were trained for 500 rounds separately using the same nodes
and the same type of GPU (NVIDIA V100). Results show that Environment B
required 49 hours and 19 minutes to complete training, while Environment A only
took 48 hours and 25 minutes. This indicates that incorporating knowledge net-
works and performing deep mutual learning did not add significant computational
overhead to the edge.

Table 4: Comparison with FedDF under different public data.
Public Data Method Local

Dataset Clients Participation Accuracy

CINIC-10 FedDF CIFAR-100 100 10% diverge
RaFL-(b) 100 10% 50.51

CIFAR-10 FedDF CIFAR-10 30 40% 73.35
RaFL-(b) 30 40% 72.49

TinyImageNet FedDF CIFAR-100 100 10% diverge
RaFL-(b) 100 10% 54.95



Resource-Aware Heterogeneous Federated Learning 13

5 Conclusion

In this paper, we present RaFL, a resource-aware FL approach that seamlessly
integrates AutoML solutions, such as NAS, into FL environments. By providing
clients with specialized networks tailored to their individual resource constraints,
RaFL offers a robust solution for achieving efficient learning and improved resource
utilization. Experiments conducted on various heterogeneous FL environments
demonstrate RaFL’s practicality and efficacy in enabling heterogeneous FL with
faster convergence and enhanced communication efficiency. The promising results
obtained by RaFL highlight the potential of integrating AutoML solutions into
FL environments to better accommodate the diverse resource constraints of edge
devices, paving the way for wider applications in real-world situations. Moreover,
RaFL exhibits effectiveness in addressing FL scenarios, showcasing its potential
for easy extension to decentralized and distributed training frameworks.
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